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Manually annotated and curated 
Dataset of diverse Weed Species in 
Maize and Sorghum for Computer 
Vision
Nikita Genze  1,2, Wouter K. Vahl3, Jennifer Groth3, Maximilian Wirth1,2, Michael Grieb  4 & 
Dominik G. Grimm  1,2,5 ✉

Sustainable weed management strategies are critical to feeding the world’s population while preserving 
ecosystems and biodiversity. Therefore, site-specific weed control strategies based on automation are 
needed to reduce the additional time and effort required for weeding. Machine vision-based methods 
appear to be a promising approach for weed detection, but require high quality data on the species in a 
specific agricultural area. Here we present a dataset, the Moving Fields Weed Dataset (MFWD), which 
captures the growth of 28 weed species commonly found in sorghum and maize fields in Germany. A 
total of 94,321 images were acquired in a fully automated, high-throughput phenotyping facility to 
track over 5,000 individual plants at high spatial and temporal resolution. A rich set of manually curated 
ground truth information is also provided, which can be used not only for plant species classification, 
object detection and instance segmentation tasks, but also for multiple object tracking.

Background & Summary
Weeds are plants that, although not specifically cultivated, are adapted to grow on arable land. Typically, weeds 
are considered to be an undesirable element in crop production. Their negative impact on crop development 
can be described in terms of competition with the crop for resources (nutrients, sunlight, space and water), 
reduction in productivity, increased challenges during harvesting and an overall increase in the cost of agricul-
tural production. In addition, weeds can be hosts for insects and diseases1,2, which might further increase the 
necessity for control strategies. Nevertheless, weeds might also have positive effects on biodiversity3 and soil 
structure4. Therefore, only highly competitive and invasive weed species should be removed which might lead 
to more sustainable agriculture5.

Over centuries, several crop management strategies were established to mitigate the negative impact of 
weeds, which can be divided into five main categories6: ‘preventative’ (preventing weeds from establishing), ‘cul-
tural’ (maintaining field hygiene with low weed seed bank), ‘mechanical’ (removing weeds by mowing, mulching 
or tilling), ‘biological’ (using natural enemies such as insects or animals), and ‘chemical’ (applying herbicides). 
Disadvantages of these approaches include financial burden, additional time and effort to varying degrees. In 
addition, control treatments may impact the health of people, plants, soil, animals, and the environment7–9.

Sustainable strategies for managing weeds are critical to feed the world’s population while conserving the 
ecosystems and biodiversity9. The limited and rational use of herbicides is an important principle of sustainable 
farming, as spraying of herbicides leads to waste and can pollute soil and water sources. Furthermore, agro-
chemical residues are one of the most important food-related concerns. Therefore, additional non-chemical 
and site-specific weed management (SSWM) strategies10 are needed, which should be linked with the farm 

1technical University of Munich, tUM campus Straubing for Biotechnology and Sustainability, Bioinformatics, 
Schulgasse 22, 94315, Straubing, Germany. 2Weihenstephan-Triesdorf University of Applied Sciences, 
Bioinformatics, Petersgasse 18, 94315, Straubing, Germany. 3institute for crop Science and Plant Breeding, Bavarian 
State Research Center for Agriculture, Am Gereuth 6, 85354, Freising, Germany. 4technology and Support centre 
in the Centre of Excellence for Renewable Resources (TFZ), Schulgasse 18, 94315, Straubing, Germany. 5technical 
University of Munich, TUM School of Computation, Information and Technology (CIT), Boltzmannstr. 3, 85748, 
Garching, Germany. ✉e-mail: dominik.grimm@hswt.de

Data DeSCriptor

opeN

https://doi.org/10.1038/s41597-024-02945-6
http://orcid.org/0000-0001-8869-6599
http://orcid.org/0000-0002-1346-3966
http://orcid.org/0000-0003-2085-4591
mailto:dominik.grimm@hswt.de
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-024-02945-6&domain=pdf


2Scientific Data |          (2024) 11:109  | https://doi.org/10.1038/s41597-024-02945-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

management system. One key aspect is to automatically and precisely detect weeds to mitigate the additional 
time and effort for either site-specific or weed-specific herbicide application or mechanical weed control. 
Numerous studies demonstrated methods to automatically detect weeds on the field or in greenhouses, where 
computer vision-based methods seem the most promising11–19. These methods can be grouped into different 
tasks with varying ground truth information, as shown in Fig. 1. Starting from an image as shown in Fig. 1a, 
image classification is the least accurate task (Fig. 1b). It is applied to a single plant cut-out without location and 
thus cannot be applied in SSWM tasks, where the simultaneous detection and localization of multiple plants is 
desired. Therefore, the object detection20 task might be utilized. However, this task detects rectangular bounding 
boxes (Fig. 1c) which is not satisfactory due to the complex and irregular shape of the plants. Also, these models 
are prone to occlusion21 which diminishes their performance in areas with high weed infestation22. Nevertheless, 
the analysis of a plant’s growth dynamics can be achieved, where multiple objects are tracked through time (see 
Fig. 1d). Moreover, by using segmentation masks, additional tasks can be performed. Here, by convention any 
countable entity (i.e. plant, person, etc.) is named ‘thing’ and any uncountable region (i.e. soil, sky) is called 
‘stuff’: The semantic segmentation task23 provides a precise delineation of stuff, which separates every pixel in the 
image by class label, but cannot separate different plants of the same class24 (see Fig. 1e). This is crucial in selec-
tive weed management25 to conserve biodiversity by removing only competitive weeds. Consequently, instance 
segmentation24 (Fig. 1f) can generate accurate detections of things individually, which can be used in many 
downstream tasks such as weed density assessment or biomass estimation26. Nevertheless, this type of model is 
only able to detect countable objects (things) and does not consider stuff regions. Finally, panoptic segmenta-
tion27 combines the concept of both semantic and instance segmentation and assigns two labels (semantic label 
and instance id) to each pixel in an image (Fig. 1g).

The basis for the development, validation and assessment of such systems is the availability of high quality 
data on weed diversity in a particular area of interest. Several datasets are publicly available, but lack several 
aspects for precise plant phenotyping, as summarized in Table 1.

Most datasets available lack variability in the data (low number of individuals or plant species) limiting their 
usability in different studies. Only a few datasets are larger than 100,000 annotated plant samples, including 
Open Plant Phenotype Database (OPPD)28 and Pl@ntNet-300k29. However, Pl@ntNet-300k can only be used for 
classification tasks without tracking plant growth stages and OPPD is missing semantic and instance segmenta-
tion masks, which are important for precise phenotyping. Also, the bounding box information of a plant is often 
not sufficient, as it is too coarse for most weed management applications. Therefore, semantic segmentation or 
even more accurate instance segmentation masks are required. Finally, tracking a plant over time provides val-
uable insight into growth dynamics.

In this work we have created a high-quality dataset of different plant species with a high temporal and spatial 
resolution. We added manually curated semantic and instance segmentation masks of a subset to make this 
dataset suitable for weed management tasks. For this purpose, we used a high throughput phenotyping system to 
ensure a high degree of automation, as this system was equipped with controlled illumination and an automatic 
irrigation system. In our dataset, we included images of plants captured multiple times per day. This included 
captures in the evening, when the appearance of some species changes due to their dependency on sunlight. In 

Fig. 1 Comparison of different computer vision tasks used in plant phenotyping. Plants (a) can be classified 
(b) as individual cut-outs, detected by bounding boxes (c), tracked through time (d), or segmented containing 
pixel-wise information. This can be done either semantically (e), by instance (f) or by the combination of both 
called panoptic segmentation (g).
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addition, we generated data from different varieties of sorghum and maize, focusing on a wide range of seedling 
weeds that are also common in agricultural sites where these crops are grown.

Methods
The methodology can be summarized into three steps, as shown in Fig. 2. First, we will describe the experi-
mental setup (Fig. 2a). Second, we will illustrate the image generation (Fig. 2b) and conclude with the labeling 
process (Fig. 2c).

Experimental Setup. To generate a dataset consisting of high-quality images that capture the initial growth 
dynamics of individual plants of several weed species, a greenhouse experiment was performed at the Moving 
Fields facility (https://www.lfl.bayern.de/verschiedenes/ueberuns/272457/index.php) of the Bavarian State 
Research Center for Agriculture in Freising, Germany. In the experiment, plants were grown in micro-plots that 
were watered and photographed automatically on at least a daily basis from the day of sowing until harvest, which 
took place at around shooting. Built into a greenhouse, the Moving Fields facility (LemnaTec GmbH) consists 
of a conveyor belt system, three irrigation stations and four ‘Scanalyzer 3d’ photo cabins, which together enable 
experimental units consisting of plants growing on micro-plots to be automatically moved, watered, weighted 
and photographed. The greenhouse can be climatically controlled with regard to humidity and temperature and 
can be illuminated by 48 sodium-vapor lamps (Philips Son-T AGRO). The conveyor belt system (Bosch Rexroth 
TS2plus) accommodates and enables the movement of 390 carriers (micro-plots). At the three measuring sta-
tions, digital scales (Bizerba ST) and high-pressure pumps (Wartson-Marlow) enable carriers, together with any 
plants transported by them, to be weighed and to be watered to a unit-specific target weight. The plant species 
included in the dataset, listed in Table 2 and Table 3, were selected as weed species common to fields of sorghum 
grown in Germany. Additional selection criteria were 1) commercial availability and 2) the ability to be grown 
at the climatically controlled conditions of a greenhouse. Seeds of the species involved were acquired from com-
mercial breeders in Germany, the Netherlands and France. All plants were grown in boxes of size 40 × 30 × 22 cm 
(outer dimensions). The color of these boxes was blue, to facilitate image analysis afterwards. Each box was filled 
to about half height (roughly 11 cm after compression) with a commercial peat-free substrate (Höfter GmbH), 
primarily consisting of coconut fibers. Plants were grown as monocultures; each box contained plants of one 
species only. To yield data for enough individual plants per species, the number of boxes varied between species 
due to different germination rates.

The number of seeds planted in each box was made dependent on the expected germination rate, which 
was adjusted throughout the experiment. Thus, seed density varied both within species over time and between 
species. Following breeder recommendations, some seeds were kept in a vernalization room (at 4 °C) or treated 
with gibberellin acid (GA3) to ensure germination success. Units were sent to an automatic watering station as 
often as frequent imaging allowed, in practice at least twice a day. Each unit was watered to its unique target 
weight. This target weight initially corresponded to the unit’s weight at sowing. Throughout the experiment, 
target weights were adjusted repeatedly to prevent boxes from becoming either too dry or too wet. Twice a week, 
all boxes were examined to score seedling emergence, to thin the standing stock in order to minimize overlap 
between individual plants and to harvest plants that either started shooting or that became too big for the box 
they were growing in.

In addition, different varieties of maize (Zea Mays) and sorghum (Sorghum bicolor) were grown and cap-
tured, as shown in Table 3.

Dataset name
Labeled 
samples Classification

Object 
detection

Semantic 
segmentation

Instance 
segmentation

Multiple 
object tracking 
(growth)

Open Plant Phenotype 
Database (OPPD)28 315,038 ✓ ✓ ✓

Pl@ntNet-300k29 306,146 ✓

MFWD (ours)30 200,148 ✓ ✓ ✓ ✓ ✓

Plant Village Dataset41 54,303 ✓

Deep Seedling42 33,444 ✓ ✓

DeepWeeds43 17,509 ✓

Weed2544 14,023 ✓ ✓

WE3DS45 11,544 ✓ ✓ ✓

Sudars et al.46 7,853 ✓ ✓

Plant Seedling47 5,539 ✓ ✓ ✓

Champ et al.24 2,489 ✓ ✓ ✓ ✓

Ladybird Cobbitty 2017 
Brassica Dataset48 2,245 ✓ ✓ ✓

CWFID49 494 ✓ ✓

Leaf Segmentation and 
Counting Challenge50 284 ✓ ✓ ✓ ✓

Table 1. Comparison of ground-based image datasets for plant detection.
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Image Generation. To generate well illuminated, high-resolution top-down images of the experimental 
units, one of the Scanalyzer 3D imaging cabins of the Moving Fields facility was used. In this cabin, one RGB 
camera (Basler piA2400-17gm) is mounted 2.8 m perpendicular above the conveyor band. This camera takes 
images with 2456 × 2058 pixels. This camera is equipped with a motorized zoom lens (Pentax C6Z1218M3-5); 
throughout the experiment, however, this lens was set fixed at a single position, which resulted in a ground resolu-
tion of ∼ 0.17 mm per pixel. The micro-plots were illuminated by 14 fluorescent lamps (Osram HE 28 W/865) that 
were also mounted perpendicular above the conveyor band. Units were imaged as often as possible, in practice at 
least once a day on the two days per week on which plant maintenance took place and at least twice a day on all 
other days. The units were tracked over a development period from sowing till the last plant either started shoot-
ing or became too big for the setup, representing the relevant stages for weed control on the field for sorghum. 
The images collected were stored in a LemnaTec-specific raw format, after which they were converted to PNG 
format. Each experimental unit was marked with a unique numerical barcode composed of identity codes for 1) 
the species, 2) the treatment (with or without GA3) and 3) the replicate at issue. Each image was saved with the 
barcode of the unit that was on the image as well as the date and time of image acquisition.

Labeling Process. The complete dataset was labeled using the open-source software CVAT (Computer 
Vision Annotation Tool; https://www.cvat.ai/) as a self-hosted solution. This software made the labeling 
time-efficient, as it provided an easy interface for multiple object tracking by adding time series information 

Fig. 2 Outline of the experimental workflow. (a) Experimental setup using an automated phenotyping facility. 
(b) Generation of images with high temporal and spatial resolution of 30 different plant species. (c) Labeling 
process illustrated by bounding box information for the object detection task (weed illustrated in red and 
sorghum plants in green).
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per plant. Each species was labeled individually, providing the EPPO code as a label. Although only one species 
was seeded per tray, more weed species germinated during the experiment (compare Table 4), as the seed assort-
ment was not completely pure. Therefore, the additional label “weed” was used to annotate these plants and the 
unknown species was identified by an expert in a second step. The correct species could not be specified for all 
plants due to several reasons (i.e., little germination resulting in small plants, occlusion with other plants, etc.), 
especially when they were not part of our initial assortment.

EPPO Code Dicot Botanical Name # Images
Captured 
Trays

Labeled Trays for

classification detection segmentation

ACHMI ✓ Achillea millefolium 2,893 25 25 5 0

AGRRE Elymus repens 2,848 29 12 12 0

ALOMY Alopecurus myosuroides 3,595 28 11 11 0

ARTVU ✓ Artemisia vulgaris 2,881 34 34 18 1

CHEAL ✓ Chenopodium album 1,652 23 23 9 1

CIRAR ✓ Cirsium arvense 2,546 15 15 15 1

CONAR ✓ Convolvulus arvensis 4,914 27 27 27 1

ECHCG Echinochloa crus-galli 2,622 27 25 25 0

GALAP ✓ Galium aparine 1,513 23 23 14 1

GASPA ✓ Galinsoga parviflora 847 13 13 13 1

LAMAL ✓ Lamium album 5,276 36 36 32 0

MATCH ✓ Matricaria chamomilla 1,681 21 21 8 0

PLAMA ✓ Plantago major 7,856 43 43 37 0

POAAN Poa annua 2,574 23 11 11 0

POLCO ✓ Fallopia convolvulus 330 9 9 9 1

POROL ✓ Portulaca oleracea 4,435 21 21 5 1

PULDY ✓ Pulicaria dysenterica 1,745 21 21 10 1

SOLNI ✓ Solanum nigrum 1,472 22 22 12 1

SSYOF ✓ Sisymbrium officinale 2,477 14 14 10 0

STEME ✓ Stellaria media 1,887 22 22 8 0

THLAR ✓ Thlaspi arvense 4,044 38 38 36 1

VEROF ✓ Veronica officinalis 3,987 22 22 5 0

VIOAR ✓ Viola arvensis 1,261 17 17 11 1

Table 2. Selected weed species with corresponding amount of data captured and labeled.

Abbreviation
EPPO 
Code Variety # Images

Captured 
Trays

Labeled Trays for

classification detection segmentation

SORFR SORVU KWS Freya 2,881 27 27 27 0

SORHA SORVU KWS Hannibal 552 27 5 5 1

SORKM SORVU KWS Merlin 511 27 5 5 0

SORSA SORVU KWS Sammos 1,279 27 12 12 0

SORKS SORVU KWS Sole 604 27 5 5 0

SORRS SORVU RAGT Swingg 447 27 5 5 0

ZEALP ZEAMX Lidea Palladium 930 38 38 38 0

ZEAKJ ZEAMX KWS Johaninio 1,660 38 38 38 1

Table 3. Selected crop varieties with corresponding amount of data captured and labeled.

EPPO code Botanical name
# Plant 
individuals

# Plant 
samples

AETCY Aethusa cynapium 4 110

GERMO Geranium molle 4 139

POLAM Persicaria amphibia 55 2237

POLAV Polygonum aviculare 2 62

VICVI Vicia villosa 1 32

Table 4. Additional germinating weed species (dicots) that were not sown explicitly.
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The instance segmentation masks were manually drawn using another open-source software, GIMP (GNU 
Image Manipulation Program), which provides pixel-level information. Therefore, we selected one tray from 
each of 14 plant species, as not all species could be labeled due to complexity and time constraints (see Fig. 1g).

Data records
The Moving Fields Weed Dataset30 (MFWD) is deposited at the digital library of the Technical University of 
Munich (https://mediatum.ub.tum.de/1717366). The dataset consists of 94,321 high temporal and spatial reso-
lution images of 30 different plant species (see Fig. 3).

Fig. 3 Example of each plant species with corresponding EPPO code.
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Additional ground truth data is provided, consisting of the plant species, a bounding box per plant, and time 
series information to track the same plant individual through growth. We labeled a large subset of these images, 
resulting in 200,148 records for 5,068 plants in the current version. Additional information is shown in Table 5.

Image data is stored in PNG format to ensure the highest possible quality without compression artifacts. 
Compressed (JPEG) images are also stored to ensure accessibility with lower Internet bandwidth. All object 
detection and object tracking information are stored in a separate CSV file named “gt.csv”. The segmentation 
masks are stored in the folder “masks”. An additional folder is provided containing all images without ground 
truth annotations. The contents of the CSV file are explained in Table 6:

technical Validation
The growth experiments were conducted using multiple trays, resulting in different numbers of replicates per 
species. Here, a minimum of nine replicates were used. Seeds were treated according to breeders’ recommenda-
tions. Some weeds germinated only when treated with gibberellin acid. Therefore, the optimal procedure was 
evaluated in a prior experiment.

The quality of the bounding boxes and labels was ensured twofold. First, a valid bounding box could be eval-
uated during the labeling process by using tools in CVAT directly and by an additional human inspector doing 
quality control. Second, using the time-series information, all plant cut-outs of one plant individual could be 
plotted in a series of images to visually inspect the bounding boxes. Finally, plants of additional not sown species 
could be assessed and classified in an additional step. Remaining instances were labeled as class “Weed”, as they 
were tiny and thus could not be labeled by species.

The high variability in the seed germination rate of different weed species resulted in a very diverse data set 
of different weeds with different germination rates, as shown in Fig. 4.

Usage Notes
The dataset can be downloaded via custom Python scripts (https://github.com/grimmlab/MFWD) and used as 
a resource for precision agriculture, smart farming, and computer vision related tasks. In addition, we encour-
age the development of algorithms that take plant phenotyping data into account. Since the dataset consists of 
high-resolution images, we also provide a custom Python script to easily resize the images. The dataset could 
be a useful resource for the computer science community in general to develop novel machine learning and 
computer vision algorithms for automatic weed detection. Here, the data could be used in classification as well 
as object detection and segmentation tasks. Furthermore, the additional time series information makes our 
dataset suitable for multiple object tracking. Finally, the inherent inter- and intra-class variance can be used to 
evaluate new algorithms that address class imbalance, which is a challenge in many machine learning tasks31–33.

To demonstrate the usefulness of the dataset, we provide a simple baseline experiment on the image classi-
fication task. For this purpose, we use plant cut-outs from the jpeg-compressed images and rescale them to an 
image size of 224 × 224 pixels². Here we focused on the multi-species classification for sorghum, i.e. all sorghum 

Data Content Data Statistics

High Resolution Tray Images 94,321

Individual Plant Samples (Object Detection) 200,148

Individual Plant Samples (Instance Segmentation) 2,025

Time Series of individual Plants 5,068

Weed Species 28

Sorghum Varieties 6

Maize Varieties 2

All PNG images [GB] 814

All JPEG images [GB] 114

Table 5. Summary of the current version of our dataset.

Column Explanation

track_id ID of the individual time series connecting bbox_id of different images in one tray

label_id ID of the plant species, saved as EPPO code

bbox_id ID of the individual sample

xmin left coordinate of the individual sample

ymin top coordinate of the individual sample

xmax right coordinate of the individual sample

ymax bottom coordinate of the individual sample

filename relative file path to the image

tray_id ID of the tray

Table 6. Description of the csv file containing ground truth information.

https://doi.org/10.1038/s41597-024-02945-6
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varieties were labeled as “SORVU” and excluded all maize images. Additionally, the generic weed class was 
excluded for this experiment, as these were mostly small plants which could not even be classified by the human 
eye. We also excluded POLAV and VICVI from the experiment because they contained less than three plant 
individuals and thus could not be separated into training, validation, and test sets. We strongly recommend 
stratifying the data by plant individuals, as the temporal resolution is high, and models may overfit if the data 
were randomly split. The final dataset of 27 plant species contained 167,505 images and was split into a training- 
(~60%), validation- (~20%), and test-set (~20%).

We selected two different deep learning-based model architectures, ResNet-1034 and EfficientNet_b035, to 
evaluate the classification performance. For the hyperparameter optimization we used grid-search and five dif-
ferent learning rates (sampled from a log uniform distribution in the range between 1e-3 and 1e-4). We sampled 
512 plant cut-outs in a batch by oversampling the minority classes, due to high class imbalances. The networks 
were initialized with weights from ImageNet. The Adam36 optimizer with a learning rate scheduler and the 
cross-entropy loss37 was used to train the models. We validated the models using the validation-set by calcu-
lating the weighted f1-score38,39, due to the high class imbalance. Each model was trained for a maximum of 50 
epochs. Early stopping40 was used as a regularization technique to avoid overfitting. After training the models, 
EfficientNet_b0 with a learning rate of ~5.4*10−4 gave the best results on the validation set with an f1-score of 
90.00%. The summary of the hyperparameter optimization is shown in Table 7.

Finally, the best performing model was applied to the hold-out test set to evaluate the generalization abilities 
on an unseen dataset. Here, the model achieved a weighted f1-score of 90.57%, indicating good generalization 
performance within the MFWD dataset. The complete code for training and testing the model is publicly avail-
able in our GitHub repository.

However, deep learning models trained on this dataset may not be applicable to out-of-context data, such 
as weed detection in drone imagery. Here, pre-training a model on our dataset and fine-tuning it to the target 

Fig. 4 Distribution of plant samples (separate images) and plant individuals (multiple images of one plant 
through time) per class.

model
learning rate 
(*10−4) best epoch f1-score (%)

EfficientNet_b0 2.37 8 88.75

EfficientNet_b0 8.93 1 83.93

EfficientNet_b0 5.40 32 90.00

EfficientNet_b0 3.97 8 89.35

EfficientNet_b0 1.43 26 88.88

ResNet-10 2.37 20 88.24

ResNet-10 8.93 1 81.28

ResNet-10 5.40 21 88.74

ResNet-10 3.97 20 88.70

ResNet-10 1.43 20 87.75

Table 7. Summary of the hyperparameter optimization calculated on the validation set.
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task might be a feasible strategy to scale up weed detection in agricultural landscapes. However, the main target 
application of our dataset is to encourage the research community to develop new computer vision algorithms 
on a unified dataset, thus increasing the reproducibility of the results.

Code availability
The code to download the dataset is publicly available for download on GitHub: https://github.com/grimmlab/MFWD.
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