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A 30-m annual corn residue 
coverage dataset from 2013 to 
2021 in Northeast China
Yi Dong1,2,3, Fu Xuan1,2,3, Xianda Huang1,2, Ziqian Li1,2, Wei Su1,2 ✉, Jianxi Huang  1,2, 
Xuecao Li  1,2, Wancheng Tao1,2, Hui Liu1,2 & Jiezhi Chen1,2

Crop residue cover plays a key role in the protection of black soil by covering the soil in the non-growing 
season against wind erosion and chopping for returning to the soil to increase organic matter in the 
future. Although there are some studies that have mapped the crop residue coverage by remote 
sensing technique, the results are mainly on a small scale, limiting the generalizability of the results. 
In this study, we present a novel corn residue coverage (CRC) dataset for Northeast China spanning the 
years 2013–2021. The aim of our dataset is to provide a basis to describe and monitor CRC for black soil 
protection. The accuracy of our estimation results was validated against previous studies and measured 
data, demonstrating high accuracy with a coefficient of determination (R2) of 0.7304 and root mean 
square error (RMSE) of 0.1247 between estimated and measured CRC in field campaigns. In addition, it 
is the first of its kind to offer the longest time series, enhancing its significance in long-term monitoring 
and analysis.

Background & Summary
Crop residue cover is a vital measure for soil protection within agricultural sustainable development, especially 
for black soil protection in Northeast China which is an important grain-producing area with more than 30% 
of China’s corn yield1,2. Implementing crop residue covering after harvesting mitigates wind and water ero-
sion, enhances soil organic carbon content and microbial populations, improves soil water retention capacity, 
and enhances physicochemical properties3–5. Global observations show that conservation tillage is the most 
eco-friendly tillage practice, can significantly reduce greenhouse gas(GHG) emissions, improve crop yields 
under certain circumstances, and increase soil microbial diversity and soil organic carbon6. Crop residue cover, 
as an alternative to the conventional method of straw disposal, offers an effective approach to mitigate air pollu-
tion and minimize harmful emissions. Conservation tillage is defined as the crop residue coverage of more than 
0.3 by the Food and Agriculture Organization of the United Nations (FAO)7. Estimating crop residue coverage 
is essential for the conservation tillage system, which is one important input for many agricultural ecological 
models8. Therefore, it is vital to estimate crop residue coverage on a large scale quickly and accurately.

The traditional ways of estimating crop residue coverage include visual judgment or measuring using 
a band tape in a field campaign. However, these direct measurement or photography approaches are labori-
ous, time-consuming, and not conducive to large-scale implementation due to their inherent discontinuity9,10. 
Remote sensing technique has become a popular method for crop residue coverage estimation because of its 
high spatial coverage and temporal revisit on a large scale11,12. The most widely used method for crop residue 
coverage estimation by remote sensing is developing the correlation model between measured data in field cam-
paigns and spectral residue indices using parametric and nonparametric methods. The commonly used spectral 
indices include Normalized Difference Senescent Vegetation Index (NDSVI)13, Normalized Difference Residue 
Index (NDRI)14, Normalized Difference Tillage Index (NDTI)15, Shortwave Green Normalized Difference Index 
(SGNDI)16, Shortwave Infrared Normalized Difference Residue Index (SINDRI)17, Broadband spectral Angle 
Index (BAI)18, Dead Fuel Index (DFI)19, Normalized Difference Index (NDI)20, Modified crop residue cover 
(MCRC)16, Simple Tillage Index (STI)15 and Short-wave near-infrared Normalized Difference residue Index 
(SRNDI)21, etc. Since every spectral index has its advantages and disadvantages22, the combination of several 
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indexes is popular for improving crop residue coverage estimation. Furthermore, the covering crop residues 
have varied and regular textural characteristics for they are managed by harvester. Therefore, the combination 
of spectral residue index and texture features will be used in this study, which has been proven the improve crop 
residue coverage23.

For the modelling of correlation between measured coverage and spectral indices and textual features, 
machine learning methods including random forests (RF), support vector machines (SVM) and artificial neural 
networks (ANN) have been popular especially. Ding et al.24 found that the estimation accuracy using machine 
learning methods was better than that using univariate regression, and the estimation accuracy of combining 
texture features with spectral information was higher than that of using spectral information alone. Zhu et al.25 
and Dong et al.26 also prove the significance of machine learning methods with stable capability. Therefore, the 
Random Forest regression model is used for crop residue coverage estimation in this study.

Corn is the main crop in Northeast China, especially in Songnen Plain where is the Golden Corn Belt in 
China. Therefore, the CRC is estimated in this study based on our previous crop classification results27. This 
study proposes an approach to map the 30-m annual CRC dataset from 2013 to 2021 in Northeast China, and 
there are two maps after harvesting and before sowing in the next growing season for each year. To the best of 
our knowledge, this is the first CRC product in Northeast China, which is vital for monitoring conservation 
tillage to protect black soil in China. Specifically, by synthesizing Landsat archives and MODIS reflectance using 
HISTARFM to produce continuous reflectance images, we develop a sampling generation method involving 
measuring in field campaign, collecting from high resolution Google Earth images and unmanned aerial vehicle 
(UAV) images. Furthermore, the combination of spectral indices and textural features is optimized for random 
forest modelling to produce CRC in Northeast China from 2013 to 2021. Finally, the accuracy of 30-m annual 
CRC dataset from 2013 to 2021 in Northeast China is assessed using independent samplings. Meanwhile, we 
also compare our 30-m CRC dataset with the published dataset in Songnen Plain by Li et al.28. Furthermore, the 
official statistical data on the conservation tillage area of China Agricultural Machinery Industry Yearbook and 
China Agricultural Mechanization Yearbook (https://data.cnki.net/yearBook/single?id=N2023060184) is used 
to validate this CRC dataset.

Methods
Study area. The study area is located in Northeast China, spanning Heilongjiang, Jilin, Liaoning, and eastern 
Inner Mongolia, from latitude 38°26′ to 55°24 N and longitude 115°30′ to 135°8 E (Fig. 1). And the study area cov-
ers cold and moderate continental monsoon climate zones with an average annual temperature of −3.8–11.3 °C 
and precipitation varying between 298 and 880 mm. Considering the climate and precipitation amount, the study 
area can be divided into eight agricultural zones, including Sanjiang Plain Zone (SJP), Greater Khingan Mountain 
Zone (GKM), Lesser Khingan Mountain Zone (LKM), Baekdu Mountain Zone (BM), Songnen PlainZone (SNP), 
Liaoning Plain and Hilly Zone (LPH), Western Liao River Zone (WLR), and Hulunbuir Grassland Zone (HG). 
The Northeast China is with four distinct seasons, rain and heat over the same period, fertile black soil, where is 
an important region for grain production in China. The region is also suitable for monoculture cultivation from 
May to September each year with planted rice, corn, and soybeans mainly, and the corn planted area and produc-
tion account for more than 30% of the total corn production in China29.

Fig. 1 The study area of Northeast China (a) and samplings for CRC estimation (b).
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Samples collection. Measuring in field campaigns. There are three extensive field campaigns used for CRC 
estimation in this study done on November 2020 (after harvesting), April 2021 (before sowing in the next growing 
season) and April 2023 (before sowing in the next growing season), respectively. Firstly, the sample plots with 
uniform straw cover were selected, within each quadrat (30 m × 30 m), there are 5 photos taken randomly and 
the mean of them is used for estimating CRC. The aim was to minimize the effect of shadows and ensure sample 
homogeneity. To achieve this, all photos were captured between 8:30 a.m. to 4:30 p.m., with the camera held at 
a height of 1.5 meters above the ground and in the opposite direction of the sun. All samples are located using a 
Huace i80 real-time kinematic (RTK) GPS receiver (Huace Ltd., Shanghai, China). For each photo, the CRC value 
is calculated using image segmentation. Meanwhile, the average value of five random photos in each quadrat is 
calculated as the CRC in each quadrat.

Calculating from UAV images. The high spatial resolution UAV images were collected during six field cam-
paigns in 2015, 2019 and 2021, respectively. Two popular UAV models, namely the DJI Phantom 4 and DJI 
Phantom 3 Professional by SZ DJI Technology Co., Ltd., Shenzhen, China, were utilized. These UAVs are 
equipped with high-resolution RGB cameras, enabling them to capture detailed photos in field campaigns. The 
campaigns took place in Heilongjiang province, Jilin province, and Liaoning province, encompassing the major 
types and extent of corn residue in Northeast China. A total of 1200 UAV photos were taken across these three 
field campaigns, serving as the training and testing data for the CRC estimation model in this study. To ensure 
consistent spatial alignment with the satellite images, the UAVs maintained a flying height of 50 meters during 
image collection. And the CRC values for UAV images are calculated using OSTU30 algorithm which could dis-
tinguish the corn residue and non-corn residue easily. And the optimal threshold value is determined adaptively 
by the maximum variance between corn residue pixels and non-corn residue pixels within UAV image using 
OSTU segmentation method. Finally, the ratio between the number of segmented corn residue covered pixels 
and the total number of pixels in the given photo is done for CRC calculation.

Collecting from google earth images. For filling up the samples to full strength in 2013, 2014, 2016–2018 when 
there is no sample collected from field campaigns or UAV images, there are additional samples collected from 
the very high spatial resolution Google Earth imagery by semi-automated visual interpretation. Moreover, 
the enough samples are required for training and testing machine learning model for achieving accurate CRC 
predictions31. The random stratified sampling method is used to collect CRC samples based on high spatial 
resolution Google Earth imagery referenced from maximum NDTI composite of Landsat images. The OSTU 
algorithm is used to classify the corn residue pixels from non-residue pixels considering the corn residue is 
usually brighter than neighboring vegetation and soil. However, there is less color difference between the corn 
residue and the non-residue, the collect earth online tool is used to calculate CRC value in each sampling quad-
rat, which is a free open source software for monitoring land cover type and land cover change developed by the 
Food and Agriculture Organization of the United Nations (FAO)32. It is common to use high-resolution imagery 
to validate fraction maps from various ecosystems, including woody and canopy cover33,34. There are 49 plots of 
2 m × 2 m distributed equally within each 90 m × 90 m square, and all plots are used to observe presence/absence 
of corn residue by visual interpretation. In each quadrat, three independent experts with local experience esti-
mate the CRC by visual interpretation from Google Earth images. And the mean value of the three calculated 
CRC values represents the CRC value for the specific square. The criteria for samples collection are as followed.

 (1) The samples are selected using a random stratified sampling strategy based on the Landsat-8 maximum 
NDTI composite during 20th October to 10th December (after harvesting with no snows in cropland) 
or during 20th March to 10th May (before sowing in the next growing season) in each agricultural zone, 
respectively.

 (2) The size of samples is 0.81 ha with 90 m × 90 m, which is the size of 3 pixels in 30-m resolution Landsat 
images.

 (3) There are three independent experts with local experience calculate the CRC value using 7 × 7 plots in 
each quadrat with the size of 2 m × 2 m for each plot. The illustration of quadrat and plots is as Fig. 2. These 
2 m × 2 m plots are used to observe presence/absence of the corn residue for calculating CRC value. And 
the mean value of them is used as the CRC value in given quadrat.

Fig. 2 CRC sampling plots on Google Earth images.
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The amount of all these three kinds of samples in each year from 2013 to 2023 is shown in Table 1.
In the samples from 2013 to 2021, 70% were used for training the model, and 30% were used for validation. 

The data from the actual test samples in 2023 will be used for independently verifying the reliability of the 
model.

Remote sensing images and DEM data. There are two kinds of remote sensing images used for CRC estimation 
including Landsat-5/7/8/9 (https://www.earthdata.nasa.gov/) and MODIS (https://www.earthdata.nasa.gov/). 
The bands of blue, green, red, NIR, SWIR1 and SWIR2 of Landsat-5/7/8/9 and MODIS images are combined for 
synthesizing Landsat-like reflectance dataset for CRC estimation in regional Northeast China. And the details 
of image synthesizing using the HISTARFM algorithm is as shown in Section HISTARFM algorithm for synthe-
sizing Landsat and MODIS images.

Considering the effect of topography on crop planting and management, DEM data is also used for CRC esti-
mating modelling. The DEM data comes from the global 30 m resolution DEM data, released by NASA (https://
www.earthdata.nasa.gov/), and the data can be used on GEE by “USGS/SRTMGL1_003”. The topographic indi-
ces including slope, aspect, elevation, and Topographic Wetness Index (TWI)35 are calculated based on DEM 
data pixel by pixel.

Estimation of CRC. The workflow of CRC estimation from 2013 to 2023 in Northeast China is presented 
schematically in Fig. 3. And the significant steps to produce the CRC dataset are described as follows.

 (1) Samples calculation of CRC from photos taken in field campaign, UAV images and high spatial resolution 
images from Google Earth.

 (2) Synthetization of Landsat and MODIS images using HISTARFM algorithm for producing time-spa-
tial-continuous images from 2013 to 2023 in Northeast China.

 (3) Random forest modelling for CRC estimation and validation. There are 70% of all samples used for train-
ing random forest model resulting from image features and calculated CRC value from samples, and there 
are 30% of them used for validation of CRC estimation.

 (4) The data were validated independently using the samples collected in April of 2023, and our products were 
validated using statistical yearbooks.

HISTARFM algorithm for synthesizing Landsat and MODIS images. Due to the contamination of cloud and 
snow and the limitation of satellites’ revisiting period, Landsat-5/7/8/9 images cannot cover the whole study area 
fully in a short time with no CRC change. And the MODIS reflectance images are used to produce Landsat-like 
images by bring time trajectory for given image pairs. The HISTARFM algorithm derived from Kalman filter 
and Bayesian estimation can be used to combine two estimators synergistically to fill the gap and reduce the bias 
of spectral reflectance pairs36. And this algorithm has the applicability for gap-filling and fusing the land surface 
reflectance at a continental scale, which can generate gap-free monthly reflectance products at 30 m resolution 
for six Landsat spectral bands. The first estimator, an optimal interpolator, produces estimated Landsat reflec-
tance values in a given month by combining previous Landsat images in the same month and the same place, 
pre-computed from the available Landsat images, and a fusion of Modis and Landsat reflectance obtained from 
the respective satellite closest to the month37. The second estimator is a Kalman filter to correct the reflectance 
bias generated by the first estimator. Therefore, the algorithm can achieve a complete coverage of the study area 
with images within one month in Google Earth Engine. The synthesized continuous Landsat-like images on 
November (after harvesting) and April (before sowing) of each year are used to estimate CRC from 2013 to 2021 
in Northeast China. The Kalman filter and the Bayesian estimation could correct the bias of the first estimation.
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where, k denotes dynamic variables at the k month, X− is the priori estimate, K is the Kalman gain, P− is the 
error covariance of the prior estimate, H is the observation operator that describes how model outputs relate to 
observation, R is the Landsat error covariance, X is the corrected reflectance, and P is the error covariance of the 
posterior estimate, Z is the observation value.

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2023

After harvesting samples 65 140 72 88 139 62 152 112 327 —

Before sowing samples 175 76 94 91 75 172 194 310 200 641

Total samples 240 216 166 179 214 234 346 422 527 641

Table 1. The number of samples used for CRC estimation.
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To generate the −Xk , Landsat images and MODIS images were used based on Bayesian Model Averaging 
(BMA) approach. Firstly, the least squares solution is used to bridge the gap between Landsat and disaggregation 
Modis images for the selected year. Secondly, combining Modis and Landsat climatology (mean and variance of 
the 10 years preceding month k) images, using the BMA model, the −Xk  can be computed.
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Zk is the Landsat climatological mean of the 10 years prior to month k, Pk LS,  is the Landsat climatological 
variance of the 10 years prior to month k, ϒ is a fraction of the error covariance of the estimate that is attributed 
to bias, and Pk,MOD is the variance of the downscaled Modis reflectance. Thirdly, according to the previous 
study38, ϒ is determined empirically and the value has been reported lower than 1. In this section, we set ϒ = 0.6, 
which cloud captures the trade-off between land cover pixels that change rapidly and tend to have highly biased 
reflectance (cropland), and pixels that change slowly (unmanaged forest)36. Finally, we can get the gap-free 
monthly images which has high correlation with monthly Landsat composite and capture the pixels feature.

Combination of image features. Considering the spectral and textural difference between corn residue and 
non-residue, the combination of spectral indices, reflectance bands, and texture features is used for CRC estima-
tion. The popular NDTI, NDI5, NDI7, NDSVI, STI, SGNDI, DFI, BI3, MCRC, and NDRI are used in spectral 
indices group. And the GLCM features are calculated consists of 18 bands per input band if directional averaging 

Fig. 3 Flowchart showing the production and validation of CRC dataset in Northeast China.
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is on and 18 bands per directional in the kernal. And Angular Second Moment, Contrast, Correlation, Variance, 
Inverse Difference Moment, Sum Average, Sum Variance and Sum Entropy will be calculated if not. The effect 
of topography on crop planting and management is considered using Elevation, Slope, Aspect and TWI. All 
features are shown in Table 2. Feature selection is a crucial aspect in the estimation of CRC as it significantly 
impacts the efficiency and effectiveness of the CRC estimation. Recursive Feature Elimination (RFE) is a feature 
selection algorithm, which begins by searching for a subset of features from the complete set available in the 
training dataset. It then proceeds to eliminate features until the desired number is retained iteratively. The goal 
is to expedite model training and improve its generalization ability. Hence, the RFE method is used to do feature 
selection in this study.

Fig. 4 Comparation of synthesized reflectance after harvesting (a) and before sowing (b).
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Random forest regression modelling. RF is an ensemble-learning algorithm39 that has been widely used to esti-
mate CRC40,41 and aboveground biomass (AGB)42,43 due to its excellent performance. By using the grid searching 
method, the optimal parameters of the random forest regression are determined by considering the differences 
in the number of samples in each agricultural zones. The samples within each agricultural zone are divided into 
training dataset (70%) and a test dataset (30%) by stratified spatial random sampling, and the model accuracy 
evaluation is achieved by 10-fold cross-validation. Additionally, it calculates a relative importance score for each 
predictor variable, which reflects its contribution to the RF model. Moreover, the measured samples in April 2023 
are used for validation of accuracy and robust. And the 30 m crop classification results of Northeast China in our 
previous study are used to mask corn cropland. Considering there is no crop classification results within WLR, 
HG, and part of GKM in the previous study, we use the same method to map the corn cropland in these areas.

At the same time, using actual field-measured CRC data in Northeast China in 2023 for independent veri-
fication, test the robustness of the model over time, and use statistical indicators R2 and RMSE to evaluate the 
model performance.
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Features

Name Abbreviation Formula References

Spectral indices

Normalized difference tillage index NDTI (SWIR1−SWIR2)/(SWIR1 + SWIR2) 15

Normalized difference index 5 NDI5 (NIR−SWIR1)/(NIR + SWIR1) 48

Normalized difference index 7 NDI7 (NIR−SWIR2)/(NIR + SWIR2) 48

Normalized difference senescent vegetation index NDSVI (SWIR1−Red)/(SWIR1 + Red) 13

Simple tillage index STI SWIR1/ SWIR2 15

Shortwave Green Normalized Difference Index SGNDI (Green −SWIR2)/(Green + SWIR2) 16

Dead fuel index DFI 100 × (1- SWIR2/ SWIR1) × (Red/NIR) 49

Three-band index BI3 (SWIR2- Red) × (SWIR2 + SWIR1) 24

Modified crop residue cover MCRC (SWIR1−Green)/(SWIR1 + Green) 50

Normalized difference residue index NDRI (Red−SWIR2)/ (Red + SWIR2) 14

Reflectance bands
Name Number

Blue Green Red NIR SWIR1 SWIR2 6

Textural features GLCM (6 reflectance bands) 6 × 18 108

Topographic indices Elevation, Slope, Aspect, TWI 5

Table 2. Combination of image features used for CRC estimation.

Fig. 5 Accuracy assessment of CRC estimation using testing samples. Notes: The marginal kernel density plots 
above and to the right of the scatterplot show the distribution of the data in one dimension.
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In the formula, yi is the measured CRC. And �yi
 is the estimated CRC using a multiple linear regression model 

and random forest model.

Data Records
The annual CRC mapping after harvesting and before sowing in the next growing season are prepared 
using the defined dataset and can be accessed on the public repository Figshare https://doi.org/10.6084/
m9.figshare.23993517.v444. The data can be imported into remote sensing processing software (e.g., ENVI), and 
standard geographical information system software (e.g., ArcGIS). The validation data consisted of two parts:  
(i) CRC data calculated by Li et al. and (ii) Conservation Tillage Statistics Yearbook.

Fig. 6 Accuracy assessment of CRC estimation using independent measured CRC data in 2023.

Fig. 7 Comparison with the published estimated CRC of Li et al. in Songnen Plain.
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Technical Validation
Validation of synthesized Landsat-like images. To evaluate the synthesized reflectance using the 
HISTARFM algorithm, we compare the image reflectance before and after synthesisation. There are 2500 crop-
land samples from synthesized images after harvesting and before sowing are used for validating the synthesized 
reflectance. Figure 4 is the comparation of synthesized reflectance after harvesting (a) and before sowing (b), 
which shows that all scatter plots are concentrating on the 1:1 line. Comparably speaking, the synthesized accu-
racy of Band-1 and Band-2 are lower than that of Band-3 to Band-6. And the R values of synthesized reflectance 
of Band-3 to Band-6 are all greater than 0.90. All these results in Fig. 4 reveal that there are high correlations 
between Landsat reflectance with the synthesized Landsat-like reflectance.

Accuracy assessment of CRC estimation. Figure 5 shows the accuracy assessment result of CRC esti-
mation using testing samples. We can conclude that our CRC estimation model displays a good performance in 
CRC estimation in Northeast China. Firstly, the correlation between measured and predicted CRC is high with 
R2 of 0.7304 and RMSE of 0.1247. Secondly, the scatter points are concentrated on 1:1 line with a wide dynamic 
range from 0.0 to 1.0. In addition, we analyzed the importance of all characteristics of the models. The analyzed 
results of characteristic importance show that the largest contributions in the model are NDTI and STI, which is 
consistent with the results of previous studies23,26.

Furthermore, the measured CRC data in 2023 which is not used for training model is used to validate the 
accuracy the CRC estimation during 2013–2021. Figure 6 is the accuracy assessment of CRC estimation using 
independent measured CRC data in 2023. And the R2 of measured CRC and estimated residue coverage in 2023 
before sowing is 0.5672, which reveals the good performance of CRC estimation in this study. The independent 
validation result using the samples measured in 2023 which is not used for model training reveals that the pre-
dicted CRC is correlated with the measured CRC with R2 is 0.5672. Comparably speaking, the predicted CRC 
is a little lower than the measured CRC, which is due to the measured CRC is collected at the end of March and 

Fig. 8 Comparison with published estimated CRC of Li et al. in Songnen Plain using correlation analysis.

Fig. 9 Changing trends of conservation tillage area and CRC value higher than 0.3 in Northeast China.
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the beginning of April in 2023, while the modelling is done using the samples collected in the mid to late April 
from 2013 to 2021.

Wall-to-wall comparison with published results. For validating the CRC estimation results further, the 
wall-to-wall comparison in Songnen Plain is done with the published results of CRC estimation from Li et al.28. 
Li et al. estimate the CRC using Sentinel-2A images in Songnen Plain in 2019–2022. The spatial resolution of Li’s 
CRC estimation result is 20 m, and the spatial resolution of our CRC estimation using Landsat 5/7/8/9 is 30 m. So, 
the nearest neighbour method is done to resample the CRC estimation of Li et al. to 30 m. Figure 7 is the spatial 
trend of comparison with published results in Songnen Plain of Li, which reveal similar spatial trends between the 
CRC estimation results of Li et al. with our estimation results in this study.

Figure 8 is the quantitative comparation of CRC estimation results between Li et al. and our results in this 
study. The R2 of Li’s CRC estimation is 0.7292 using the best performing model with the optimized spectral index 
in Songnen Plain. And we estimate CRC with the R2 of 0.7304 in the whole of Northeast China. In addition, 
we selected 19000 samples randomly to validate the correlation CRC estimation results between Li’s study. and 
our results in this study. Figure 8 reveals that the correlation coefficient R is 0.7281 and RMSE is 0.1869. From 
Fig. 8, it can be seen that the estimated CRC of Li et al. is significantly higher than our estimated result, and 
the difference might be due to the time difference and the modelling difference. Firstly, the samples of Li et al.  

Fig. 10 Comparison of the estimated area within CRC > 0.3 with the statistical conservative tillage area on 
region scale (a) and provincial scale (b) from 2013 to 2021.

Fig. 11 Comparison between the maps of CRC and high-resolution images from Google Earth in the study area.
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were acquired at the end of March, and the samples acquired were higher coverage samples, while the time 
of acquiring the samples for this study is basically in the middle to late April to the beginning of May, and the 
CRC is less than that in March, which makes the final straw coverage of our products lower than the previous 
study. The measured CRC sample is an important variable that affects the accuracy of the model for estimating 
CRC43,45. Secondly, the features used for modelling and trained model were different, too. Li et al. used NDTI 
only for CRC estimation using a linear regression. In this study, we used 10 tillage indices, 6 spectral bands, 108 
texture features, and 5 terrain features with random forest regression to build the CRC estimation model. Wang 
et al.41 found that the accuracy of CRC estimation is higher than that of linear models. Furthermore, our pub-
lished study results also revealed that the accuracy of CRC estimation using random forest was higher than that 
using linear regression method in estimating the CRC in Northeast China26.

Comparison with official statistical data of conservative tillage. Since there is no official statistical 
data on CRC in Northeast China, we compare and validate our CRC results with official statistical data of con-
servation tillage area in China Agricultural Machinery Industry Yearbook and China Agricultural Mechanization 
Yearbook. Figure 9 shows the changing trends of conservation tillage area and CRC value higher than 0.3(Defined 
as conservation tillage) in Northeast China. And Fig. 9 reveals that there are similar changing trajectories for con-
servation tillage area and CRC value higher than 0.3 during 2013–2021. All of them are increasing from 2013 to 
2015 and there is a local peak in 2015. There is an official policy of crop planting strategy adjustment in 2016, and 
some corn planted area is changed into soybean or rice paddy. Therefore, there is a decrease for conservation tillage 
area and CRC value higher than 0.3 in 2017 and 2018. And the conservation tillage area and CRC value higher than 
0.3 is increasing again from 2018. The reasoning for this increasing is that the Ministry of Agriculture and Rural 
Affairs issued the policy of Outline for the Protection of Black Soil in Northeast China (2017–2030) (http://www.
moa.gov.cn/nybgb/2017/dqq/201801/t20180103_6133926.htm) in 2017. And the conservation tillage techniques 
were encouraged by financial subsidies. Furthermore, the increasing rate of conservation tillage area has acceler-
ated from 2020. The reasoning for this accelerating is the implementation of Action Plan for the Protection of Black 
Soil in Northeast China (2020–2025) (http://www.moa.gov.cn/gk/tzgg_1/tz/202003/t20200318_6339304.htm),  
which promote the application of conservation tillage in Northeast China.

Figure 10 is the comparison of the estimated area within CRC > 0.3 with the statistical conservative tillage 
area on region scale (a) and provincial scale (b) from 2013 to 2021. Figure 10a revealed that our estimated area 
with CRC greater than 0.3 was highly correlated with the statistical conservation tillage data of three provinces in 
Northeast China with R2 of 0.9610. Compared with the statistical data, the area of conservation tillage estimated 
in this study is higher, and the possible reasons were as follows. Firstly, only the conservation tillage area of 
mechanical tillage was counted in China Agricultural Machinery Industry Yearbook, and the conservation tillage 
area from the small holder cropland was not included in it46. Secondly, there was time difference between samples 

Location Mapping Results Google Earth images

124.780856°E 43.608082°N CRC = 0.658

CRC=0.6531 

125.248449°E 43.653694°N CRC = 0.682

CRC=0.6735 

125.945043°E 44.168036°N CRC = 0.666

CRC=0.7143 

124.710024°E 43.536296°N CRC = 0.55

CRC=0.5306 

Table 3. Labels resulting from visual interpretation of high spatial images from Google Earth used for CRC 
validation.

https://doi.org/10.1038/s41597-024-02998-7
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collection and statistical data. The conservation tillage area counted in the statistical yearbook was always at the 
beginning of May after sowing, but the CRC measurement was always at the middle of April before sowing.

Comparison with google earth images. To further validate the accuracy of the CRC results, we con-
ducted a comparison with high spatial resolution images obtained from Google Earth (Fig. 11 and Table 3).  
The results revealed a remarkable consistency between the spatial details of our CRC outputs and the 
high-resolution images available on the Google Earth platform. Additionally, the comparison between the 
observed and estimated CRC values revealed a negligible difference, suggesting that the CRC obtained through 
visual interpretation and remote sensing are highly consistent. This finding underscores the reliability of the CRC 
data and supports their suitability for use in subsequent research endeavors.

Discussion of limitation and future work. We acknowledge that there are still some shortcomings in 
this study. (1) A limitation to the resultant maps of CRC is from that there should be more samples for model 
training and testing. In general, machine learning models require large training and testing datasets to achieve 
accurate predictions31. Unfortunately, there are insufficient samples for modelling. If more samples are collected, 
the CRC estimated results would be more robust. (2) Due to the very short time window for CRC estimation after 
harvesting, the fused images from Landsat 5/7/8/9 and MODIS are used to estimate CRC, and the image fusion 

Fig. 12 Spatial distribution of average CRC after harvesting (a) and before sowing (b) in Northeast China from 
2013 to 2021.

Fig. 13 Temporal changing of CRC values after harvesting (a) and before sowing (b).
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error will propagate to the CRC estimation. In Northeast China, the corn is harvested in middle October, and it 
will be snow in the middle of November. It is very difficult to collect enough Landsat 7/8 image in this short time 
in large regional area of Northeast China. So we fused Landsat 5/7/8/9 and MODIS images for the fully covered 
CRC estimated result. Although the fused images are able to predict reflectivity well, the fused images are still 
blurry due to the difference in spatial resolution between Landsat and MODIS, which makes it difficult for the 
fusion algorithm to capture texture-rich features47.

Usage Notes
Spatiotemporal distributions of CRC. The spatial distribution of averaged CRC after harvesting and 
before sowing within 2013–2021 in Northeast China is as Fig. 12. And Fig. 12 reveals that the CRC after harvest-
ing than that before sowing. The most area is covered with CRC value within 0.3–0.6 and only very few areas are 
covered with CRC value less than 0.3 after harvesting. However, there are more areas are covered with CRC value 
less than 0.3 and the proportion of area with CRC value within 0.3–0.6 and greater than 0.6 is decreased before 
sowing in the next growing season. This decreasing maybe resulted from the phenomenon of corn residue decom-
position, removing by farmer for sowing. The high CRC areas are mainly concentrated in Songnen Plain after 
harvesting. Moreover, the CRC value in south of study area is lower than that in north area because the sowing 
date in south area is earlier than that in north area and there are more corn residues are removed in south area. 
The temporal changing of CRC values after harvesting and before sowing is as Fig. 13. We can conclude that the 
CRC is increasing from 2013 to 2021 from Fig. 13.

Code availability
The programs used to generate all the results were Python (3.10) JavaScript and ArcGIS (10.8). Analysis scripts 
used in this study will be available at https://doi.org/10.6084/m9.figshare.23993517.v444.
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