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Global seasonal prediction of fire 
danger
Francesca  Di Giuseppe  1 ✉, Claudia Vitolo  1,2, Christopher Barnard1, Giorgio Libertá3, 
Pedro Maciel1, Jesus San-Miguel-ayanz3, Sebastien Villaume1 & Fredrik Wetterhall1

the European Centre for Medium range weather forecast (ECMWF) on behalf of the Copernicus 
Emergency Management Service (CEMS) has recently widened the fire danger data offering in the 
Climate Data Store (CDS) to include a set of fire danger forecasts with lead times up to 7 months. 
The dataset incorporates fire danger indices for three different models developed in Canada, United 
States and Australia. The indices are calculated using ECMWF Seasonal Forecasting System 5 (SEAS5) 
and verified against the relevant reanalysis of fire danger based on the ECMWF Re-Analysis (ERA5). 
The data set is made openly available for the period 1981 to 2023 and will be updated regularly 
providing a resource to assess the predictability of fire weather at the seasonal time scale. The data set 
complements the availability of seasonal forecast provided by the Copernicus Emergency Management 
Service in real time.

A preliminary analysis shows that globally anomalous conditions for fire weather can be predicted 
with confidence 1 month ahead. In some regions the prediction can extend to 2 months ahead. In 
most situations beyond this horizon, forecasts do not show more skill than climatology. However an 
extended predictability window, up to 6-7 months ahead is possible when anomalous fire weather is the 
results of large scale phenomena such as the El Niño Southern Oscillation and the Indian Ocean Dipole, 
often conducive of extensive fire burning in regions such as Indonesia and Australia.

Background & Summary
Wildfires are processes that can be both beneficial and deleterious for the environment. On the one hand, 
uncontrolled fires make it often in the news as environmental disasters, causing destruction and loss of lives. 
On the other hand, fires have been happening since hundreds of million years ago (according to tests on fossil 
charcoal1) and have a crucial role in the evolutionary path of many ecosystems2. In addition, controlled fires are 
very efficient for clearing agricultural land and for fire prevention and management, e.g. controlled burns create 
a discontinuity in the land depriving fires from fuel and interrupting potential propagation pathways3. Hence 
the importance of managing wildfires and prevent as much as possible that controlled and accidental burns rage 
out of control. Forecasting fire danger is key in fire prevention and protection measures as it improves readiness 
of fire professionals and allows timely and efficient allocation of resources4.

Scientific literature shows that, besides well established fire danger forecasts with lead times of a few days5,6, 
skilful predictions of fire danger is possible up to the seasonal time scale for Mediterranean Europe7, United 
States8,9 and Asia10. Seasonal forecasting of fire weather conditions throughout the world have been found to 
correlate with large scale climate patterns such as the El Niño Southern Oscillation (ENSO) and the Indian 
Ocean Dipole, implying that fire weather conditions can be predicted fairly accurately for various seasons and 
regions11. In Europe, forecasts for the eastern and south-eastern areas have shown to be fairly reliable ‘paving the 
way to their operational applicability7.

The soil moisture and heat wave mechanism has been identified as an important source of predictability in 
Europe, along with atmospheric circulation patterns such as ENSO12 and other atmospheric conditions such as 
triggering trade-offs between relative humidity and temperature7,13,14, although the latter two deserves further 
investigations.
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In 2018, ECMWF in collaboration with the Copernicus Emergency Management Service (CEMS), developed 
the ECMWF Global Fire Forecasting (GEFF) model5 which is run operationally and provides the fire commu-
nity with pre-calculated fire danger indices based on fire danger indices developed in Canada (Fire Weather 
Index15), United States (U.S. Forest Service National Fire-Danger Rating System16, and Australia (McArthur 
Mark 5 Rating System17). Using ECMWF weather forcings, GEFF produces fire danger reanalysis18,19 as well as 
forecast products5,6. A set of fire danger seasonal forecast based on ECMWF long range weather prediction sys-
tem (SEAS5) is available and span the period 1981 to 202320. The dataset will be updated regularly providing an 
resource to understand the predictability of landscape flammability globally and across several decades. Seasonal 
forecast have monthly initial date and forecast horizon of 216 days corresponding to 7 months.

This data descriptor reports on the available dataset and makes a first assessment of the skill of the fire danger 
seasonal prediction using the available fire weather reanalysis data-set as a reference18,19. The new dataset could 
be particularly important to help decision makers and forestry agencies to prepare for periods of potentially high 
fire activities. It is made available as a probabilistic model output, allowing to quantify uncertainties in the fire 
danger estimations. The seasonal estimates of fire indices are released under the Copernicus open data license, 
through the Copernicus Climate Data Store (CDS).

Methods
Seasonal forecasting aims to offer valuable insights into the anticipated “climate” for the upcoming months. It 
is important to notice that a seasonal forecast substantially differs from a weather forecast: weather represents 
momentary and ever-evolving atmospheric conditions, while climate embodies the statistical average of these 
weather patterns within each season. The primary objective of a seasonal weather forecast is therefore to predict 
the potential range of mean weather conditions expected in the forthcoming season21.

The seasonal weather prediction utilized in constructing the provided database uses a coupled 
atmosphere-ocean system. Within this system, the atmospheric component is represented by the ECMWF 
IFS (Integrated Forecast System) model version 43r122, which was initially introduced for medium-range fore-
casting on November 22, 2016. The seasonal weather forecasts are generated using a horizontal resolution of 
0.25 degrees. For the oceanic component, SEAS5 employs the NEMO (Nucleus for European Modelling of the 
Ocean) community ocean model, configured with a resolution of 0.25 degrees and encompassing 75 vertical 
levels (known as the ocean model configuration ORCA025z75). To estimate the range of errors in the weather 
forecast simulations, a 51-member ensemble is generated by perturbing both the initial conditions of the sim-
ulation and the model parameters. This ensemble approach aims to provide an estimations of the uncertainties 
present in seasonal forecasting and its a common methods employed in weather forecast, especially at long lead 
times23,24.

Any coupled model that runs in seasonal forecast mode suffers from bias - the climate of the model forecasts 
differs to a greater or lesser extent from the observed climate25. Since seasonal forecast signals are often small, 
this bias needs to be considered, and must be estimated from a previous set of forecasts. A set of re-forecasts 
(otherwise known as hindcasts or back integration or just referred as climatology) are thus made starting on the 
1st of every month for the years 1981–2016. They are identical to the real-time forecasts in every way, except 
that the ensemble size is only 25 rather than 51 and the starting point is a re-analysis instead than an operational 
analysis. The forecasts generated from this ensemble span 7 months22 and is available as a open access dataset 
through the climate data store26. This dataset has found extensive application in operational weather forecasting 
and validation of its skill has been carried out over the years27–29.

When applying the concept of seasonal forecasting to fire danger, the objective is to predict anomalies in 
landscape flammability, thereby estimating the most probable fire risk for the upcoming season. The provided 
fire danger indices are computed utilizing the GEFF model using the above described SEAS5 seasonal weather 
predictions as its driving forcings. The presented dataset maintains an identical structure to its parent weather 
dataset but encompasses a distinct set of variables specifically tailored to assess the sustainability and intensity 
of landscape fires once ignited.

There is a non linear relationship between weather anomalies to fire danger anomalies. Therefore, the level of 
accuracy and predictability observed and validated within SEAS5 forecasts is unlikely to be directly transferable or 
representative of the same skills observed within the provided dataset. Consequently, this paper introduces an ini-
tial, rudimentary validation of the provided dataset. It is evident that numerous unexplored avenues will still exist, 
including the drivers for fire danger predictability. The primary motivation for making this dataset accessible to 
the broader scientific community is to encourage and facilitate its further exploration, validation and utilization.

Data Records
The Global seasonal prediction of fire danger dataset is made available through the Climate Data Store20. The 
CDS offers a comprehensive repository of climatic information, and offers several advantages; open access via a 
user friendly web interface and bulk access via a convenient API, integration with the CDS toolbox for perform-
ing server-side operations as well as shared visualisation and data analysis tools based on notebooks. Users can 
browse the available data catalogue without logging in, however registering an account is mandatory to down-
load data. The CDS has a user-friendly web interface, ideal for the retrieval of small datasets while for larger data 
volumes users are encouraged to send data requests using the CDS API.

The fire danger seasonal forecast dataset has a global coverage and a spatial resolution of about 0.25 degrees 
(about 35 km). Natively, data are laid out over an octahedral reduced Gaussian grid (O320), and archived as 
GRIB2, a standard format published by the World Meteorological Organisation30. Users can also request data 
in NetCDF format which implies an internal remapping data transformation. Data in NetCDF format are on a 
regular unprojected grid with spherical coordinates expressed in decimal degrees (EPSG:4326). Latitudes span 
the range from −90 to +90 degrees and are referenced to the equator. Longitudes are in the range from 0 to 360 
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degrees, referenced to the Greenwich Prime Meridian, consistently with other ECMWF products. Products from 
three main fire danger systems are made available:

•	 The Canadian Fire Weather Index;15

•	 The U.S. Forest Service National Fire-Danger Rating System;16

•	 The Australian McArthur Mark 5 Rating System17.

For an in-depth description of the fire rating systems and indices, the reader is reminded to read previous 
works from Di Giuseppe et al5,6. as they provide the documentation and analysis of the potential predictability of 
using short and medium-range weather forecast to derive fire danger. In the subsections below, the three systems 
are briefly described with the list of the available indices and sub-indices provided (Table 1).

The FWI system. The Canadian FWI system describes the fire weather, the complex atmospheric condi-
tions that can lead to a dangerous fire. It quantifies potential fire danger using temperature, relative humidity, 
wind speed, and 24-hr accumulated precipitation values measured at noon Local Standard Time (LST). The indi-
ces include measures of fuel moisture (Fine Fuel Moisture Code, Duff Moisture Code, and Drought Code), fire 
behavior indices (Initial Spread Index, and Build Up Index) and indices related to ease of fire suppression (Fire 
Weather Index and Danger Severity Rating). This is the index used by Environment Canada to assess short range 
fire danger and also monthly and seasonal fire danger outlooks. The Fire Weather Index (FWI) is widely rec-
ognized as the most utilized index globally and has demonstrated its effectiveness across various biomes6,31,32. 
However, its applicability in predicting fire activity in fuel-limited biomes is limited due to the absence of a con-
nection to real time updates on fuel availability33.

The NFDRS system. The National Fire Danger Rating System (NFDRS) is widely used in the U.S. The fire 
danger is rated accordingly to static maps of fuel type and topography and considers weather as the main driver. 
It uses temperature, precipitation, relative humidity and cloud cover to estimate the moisture content of dead and 
live vegetation at different depth in the fuel bed. In turn, these allow to calculate the Ignition Component and 
contribute to the other indices such as the Spread Component, Energy Release Component and Burning Index. 
The NFDRS is used by all US federal and state agencies (e.g. The U.S. Department of Agriculture, The National 
Wildfire Coordination Group, etc.).

The MARK5 system. The McArthur (MARK5) fire danger rating system is mostly used in Australia. It 
uses precipitation, temperature, relative humidity and wind speed to estimate the behaviour of fires burning 
on a typical Australian landscape. At first the Drought Factor is calculate to represent the effect of temperatures 
and precipitation on fuel drying. The drought factor is then used to calculate the Keetch-Byram Drought Index 
which measure soil moisture deficit34. Lastly, the Fire danger Index, is calculated to quantify probability of fire 
occurrence, its intensity, and related difficulty of suppression. The McArthur (MARK5) fire danger rating system 
is mostly used in Australia, by rural fire authorities.

SYSTEM VARIABLES DESCRIPTION

FWI

Fine Fuel Moisture Code (FFMC) Numeric rating representing the moisture content found in fine fuels such as grass, 
needles, and small twigs

Duff Moisture Code (DMC)
Numeric rating representing the moisture content of material in the layer of partially 
decomposed organic matter (known as duff) consisting of leaves, needles, twigs, and 
other plant debris found on the forest floor,

Drought Code (DC) Numeric rating representing the moisture content of deep, compact organic layers within 
the soil

Initial Spread Index (ISI)
Fire weather index that estimates the potential rate of fire spread immediately after 
ignition, taking into account fuel moisture, wind speed, and other weather-related 
factors.

Build-up Index (BUI)
Fire weather index used to assess the cumulative effect of moisture deficits in both the 
duff and litter layers of the forest floor, reflecting the dryness and flammability of deeper 
organic materials over time

Fire Weather Index (FWI)
Composite rating used to assess the potential fire behavior. It includes components 
such as the Initial Spread Index (ISI), Build Up Index (BUI), and Drought Code (DC), 
providing a comprehensive assessment of fire risk under specific weather conditions.

NFDRS

Burning Index (BI) Fire weather index that quantifies the potential intensity of a wildfire by considering the 
energy released per unit length of fire front.

Ignition Component (IC) Probability or likelihood of a fire igniting and spreading under specific environmental 
conditions.

Energy Release Component (ERC) Fire weather index used to estimate the potential energy released from a wildfire. It 
quantifies the total heat output per unit area that a fire might generate

MARK5 Fire Danger Index (FDI) Fire danger measure that evaluates the potential risk or severity of fires based on various 
environmental and weather conditions.

Table 1. List of the main variables available in the dataset.
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technical Validation
In this section, we conduct a validation of the dataset. To the best of our knowledge, publicly available datasets 
providing seasonal forecasts of fire danger are lacking. Consequently, conducting an inter-comparison is not 
feasible. Instead, we perform a consistency check to evaluate the dataset’s capability in predicting anomalous 
conditions at various lead times, comparing it to a reanalysis dataset, which serves as the reference18,19.

Although the link between long-term fluctuations of sea surface temperature (SST) and seasonal precipita-
tion/drought patterns are scientifically proven in the tropics and to a lesser extent in the extra-tropics27,35, the 
implications on seasonal fire danger is largely under-explored. As fire danger is, by definition, weather-driven a 
link with SST is expected to be detectable in terms of long-term averages (typically over one to three month). If 
this is the case, these forecasts should gain relevance as support to decision-making processes in a wide range of 
sectors, such as energy, agriculture, water, and risk management36. One important aspect is, therefore, whether 
there is enough forecast skill to assert the usability of seasonal fire danger forecast in real-time applications.

Global skill. The global skill metrics presented are provided as monthly means and using the ensemble mean 
as best prediction outcome. Also the FWI is chosen as an example as this is one of the most used metric to predict 
fire danger in global systems31,37. Results are similar for other metrics.

Both bias and root mean square error are used for assessing model performance (Figs. 1 and 2), as they cap-
ture different aspects. Bias helps identify consistent deviations from the true values, while RMSE provides an 
overall measure of accuracy, considering both bias and the spread of errors. They provide insights into the sys-
tematic errors and overall quality of the model’s predictions compared to the reference value identified as ERA5 
fire danger reanalysis19. A positive bias indicates an over-prediction the opposite for negative bias. Biases tend 
to increase for more distant prediction while they have similar spatial distribution as they typically diagnose the 
systematic deficiency of the underlying weather forecast model.

Regional differences in forecasting FWI compared to ERA5-derived databases can be attributed to fore-
cast skills, which significantly impact FWI simulation accuracy. Although temperature prediction skills exhibit 
global uniformity, forecasting precipitation across various global models, including the ECMWF model, pre-
sents a complex scenario. Notably, mid-latitude precipitation forecasting demonstrates higher accuracy due to 
its linkage with frontal systems driven by large-scale dynamics38. Conversely, convective precipitation, predom-
inant in the tropics, poses a challenge due to its stochastic nature. Over time, advancements have narrowed the 
gap, yet forecasting accuracy remains inferior in the southern extra-tropical region compared to the Northern 
Hemisphere due to better initial forecast constraints stemming from an enhanced observing system28. These 
insights largely account for the superior FWI prediction performances in the Northern Hemisphere when aver-
aged during the years. Notably, forecasting skills exhibit significant year-to-year variations, particularly during 
occurrences of large-scale phenomena such as the El Niño Southern Oscillation (ENSO). These phenomena 
enhance predictability in both tropic and extra-tropical regions through teleconnections, leading to improved 
forecasting capabilities39.

When the bias and the RMSE are of the same magnitude as the signal of interest, typically in the order of 10 
units for the fire weather index, using the prediction is equivalent to employing climatology. It is evident from 
Figs. 1 and 2 that, on average, after month 2, most of the areas affected by changes in landscape flammability 
display errors that would render the direct use of fire danger values unsuitable for advance warnings based on 
warning levels. To extend the usability of seasonal forecast information, the concept of anomalies is often uti-
lized. Model anomalies, i.e., deviations from the model climate, are unbiased with respect to observations and 
are used to assess deviations from long-term average conditions. They cannot be used at face value but are useful 
to identify the early establishment of dangerous conditions, which can aid early planning rather than guide 
suppression actions.

The Anomaly Correlation Coefficient (ACC) stands as one of the most widely used measures in verifying 
spatial fields. It denotes the spatial correlation between a forecast anomaly relative to climatology and the ver-
ifying analysis anomaly relative to climatology. ACC serves as a measure of how accurately the forecast anom-
alies represent the observed anomalies and illustrates the alignment of predicted values from a forecast model 
with real-life data. ACC values range between +1 and −1. As ACC values approach +1, it indicates substantial 
agreement, signifying valuable forecast anomaly information. When ACC hovers around 0.5, the forecast errors 
resemble those of a climatological average-based forecast. An ACC near 0 indicates poor agreement and suggests 
that the forecast holds minimal value. Figure 3 illustrates the anomaly correlation for the FWI seasonal forecast 
system throughout the hindcast period (1981–2022) across all forecasts, valid for months 1 to 4. It highlights sig-
nificant skill in detecting anomalous conditions a month ahead across nearly all regions. In a few areas, anomaly 
conditions can even be predicted up to 2 months in advance.

Extended predictability
In this section, we demonstrate how heightened skills in seasonal weather forecasts can enhance predictability in 
fire danger. We illustrate this by focusing on two regions in the world where large-scale phenomena are known 
to improve forecast accuracy and analyze their impact on seasonal fire danger forecasts27. These results confirm 
the dataset’s ability to replicate expected predictability patterns. However, conducting a comprehensive global 
analysis of seasonal forecast skills exceeds the scope of this data descriptor and is deferred to subsequent studies.

El Niño Soutern Oscillation (ENSO). El Niño Soutern Oscillation (ENSO) is a climate pattern charac-
terized by the warming of the surface waters in the central and eastern tropical Pacific Ocean and often leads 
to a shift in rainfall patterns, resulting in reduced precipitation in Southeast Asia, including Indonesia. This can 
create drier-than-normal conditions, especially in peatland areas, making them more susceptible to fires40. The 
conditions established by strong El Niño conditions exacerbates landscape flammability but are human activities 
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that play a significant role in igniting fires. In Indonesia, particularly in the regions of Sumatra and Kalimantan, 
land clearing practices such as slash-and-burn agriculture, illegal logging, and peatland drainage for agriculture 
have been responsible for extensive burning in the past41. Release of large amounts of smoke and pollutants into 
the atmosphere have affected air quality not only within Indonesia but also in neighboring countries, such as 
Malaysia and Singapore, generating international health emergencies42,43.

The establishment of a positive or negative ENSO are usually monitored using a Multivariate index (MVI) 
obtained by extracting the leading combined Empirical Orthogonal Function (EOF) of five different variables 
over the tropical Pacific basin (30S–30 N and 100E–70 W). During strong positive and negative ENSO sea-
sonal prediction of fire weather is enhanced up to 7 ahead (Fig. 4) as a results of the enhanced predictability of 
these large scale patterns at the seasonal time scale44. Efforts to mitigate the impact of fires during ENSO events 
in Indonesia could therefore benefit from an early warning system at this time scale as they could be issued 
with sufficient advance time. This could help enforcing land management practices, implement fire prevention 
and suppression measures, and raise awareness about the environmental and health hazards associated with 
burning45.

Indian Ocean Dipole (IOD). A similar phenomenon is the Indian Ocean Dipole (IOD) that occurs in the 
Indian Ocean, characterized by the difference in sea surface temperatures (SST) between the western and eastern 
parts of the ocean. The IOD has been known to influence weather patterns in various regions, including south-
ern and eastern parts of Australia. During positive IOD events, there is typically a reduction in rainfall in these 
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Fig. 1 Bias as the average deviation or difference between the predicted monthly values and the observed values 
here provided by reanalysis simulations. It provides information about the tendency of the model to consistently 
overestimate or underestimate the true values. The average is performed for the ensemble mean and for all the 
months in the 1981–2020 period. Panel a to f provides the 7 months forecast horizon available.
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regions, leading to drier-than-normal conditions. There is still debate if there is a direct influence between the 
IOD and the Australian fires as a clear signal is often hindered by changing land management practices, fuel avail-
ability, and human activities46. Figure 5 shows the FWI anomalies over South east Australia for the 2013–2022 
period in relation to the occurrence of the Indian Ocean Dipole as measured by the Dipole mode Index (DMI). 
The DMI is defined as the difference between the SST anomalies of Western (10S-10N and 50E-70E) and Eastern 
(10S-0N and 90E-110E) Equatorial Indian Ocean regions.

A more intricate picture emerges from the Australian case as there is not as strong a correlation between 
the DMI and the intensities of the fire seasons in Southwest Australia. For instance, in 2013–2014 and 2018, 
anomalous values of FWI were evident, yet they occurred independently of any DMI anomalies. During these 
years, the predictive capacity of the seasonal forecast was limited to just 1 month ahead. However, a prediction of 
anomalous conditions could be made for the 2019-2020 fire season, 7 months in advance due to the concurrent 
strong Indian Ocean Dipole.

The 2019-2020 Australian bushfire season, often termed the “Black Summer,” was exceptionally devastat-
ing and prolonged, occurring from late 2019 to early 2020. These fires had a severe impact on various parts of 
Australia, resulting in widespread destruction, loss of human lives, and significant damage to wildlife and the 
environment. The Black Summer fires were marked by their unprecedented scale, intensity, and duration.

In the aftermath of the Black Summer fires, efforts were undertaken to assess the damage and implement 
measures aimed at preventing and mitigating future fire season impacts. The 7-month predictability window for 
this extreme event could prove relevant in instituting sustainable practices to guard against future fire disasters.

Month 1 Month 2

Month 3 Month 4

Month 5 Month 6

0 5 10 20 30 40 50

Fig. 2 Same as Fig. 1 but for the RMSE.
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Fig. 3 Anomaly correlation for the fwi seasonal forecast system during the hindcast period (1981–2022) for all 
the the forecasts and valid for month 1 to 4.
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Fig. 4 Prediction of monthly means fire danger anomalous conditions between 2013 and 2022 over Indonesia. 
Months are classified as above or below the 1981–2022 climate mean using percentiles. Anomalies from 
ERA5 are compared to SEAS5 forecast for increasingly longer lead times to highlight the predictability of 
anomalous conditions. Months outside the traditional fire season are masked out.They are months with mean 
FWI lower then a third of the year maximum. The ENSO index helps identifying years of strong positive and 
negative anomalies with established El Niño or La Niña conditions. These years corresponds to period of high 
predictability when anomalous conditions could be predicted up to 7 months before.
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Usage Notes
In this section, we provide a typical workflow to retrieve and explore seasonal data using Python Jupyter 
Notebooks that is made available trough this github account https://github.com/fdg10371/CDS-jn-seasonal. 
In order to replicate the work, users should ahead over to the CDS website (https://cds.climate.coperni-
cus.eu/cdsapp#!/home) and register an account (https://cds.climate.copernicus.eu/user/register?destina-
tion=%2F%23!%2Fhome). Once an account is created, and the user logs in, the seasonal fire forecasts can be 
found by typing relevant keywords in the search box, e.g. ‘fire danger indices seasonal data’. The web page dedi-
cated to the seasonal fire forecasts is divided into three tabs: the ‘overview’ tab shows a concise description of the 
data; the ‘download data’ tab contains a data request form; the ‘documentation’ tab contains in depth informa-
tion about the dataset and originating systems.

Code availability
The fire indices have been generated using the open source GEFF modelling system v4.1(https://github.com/
ecmwf-projects/geff). The code to reproduce the results of this manuscript is openly available on a public 
repository: https://github.com/fdg10371/Jupyter_notebooks.
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mode index (DMI) helps identifying years of with established Indian Ocean Dipole conditions. DMI > 0.5 were 
recorded during the 2019 Black summer when anomalous conditions could be predicted up to 7 months before.
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