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a North atlantic synthetic tropical 
cyclone track, intensity, and rainfall 
dataset
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Tropical Cyclones (TCs) cause significant socio-economic damages to the US and Caribbean coastal 
regions annually, making it important to understand TC risk at the local-to-regional scales. However, 
the short length of the observed record and the substantial computational expense associated with 
high-resolution climate models make it difficult to assess TC risk using either approach. To overcome 
these challenges, we developed a database of synthetic TCs using the Risk Analysis Framework for 
Tropical Cyclones (RAFT). The database includes 40,000 synthetic TC tracks, along-track intensities 
and storm-induced precipitation. TC tracks generated in RAFT are in reasonable agreement with the 
observed spatial distribution of TC tracks and basin-scale TC statistics. Specifically along the coast, 
spatial variations in TC crossing probability and extreme winds upon landfall are well-reproduced by 
RAFT with R-squared values of 0.81 and 0.73, respectively. In summary, the synthetic TC database 
constructed with RAFT provides a reasonable pathway for the robust assessment of North Atlantic TC 
wind and rainfall risks.

Background & Summary
Tropical cyclones (TCs) are among the most destructive natural hazards for the North and Central American 
regions, and are responsible for 71% of fatalities and 78% of economic losses due to weather extremes over the 
period 1970–20191. Within the United States (US), they have caused over 6,500 fatalities and inflicted economic 
damages of about $1.1 trillion over the last 40 years2. This makes it critical to understand the risk associated with 
Atlantic TCs at the regional-to-local scales, where damages manifest most profoundly3. Using observations to 
quantify TC risk is difficult, considering the short length of the reliable TC record and the fact that annually only 
1–2 storms make US landfall on average4. While high-resolution climate models that can explicitly resolve TCs 
may provide a viable alternative, simulating a large number of storms using such models typically incurs a high 
computational cost.

To address these issues of data-scarcity and computational expense, a suggested approach has been to gener-
ate a synthetic TC record to supplement the historical record, providing a more complete picture of TC charac-
teristics at regional-to-local scales. This approach was likely first introduced by Vickery et al.5, who generated a 
set of synthetic storm tracks in the Atlantic basin using a fully statistical approach. This method was improved 
upon in 2006 by Emanuel et al.6 by coupling two track generation models with a deterministic intensity model, 
ensuring that storm intensity conforms to the underlying physics. A similar statistical-dynamical approach was 
adopted by Lee et al.7 to simulate synthetic global tracks with an environmental index-based genesis model and 
an auto-regressive intensity model. More recently, Bloemendaal et al.8 developed a purely statistical algorithm 
to generate synthetic TC tracks at the global scale by means of synthetic resampling. Another recent study9 
coupled a statistical Markov renewal TC track model with a physics-based rainfall model to simulate TC rain-
fall over South Korea. Further, several of these studies have made their data publicly available7,8. However, the 
data provided only includes synthetic TC tracks and along-track intensities, and does not provide estimates of 
TC-induced rainfall over the North Atlantic region.

While the high winds associated with TCs directly cause substantial damage to buildings and structures, 
storm-induced flooding and the generation of coastal storm surge additionally have devastating impacts on life 
and infrastructure. For instance, the torrential rain from TC Harvey (2017) resulted in catastrophic flooding in 
the Houston metropolitan area, estimated to have been responsible for economic damages of about $97 billion1.  
Later, in September 2018, TC Florence made landfall near Wilmington, North Carolina and became the ninth 
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most intense hurricane to affect the US, largely due to extreme rainfall and flooding exacerbated by its slow 
progression10. This highlights the need for a TC database that includes precipitation in addition to winds to 
more holistically represent TC risk. To address this, we have developed a database of synthetic TCs using the 
Risk Analysis Framework for Tropical Cyclones (RAFT), a unified framework capable of simulating tens of 
thousands of TCs and their impacts based on the large-scale environment11,12. RAFT consists of several different 
components coupled into one cohesive system, as illustrated in Fig. 1. RAFT uses established methods for storm 
genesis6, track translation6, and precipitation13,14, while the intensity model is a novel deep neural network-based 
approach developed for this framework12. We believe the data generated by RAFT is unique and valuable to both 
the scientific community and the general public by nature of the unique combination of RAFT’s salient features, 
as outlined below:

•	 A variety of methods have been evaluated for each component of RAFT – many derived from established 
methods in the field of TC modeling – and we have selected those with the best balance between performance 
and computational efficiency. The resulting system utilizes a variety of techniques, from physical equations to 
linear models to deep neural networks.

•	 We include storm-induced rainfall in our dataset, which despite being one of the primary drivers of TC risk2 
is generally not provided in other synthetic TC datasets. Since wind and rainfall parameters are generated 
together in a coupled approach, our method allows for a more consistent simulation and understanding of 
secondary risks such as compound flooding and power outages.

•	 RAFT is computationally efficient, allowing many thousands of storms to be generated in a reasonable 
amount of time. Specifically, it takes roughly 3 hours to generate 40,000 synthetic TCs using the track model 
and 5 hours to calculate intensity labels when run on a desktop with four Intel Xeon CPUs @ 2.80 GHz each 

Fig. 1 Overview of the dataflow for the synthetic TC dataset creation using RAFT.
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and 32 GB of memory. This allows RAFT to be used for TC risk assessment at a fine resolution over large 
spatial and temporal scales.

•	 Importantly, RAFT can be run using simulated environmental conditions, such as those generated by climate 
models. It follows that RAFT can generate TCs representative of not just the historical or present climate, but 
potential future climates as well.

Using RAFT, we generated 40,000 synthetic TC tracks for the North Atlantic based on the current climate 
conditions obtained from ERA515 reanalysis for the period 1979–2018. These climatic conditions – variables 
including large scale wind, sea-surface temperature, air temperature and humidity – are used to determine the 
various parameters of our synthetic storms. For each TC, we model its track, intensity, and rainfall pattern (0.08 
resolution) at 6-hourly time steps. We make this data publicly available to facilitate a deeper understanding and 
further analysis of North Atlantic TC risk. While the RAFT framework has previously been applied to investi-
gate the evolution of TC risk in the US11, here we provide a more thorough description of each of the framework 
components, perform an in-depth validation of the output, and discuss the constituent models’ limitations and 
potential for generalizability.

Methods
track. After TCs are generated as a random draw from a Gaussian kernel-based probability distribution cen-
tered around historically observed TC genesis locations6, TC tracks are subsequently modeled using a beta-ad-
vection method following Marks et al.16 and Emanuel et al.6. Essentially, this method assumes that a TC track is 
governed primarily by the background steering flow, which is estimated as a weighted mean of the large scale  
wind at 850 hPa and 200 hPa levels. While Emanuel et al.6 uses 850 and 250 hPa winds, we chose to use 850 and  
200 hPa winds as implemented in Marks et al.16 to be consistent with how wind shear is calculated within the inten-
sity model. For generation of the synthetic zonal and meridional wind values at these levels, three components 
are used: the mean monthly winds in the zonal and meridional directions at 850 hPa and 200 hPa, the covariance 
component between these four wind values, and four Fourier series per track which model periodic fluctua-
tions. The resultant synthetic wind values fluctuate around the monthly mean with both coupled and individual 
stochastic contributions. For more details on the track model method, readers should refer to Emanuel et al.6.  
This flow-driven movement is then modified by the addition of a beta-drift correction term Vβ, used to generate 
the movement of the cyclone each hour as:

V V (1 )V V (1)track 850 mPa 200 mPaα α= + − + β

where α is a constant weight set to 0.8.
Rather than using a constant beta-drift correction as in Emanuel et al., the beta-drift here varies spatially, and 

is determined by a linear regression fitted on the large scale wind and latitude as suggested in Wu & Wang17 and 
Zhao et al.18 and implemented in Kelly et al.19. The tracks are simulated until one of the following conditions is 
met: the storm has lasted for 30 days; the track travels outside of the study domain (4°N – 50°N, 100°W – 5°W); 
or the intensity falls below a predefined threshold (see next section).

Intensity. Every 6 hours, the TC intensity (10 m maximum sustained 1-minute wind speed) at the current 
track location is estimated using the deep learning model as developed in Xu et al.12. This model, trained on global 
Statistical Hurricane Intensity Prediction Scheme (SHIPS) predictors20 from 1982 to 2021, forecasts 6-hourly 
intensity changes in the North Atlantic using a multilayer perceptron with multiple feed-forward, fully con-
nected layers. Each hidden layer computes a linear combination of the outputs from the preceding layer and 
applies a nonlinear activation function, enabling the model to effectively capture complex, nonlinear relationships 
among a multitude of predictors. The initial maximum wind speed is set to be 33 knots (17 m/s), the beginning of 
Tropical Storm designation according to the Saffir-Simpson scale. The original intensity model used the following 
9 environmental variables to estimate the intensity change: the current intensity, the last 6-hour intensity change, 
vertical wind shear, 200 hPa zonal wind, maximum potential intensity, latitude, longitude, 1000 hPa equivalent 
potential temperature, and distance to major landmass. Since then, we have made further improvements to the 
model. First, we added two additional variables inspired by DeMaria et al.20 to account for the dry Saharan air 
layer and the westerly wind: low-level (850–700 hPa) relative humidity and the zonal component of the storm 
motion. Next, following Lee et al.7, the distance to major landmass predictor is replaced with the percentage of 
landmass within a 500 km distance from the storm center. The use of landmass percentage instead of distance to 
land helped correct some issues that were noted in the earlier version (e.g. storm intensity dropped too quickly 
when passing through the islands of Cuba and Hispaniola). While steering flow, vertical shear, storm longitude 
and latitude come from the track model, other variables like low-level relative humidity, maximum potential 
intensity and equivalent potential temperature come from the environmental conditions in ERA5 reanalysis.

Further, we also adopted the stochastic error component from the autoregressive intensity model described 
in Lee et al.21 and applied it to our deep learning model. The stochastic component works by randomly drawing 
errors from the training data, conditioned on the initial intensity. Since IBTrACS intensities are rounded to the 
nearest 5 kt interval and RAFT-predicted intensities are continuous, we obtain randomly drawn errors corre-
sponding to the nearest two training intensity values. The probability of picking from either set of errors is based 
on the distance between the storm’s current intensity and the nearest two training intensities. For example, if we 
want to predict the intensity change for a model storm that is currently at 54 kt, the relevant training intensities 
would be 50 kt and 55 kt. In this situation, the model will draw an error randomly from the 55 kt bin 4

5
 of the 
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time, and the 50 kt bin 1
5

 of the time. The final predicted 6-hour intensity change is then computed as the ML 
model’s predicted value plus this randomly drawn error correction.

While the track model uses monthly data to construct Fourier series as a way to generate random fluctu-
ations, for intensity we use daily ERA5 reanalysis data15 to directly leverage daily variations of environmental 
conditions. To expose each synthetic TC to a variety of environmental conditions, a year between 1979 and 
2018 is randomly assigned, and the ERA5 daily environmental conditions from that year are used as inputs.  
The intensity model continues along the track until the intensity drops below 25 kt. TCs lasting less than one day  
are considered transient and therefore removed from the dataset.

TC intensity is closely related to pressure differentials – specifically the low pressure at the storm center – and 
the radius of maximum winds (Rmax). Generally, as the central pressure decreases, TC intensity increases and 
Rmax tends to contract, or decrease, thereby generating stronger winds and more severe weather conditions. To 
quantify the low pressure at the storm center, we fitted a linear regression between minimum sea level pressure 
and the maximum wind speed (vmax) in knots. We trained the model using 2001–2016 North Atlantic data, and 
used 2017–2020 for testing. The model is able to explain 88% of the variance for the testing years, with a RMSE 
of 7.11 hPa. We compute pressure (hPa) given vmax as:

Pressure v1030 222 0 730 (2)max= . − . ⋅

Analytical wind generation also requires Rmax as input, and here the Rmax is calculated from storm intensity 
and latitude using a linear regression with logarithmic transformations fitted with 2001–2016 North Atlantic 
data, following Willoughby & Rahn22:

R v48 7 exp(0 0163637 latitude 0 01450866 ) (3)max max= . ⋅ . ⋅ − . ⋅

where vmax is in kt, and the resulting Rmax is in nautical miles.

Rainfall. TC-induced rainfall is simulated using the Tropical Cyclone Rainfall (TCR) model, a 4-component 
physics-based approach13,14,23. The theory behind the model is that the TC precipitation rate Prate is proportional 
to the upward vapor flux, which can be obtained by multiplying the vertical velocity (w) above the boundary 
layer with the the 925–1000 hPa specific humidity qs. This Prate~wqs relationship is theoretically and empirically 
validated in Lu et al.14, where a thorough derivation and justification of each step of the calculation can be found. 
The final precipitation (in mm/hr) is computed in the TCR model by multiplying this upward vapor flux wqs by a 
constant precipitation efficiency εp and the ratio of the densities of air ρair to liquid water ρliquid:

P wq
(4)

rate p
air

liquid
sε

ρ

ρ
=

A value of 0.0012 is used for the ratio of densities of air to water, and εp is set at 0.9. The vertical velocity (w) 
is estimated as the sum of contributions of four physical components (surface friction (wf), topography (wh), 
baroclinicity due to wind shear (ws), and vortex stretching (wt)):
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The physical components are calculated using the following set of parameters:

•	 r, distance to the storm center
•	 τθs, azimuthal surface stress (modeled as a function of surface drag coefficient and wind speed)
•	 M, angular momentum of wind
•	 V, wind velocity vector
•	 h, topographic height
•	 Hb, representative depth scale of the lower troposphere
•	 f, Coriolis parameter
•	 ∂M/∂t, rate of change of the angular momentum with respect to time
•	 S200hPa–850hPa, wind shear computed as the difference between geostrophic wind and the 200 hPa and 850 hPa 

levels (Vg, 200hPa–Vg, 850hPa)
•	 j, unit vector pointing radially away from the center of the storm
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The rainfall generation model relies on the synthetic surface wind field, which is generated analytically 
according to Holland et al.24 and as a function of Rmax. Analytical wind and rainfall are generated at hourly time 
steps, and hourly TC locations and intensities are linearly interpolated from the 6-hourly track and intensity 
simulations.

Input data sources. Most atmospheric parameters are from ECMWF’s ERA515 reanalysis, including large 
scale wind, relative humidity, wind shear, maximum potential intensity, equivalent potential temperature, and 
surface roughness (used in the frictional component of the rainfall model). US topographic elevation is derived 
from the USGS GMTED2010 project25.

Data Records
The synthetic TC dataset26 generated by RAFT is publicly accessible at https://zenodo.org/doi/10.5281/
zenodo.10392723, which includes 40,000 simulated storm events with each 6-hourly track location, along-track 
intensity (maximum wind speed and minimum pressure), and radius of maximum winds. The NetCDF4 file 
named “RAFT.NA.v20231016.nc” contains the complete set of variables for the synthetic TCs, as described in 
Table 1.

Additionally, for each synthetic event, we provide detailed data on storm-lifetime accumulated precipitation 
at each 0.08 by 0.08 degree grid point. This data is available in individual NetCDF4 files, named according to the 
convention “modeled_rainfall_ERA5_syn_i.h5”, where the i is the synthetic storm’s ID number. “ERA5” denotes 
the source of the reanalysis inputs, while “syn” clarifies that this file is for a synthetic track. Each of these files 
comprises five variables: total accumulated rainfall (p_accum) and its four constitutive vertical wind-induced 
rainfall components, frictional (p_accum_f), topographic (p_accum_h), shear (p_accum_s), and vortex stretch-
ing (p_accum_t), all measured in the unit of total millimeters of precipitation. During the calculation, each 
component of vertical wind is allowed to negatively contribute to the total precipitation, however in the final 
output of total precipitation and decomposition of accumulated precipitation, we convert any negative precipi-
tation values to zeros to avoid misinterpretation. The rainfall data is presented on a regular spatial grid defined 
in “RAFT_rainfall_latlon_grid.h5”, which describes the grid in two variables, lat and lon.

technical Validation
Spatial distribution of tCs. To assess the realism with which synthetic TCs are generated using RAFT, we 
begin by examining their spatial distribution. Figure 2a,b show 200 randomly selected TCs from observations 
and RAFT, respectively. Overall, the RAFT-simulated tracks match the observations from IBTrACS remarkably 
well, adequately capturing TC translation behavior in the Atlantic basin. There is a noticeable difference in the 
spatial distribution of sampled cyclogenesis points, where RAFT includes tracks initiated south of 10°N unlike 
what appears in the observations. This could partly be attributed to the methodology of RAFT cyclogenesis, 
which uses a 3-dimensional Gaussian kernel to expand the regions from where cyclones can originate beyond the 
observed subset of genesis points. RAFT tracks broadly tend to be clustered further offshore in the North Atlantic 
compared to observations, which is illustrated in the climatological track density or Tropical Cyclone Frequency 
(TCF) maps shown in Fig. 2c,d. TCF is defined as the number of 6-hourly TC track locations where the storm 
intensity exceeds 25 kt per square 2.5 degrees per TC event. Specifically along the coast, RAFT underestimates 
TCF when compared with observations, and landfalling TCs in RAFT are seen to dissipate sooner than observed 
TCs. This underestimation of track density near the coast is likely due to a systematic bias in the intensity model 
near land, which we plan to address in the future by developing a dedicated near-coastal intensity model. Despite 
these points, the spatial distribution of TCs is reasonably reproduced in RAFT, with a pixel-wise correlation coef-
ficient of 0.87 (p < 0.001) when compared with observations.

Salient features of tCs. To further understand the simulation of TCs using RAFT, we now explore the 
representation of TC properties particularly relevant for impacts. RAFT captures the duration of TCs remarkably 
well, as illustrated in the lifespan distribution in Fig. 3a. Distributions of TC translation speeds (Fig. 3d) indicate 
that RAFT TCs move at comparable speeds to observed TCs, as indicated by the mean 6-hourly displacements for 
RAFT and observations which are 1.33° and 1.27°, respectively (Table 2). The third important aspect of TCs that 
we consider here is the intensification rate (Fig. 3c), defined as the change in TC intensity over a 24-hr period.  

Variable Unit Explanation

basin_ID — Basin identification, 1 for North Atlantic

storm_ID — TC identification, starting from 0

year — The year of environmental conditions used for the intensity model and rainfall model

jday — Day of the year, ranging between 0 to 365

lon ° Longitude

lat ° Latitude

vmax kt Maximum wind speed

mslp hPa Minimum pressure

rmax nmi Radius of maximum wind

Table 1. Variables used in the RAFT dataset NetCDF file.
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The TC intensification rate distributions are remarkably consistent between the RAFT simulations and observa-
tions. Importantly, RAFT well represents the occurrence of TC rapid intensification (RI), defined as an instance 
where a storm increases in intensity by 30 kt or higher in 24 hours. RI occurs roughly 3.4% of the time in RAFT, 
closely aligning with the 3.8% occurrence rate in observational data. This is a major advantage of RAFT, consid-
ering the difficulty associated with simulating RI even for high-resolution dynamical models27.

Next, we compare distributions of TC lifetime maximum intensity (LMI), defined as the peak one-minute 
sustained wind speed reached during the lifetime of a TC. The PDF of LMI for RAFT simulations sim-
ilarly resembles the LMI of observed TCs (Fig. 3b), including for storms that reach Category 3 and higher 
strength. This strong agreement between RAFT simulations and observations is further illustrated in Table 2.  
The mean LMI for RAFT simulations is 64.88 kt, similar to the observed mean LMI of 68.09 kt. Similarly, the 
mean maximum wind speed simulated in RAFT is 54.88 kt, closely matching the observed mean of 53.24 kt. 
However, there is a noticeable disparity in the mean TC radius of maximum winds (Rmax), with RAFT’s average 
of 36.86 nautical miles reflecting a 19% underestimation when compared with the corresponding observed 
mean Rmax of 45.28 nautical miles, as detailed in Table 2. Lastly, the mean lifetime minimum central pressure is 
982.84 hPa, remarkably similar to the observed value of 979.44 hPa.

Coastal tC characteristics. So far, we have examined some basin-scale aspects of TCs simulated in RAFT. 
However, one main goal of producing the RAFT-based synthetic TC dataset is its potential use for risk assess-
ment. Therefore, we will now focus our discussion on TC characteristics in coastal regions. Figure 4a depicts 
the observed TC crossing probability for 51 major U.S. cities. Historically, more TC crossings have occurred 
over the US Southeast Coast, followed by the Gulf Coast and the Northeast Coast. The spatial distribution of 
TC crossing is reasonably reproduced in RAFT (Fig. 4b) and is in broad agreement with observations despite 
some differences. For instance, RAFT tends to underestimate landfall over the Southeast Coast and the Gulf 
Coast. RAFT is however able to capture 81% of the observed variance in TC crossing probability for major 
U.S. cities, thereby modeling the spatial distribution of TC landfall and recurving fairly well (Fig. 4c). Next, we 
investigate the ability of RAFT to accurately represent TC winds in US coastal regions. Since extreme TC winds 
have the strongest impacts, here we consider the 99th percentile TC winds upon landfall. The observed distribu-
tion of extreme TC winds reveals that most regions along the northern Gulf Coast, Florida peninsula and the 
Southeast US Coast have historically experienced the most devastating TC winds exceeding 90 kt, which is close 
to Category 3 strength (Fig. 5a). When considering the corresponding distribution produced by RAFT, we see 
that RAFT underestimates the magnitude of extreme TC winds by about 8 kt (Fig. 5b), particularly over the Gulf 
and Southeast Coasts. Despite this general underestimation, RAFT adeptly simulates several instances of intense 
TC landfalls. For example, extreme TC winds impacting New Orleans are close to Category 3 strength, and exceed 
Category 4 strength for Miami in both the observations and RAFT simulations. Overall, the spatial distribution 
of extreme TC winds (Fig. 5c) is well represented in RAFT with an R-squared value of 0.73 when compared with 
observations.

Fig. 2 Comparative analysis of TC tracks and frequency in the North Atlantic. The upper panels depict 200 
randomly sampled TC tracks from (a) IBTrACS and (b) RAFT. The lower panels depict the spatial distribution 
of TCF, calculated as the count of 6-hourly TC track locations per square 2.5 degrees normalized by the number 
of TC events for (c) IBTrACS and d) RAFT.
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Finally, we evaluate TC-induced rainfall in coastal regions based on RAFT using daily rainfall data from the 
Global Historical Climate Network Daily Database (GHCN)28 rain gauges. We select GHCN rain gauges within 
2° of the US Atlantic and Gulf Coasts that have complete recordings of daily rainfall since 1979. Since rain gauge 
measurements are prone to underestimation due to the high winds associated with TC events, rain gauge meas-
urements are bias-corrected using the wind-correction function by the World Meteorological Organization29. 
Observed TC tracks from 1979 to 2018 are then used to estimate which precipitation is TC-induced, where a 
daily rainfall recording is considered to be TC-induced if an observed TC track passes within 500 km of the 
gauge during that day. We compare these TC rainfall observations with those simulated by RAFT. Despite poten-
tial limitations (e.g., observed precipitation within 500 km of a TC may have been generated by other storm 
systems, and larger TCs can induce precipitation outside of a 500 km radius), this method provides an indication 
of where RAFT may systematically over- or underestimate TC-induced rainfall.

Figure 6a shows the observed climatology of mean expected rainfall per event, a metric that represents the 
combined influence of TC track spatial distribution, storm intensity, and rainfall efficiency. TCs tend to produce 

Fig. 3 Histograms of IBTrACS (blue) and RAFT (red) for: (a) TC lifespan, (b) lifetime maximum intensity, (c) 
24-hr intensity change, and (d) 6-hr translation speed. In each panel, the y-axis indicates the probability density, 
which is calculated so that the total area covered by the histogram adds up to 1. For observations, post-1970 data 
from IBTrACS is used. All 40,000 synthetic TCs from RAFT are used.

IBTrACS mean IBTrACS std RAFT mean RAFT std # of std from IBTrACS mean

Translation, 6-hourly displacement (°) 1.27 0.81 1.33 0.95 0.06

Life span (day) 5.70 4.18 6.12 5.12 0.10

Lifetime max wind (kt) 68.09 29.12 64.88 31.52 −0.11

wind speed (kt) 53.24 24.37 54.88 24.93 0.07

Lifetime min pressure (hPa) 979.44 24.54 982.84 23.03 0.14

Pressure (hPa) 992.02 18.94 990.14 18.21 −0.10

Radius of max wind (nmi) 45.28 31.12 36.86 12.85 −0.27

Table 2. Mean and standard deviation values for TC characteristics in the IBTrACS and RAFT datasets over the 
North Atlantic basin. The time period 1970–2021 is used for the IBTrACS dataset.

https://doi.org/10.1038/s41597-024-02952-7
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more rainfall over the northern Gulf Coast, Florida peninsula and the Southeast Coast, and less rainfall over 
the Northeast Coast and the western Texas Coast. RAFT is able to broadly capture this spatial pattern (Fig. 6c) 
albeit with a weaker magnitude. In other words, RAFT broadly underestimates TC rainfall everywhere except 
for over the Florida peninsula (Fig. 6e). The mean error is −1.7 mm, with an undercatch of about 35%. This 
underestimation is likely due to the underestimation of coastal TCF and landfall intensity, as well as bias from 
the rainfall model. Despite this, RAFT-predicted mean expected rainfall has a statistically significant pixel-wise 
correlation coefficient of 0.86 (p < 0.001) when compared with observations, indicating that RAFT effectively 
captures mean expected rainfall spatial patterns within 2° from the coast. We also evaluate extreme rainfall 
from TCs using 99th percentile daily rainfall. The spatial pattern of extreme TC rainfall (Fig. 6d) simulated by 
RAFT is broadly similar to the RAFT-simulated mean expected rainfall (Fig. 6c), with a high correlation coef-
ficient of 0.95. However, the observed pattern of extreme TC rainfall (Fig. 6b) is patchy with larger values more 
widely distributed, having a correlation of only 0.60 with observed mean expected rainfall (Fig. 6a), indicating 
that extreme rainfall patterns may be more complex than what TCR is capable of modeling. Observed extreme 
TC rainfall appears more patchy than what is simulated by RAFT likely due to localized extreme events in the 
IBTrACS dataset. For example, the observed maxima occurs near the Texas Coast, and is likely associated with 
the torrential downpour from TC Harvey (2017). The difference map of extreme TC rainfall (Fig. 6f) further 
indicates that RAFT underestimates the magnitude over almost the entire coast except for the Florida peninsula. 
The mean bias in expected 99th percentile daily rainfall simulated by RAFT is −39 mm (underestimation by 27% 
of the observed mean) and the pixel-wise correlation between RAFT-simulated 99th percentile daily rainfall 
and that of observations is relatively lower (r = 0.39, p < 0.001). This broad underestimation and spatial bias is 
likely attributed to TC rainfall simulation challenges in addition to RAFT’s underestimation of TC frequency 

Fig. 4 TC crossing probability for 51 U.S. coastal cities for (a) observations and (b) RAFT. Each TC crossing is 
counted if the track passes within a 1 degree radius of the city center coordinate, and the TC crossing probability 
is calculated as the fraction of TCs making the crossing, including both direct landfall from the ocean and 
recurving from land. For observations, post-1970 data from IBTrACS are used. For RAFT, all 40,000 synthetic 
TCs are used. (c) Correlation plot of TC crossing chance between observations (x-axis) and RAFT simulations 
(y-axis) for 51 major U.S. coastal cities. The blue line depicts the best-fit regression line, and the shading denotes 
the 95% confidence interval of the linear regression using the bootstrap method resampled 10,000 times. 
Displayed metrics include the corresponding R-squared value, ME and RMSE. The dashed grey line represents 
the 1:1 perfect correlation line.
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and winds upon landfall, noted previously (Figs. 4b, 5b). Nevertheless, RAFT is able to simulate some extreme 
rainfall events near major coastal cities, as illustrated in Fig. 7 with their respective along-track intensity and 
accumulated precipitation.

Usage Notes
RAFT is a computationally efficient framework that can be used to simulate numerous synthetic TCs along with 
their properties. Here, we utilize RAFT to generate 40,000 synthetic TCs reflecting the current North Atlantic 
TC climatology using climate conditions of the last 40 years26. TC tracks, along-track intensity (maximum wind 
speed and minimum sea level pressure), radius of maximum winds and TC-induced rainfall are provided for 
comprehensive TC hazard assessment. The RAFT-generated dataset presented here enables the study of several 
downstream risks pertinent to the TC risk modeling community, including storm surge, freshwater flooding, 
wind hazard, and electrical power outages. The rainfall component of RAFT, which is not included in many 
similar approaches6–8, makes our dataset unique and valuable for assessing TC flood risk.

In the pursuit of generating synthetic TCs, it is imperative to critically examine the inherent limitations, 
assumptions, and potential drawbacks associated with various model components that collectively constitute the 
RAFT model. The genesis and track models used here follow Emanuel et al.6 by generating storms as a random 
draw from the probability distribution of historical cyclone genesis points, then moving storms according to a 
weighted average of the ambient flow plus beta-drift. Notably, the track method employed here cannot capture 
the effects of nonlinear interactions between tropical and extratropical systems, therefore caution should be 
exercised in these cases. Since the beta-drift term is obtained from a specific pattern of large-scale environmental 
flows, adaptations may be necessary when applying this relationship to future climate scenarios. The intensity 
model used here has been trained on global data and thus may be extended globally, while at this time it has 
only been tested in the Atlantic basin. Additionally, as with any deep learning model, performance is expected 
to be better in regions with more frequent TC events than those with sparse events, which in part might explain 

Fig. 5 Extreme TC winds for 51 major U.S. coastal cities for (a) observations and (b) RAFT. Extreme TC winds 
are defined as the 99th percentile value of the TC wind distribution at a location. For observations, post-1970 
data from IBTrACS are used. For RAFT, all 40,000 synthetic TCs are used. (c) Correlation plot of extreme TC 
winds between the observations (x-axis) and RAFT-simulations (y-axis) for 51 U.S. coastal cities. The blue line 
depicts the best-fit regression line, and the shading denotes the 95% confidence interval of the linear regression 
based on the bootstrap method resampled 10,000 times. Displayed metrics include the corresponding 
R-squared value, ME and RMSE. The dashed grey line represents the 1:1 perfect correlation line.
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the intensity model’s land-ocean bias. Lastly, the rainfall model implemented in RAFT is the physics-based TCR 
model13,14,30 which we find to broadly underestimate TC-induced rainfall along the Atlantic and Gulf Coasts, 
and overestimate rainfall over the Florida peninsula. It’s important to highlight that this model assumes a fixed 
precipitation efficiency and is highly sensitive to the drag coefficient Cd, performing less satisfactorily when rep-
resenting regions with large gradients in surface roughness23. Xi et al.30 found that TCR overestimates rainfall at 
the core and underestimates rainfall outside of the core, and other studies have found that TCR may not handle 
extratropical transition very well6,14,23, thus RAFT track and precipitation accuracy is expected to be best in areas 
where TCs have not yet transitioned to extratropical storms. Overall, the ability of these models to produce a 
multitude of synthetic TCs makes RAFT a valuable tool for advancing our understanding of TCs and improving 
preparedness for severe weather events.

RAFT excels in simulating spatial variability in TC characteristics relevant for risk, such as TCF and the 
distribution of landfall locations. It also effectively captures basin-scale TC characteristics like translation speed, 
intensity, and rapid intensification. However, RAFT tends to underestimate extreme winds at landfall (Fig. 5b) 
and TC-induced precipitation over coastal regions (Fig. 6). Given these limitations, caution is advised when 
interpreting extreme wind and rainfall results at local-to-regional scales. Statistical bias-correcting techniques, 
such as quantile mapping31, can be employed to overcome these limitations and improve the potential of this 
data for risk assessment. While the track and intensity components of RAFT are interconnected, the framework 
offers flexibility for users, allowing the implementation of an alternative rainfall model suiting their require-
ments. To further address the challenges of simulating extreme rainfall near the coast, we are currently devel-
oping a deep-learning rainfall model specifically tailored for coastal risk assessment. Additionally, ongoing 
research efforts are focused on improving the spatial representation of storms and evaluating their impacts 
on risks such as urban flooding, power outages and damage to infrastructure. Our approach is also adaptable 
for future climate scenarios since RAFT can be driven by climate model simulations, and our upcoming work 
includes releasing RAFT simulations driven by CMIP6 future climate scenarios. Moreover, as RAFT is currently 

Fig. 6 (a) Observed and c) RAFT-simulated mean expected TC rainfall per event (mm). The difference plot 
between (a,c) is illustrated in (e). Panels (b), (d), and (f) are the same as (a), (c), and (e) but depicting extreme 
TC rainfall (mm), defined as the 99th percentile value of TC-induced daily precipitation at a location. While 
the observations are based on daily rainfall data from GHCN rain gauges, the modeled data is based on RAFT-
simulated TC rainfall.
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confined to the North Atlantic, plans are underway to expand its domain and increase the capability of RAFT to 
simulate synthetic TCs on a global scale.

Code availability
Code to read and process the RAFT synthetic TC dataset can be found at https://doi.org/10.5281/zenodo.7976242.
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