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a neuromorphic dataset for 
tabletop object segmentation in 
indoor cluttered environment
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Dimitrios Makris  3 & Yahya Zweiri  1,4 ✉

Event-based cameras are commonly leveraged to mitigate issues such as motion blur, low dynamic 
range, and limited time sampling, which plague conventional cameras. However, a lack of dedicated 
event-based datasets for benchmarking segmentation algorithms, especially those offering critical 
depth information for occluded scenes, has been observed. In response, this paper introduces a novel 
Event-based Segmentation Dataset (ESD), a high-quality event 3D spatial-temporal dataset designed 
for indoor object segmentation within cluttered environments. ESD encompasses 145 sequences 
featuring 14,166 manually annotated RGB frames, along with a substantial event count of 21.88 million 
and 20.80 million events from two stereo-configured event-based cameras. Notably, this densely 
annotated 3D spatial-temporal event-based segmentation benchmark for tabletop objects represents 
a pioneering initiative, providing event-wise depth, and annotated instance labels, in addition to 
corresponding RGBD frames. By releasing ESD, our aim is to offer the research community a challenging 
segmentation benchmark of exceptional quality.

Background & Summary
In the 4th Industrial Revolution, there is a substantial surge in the demand for multifunctional robots. 
Gripper-equipped robots have gained popularity and are pivotal for grasping tasks in various industries. They 
offer the manufacturing industry a distinct advantage by reducing production time and enhancing overall 
throughput. A major portion of these tasks necessitates robots to exhibit competence in handling objects of 
diverse shapes, weights, and textures. However, it is worth noting that most techniques are utilized to train 
robots for tasks suited to structured environments, where prior knowledge of the scene and objects is readily 
available. Such tasks are prone to significant errors and present substantial challenges in achieving full automa-
tion, particularly within unstructured environments1. In unstructured environments, objects are disordered, 
and exhibit unknown shapes and geometries, thereby requiring robotic systems to rely on real-time perception 
and comprehension through robotic vision. This is in stark contrast to the structured environment where prior 
knowledge and object models can be employed. Consequently, the key to addressing this challenge lies in robotic 
perception, which enables robots to localize, segment, and grasp objects in unstructured settings.

At present, most vision-based applications and research predominantly rely on traditional vision sensors 
such as RGB and RGBD sensors. Nonetheless, conventional frame-based cameras exhibit notable limitations, 
including high power consumption and extensive storage demands stemming from continuous full-frame 
sensing and data storage.Furthermore, their characteristics of low sampling rates and susceptibility to motion 
blur can adversely impact the perceptual quality for many vision-based applications. For instance, the conven-
tional RGB camera’s low sampling rate results in motion blur when capturing images of fast-moving objects on 
conveyor belts within production lines2. Thus, the accuracy and success rate of object picking and placing are 
reduced at the perceiving stage. Neuromorphic vision sensors draw inspiration from biological systems, particu-
larly the visual capabilities of fly eyes, which can parallelly and in real-time sense data with a microsecond-level 
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sampling rate3,4. Leveraging these unique properties of event cameras, an increasing amount of research is 
exploring the applications of neuromorphic vision technology to mitigate motion blur and enhance efficiency in 
various domains. These applications encompass object tracking5, depth estimation6, autonomous driving7, and 
robotic grasping8–11.

In perception-related tasks, segmentation serves as a foundational pre-processing step, crucial for estimating 
the attributes of individual objects. This is particularly vital in vision-based robotic grasping applications, where 
the accurate localization and geometric details of each object are essential for formulating precise grasping 
strategies12. In other words, the quality of perception and segmentation has a direct and substantial impact 
on the quality of the grasping process. In recent years, learning-based approaches to segmentation and other 
vision-based tasks triggered a massive surge. Datasets are significant for computer vision supervised learn-
ing methods13. Moreover, datasets allow the comparison among various algorithms to provide benchmarks14. 
Several RGB and RGBD-based segmentation datasets were constructed to provide ground truth for the training 
and evaluation of deep-learning-based segmentation approaches. For instance, EasyLabel15 offers instance seg-
mentation RGB-D dataset with point-wise labeled point-clouds information for cluttered objects in an indoor 
environment, where the depth height and the objects in clutter are varied. Also, synthetic dataset TOD was 
generated for unknown object segmentation16. Besides, there are many other public conventional datasets, such 
as MSCOCO17, PascalVoc13, and CityScape18 for multiple tasks including segmentation, object detection, and 
classification. In addition, amounts of conventional vision-based objects segmentation approaches were devel-
oped, such as FCN19, U-NET20, and DeepLab21 are commonly utilized as evaluation benchmarks.

However, research on event-based segmentation is still in the primary stage of development. In contrast 
to the booming research in instance segmentation using conventional frame-based vision, limited attention 
has been devoted to event-based instance segmentation of tabletop objects. Current solutions for event-based 
instance segmentation are commonly based on clustering. For example, certain event-based mean shift cluster-
ing methods were introduced in prior works11,22 that utilize 2D spatial and temporal information. Nonetheless, 
these methods encounter difficulties in segmenting occluded objects. To circumvent this limitation, the inclu-
sion of depth information from RGBD imagery can prove advantageous. Furthermore, events complemented 
by depth information can serve as the ground truth for deep learning-based depth estimation approaches, such 
as spiking neural networks-based depth estimation from mono event camera23. However, there is a conspicuous 
absence of deep learning approaches for neuromorphic segmentation of tabletop objects. This shortage can 
be attributed to the insufficient availability of labeled data required for both training and testing. Instead of 
developing of novel instance segmentation methodologies, transfer learning from semantic segmentation net-
works could be a feasible and expedited approach to accomplish instance segmentation tasks. There are several 
approaches targeting event-based semantic segmentation for autonomous driving, such as EV-SegNet (2019)24, 
VID2E (2019)25, EVDistill (2021)26, EV transfer (2022)27, and ESS (2022)28. However, features provided by pure 
events are limited compared to RGB frames. The cross-modal networks, such as SA-GATE24 and CMX29, are 
being investigated nowadays to obtain abundant information from both events stream and complementary RGB 
frames.

To address this gap, we constructed an Event-based Segmentation Dataset (ESD) of tabletop objects in clut-
tered scenes, the first of its kind, providing event-wise depth and label information. Each sequence of ESD 
represents different challenges arising from various light conditions, occlusion conditions of objects, moving 
speeds, and moving trajectories of cameras. Furthermore, our dataset contains both RGBD frames and events 
data. Recent research has demonstrated that RGB frames can enhance the quality of events by augmenting the 
available pixel features24,29,30. The fusion of events and frames offers greater flexibility and increased potential 
for hybrid algorithm development, as opposed to relying solely on either pure event-based or frame-based tech-
niques by using our dataset. Moreover, our dataset holds the distinction of being the first event-wise labeled 
neuromorphic dataset designed specifically for tabletop object segmentation. Tabletop datasets are essential 
for industrial sorting and grasping tasks. They offer a diverse range of objects and scenarios, allowing robots to 
acquire skills for a wide range of industrial challenges. Moreover, these datasets promote effective robot gen-
eralization and serve as valuable benchmarks for performance evaluation. Even if there are several recently 
released event-based segmentation, such as DDD1731 and DSEC-Semantic28 proposed for outdoor driving 
semantic segmentation, and EVIMO232 and M3ED33 designed for motion segmentation instead of tabletop 
object segmentation.

Specifically, our dataset comprises two distinct subsets, namely ESD-1 and ESD-2, which are designated for 
training and testing purposes, particularly aimed at addressing unseen object segmentation tasks. These subsets 
encompass event streams, RGB frames, and depth information, all acquired using two Davis 346c event cameras 
and an Intel D435 RGBD camera affixed to the end effector of a UR10 robot. The ESD dataset contains events 
streams and grayscale frames (346 × 260) from event cameras, raw RGB frames (1080 × 720) and depth maps 
from RGBD cameras, moving speed and position of the end effector of UR10 robot. Data were collected under 
various conditions including different objects, camera movement speeds and trajectories, lighting conditions, 
and varying distances between the cameras and the tabletop. Events are labeled with depth information, and 
RGBD frames from the conventional camera are also provided in our dataset. Moreover, we rigorously evaluate 
several widely used segmentation methods on our proposed ESD to demonstrate the challenges.

This paper targets constructing a neuromorphic dataset for object segmentation since no previous data-
sets of this kind can be found in the literature. The rest of this paper is organized as follows. Section Methods 
explains the methods utilized to construct this dataset, including the designed experimental setup and protocol 
for collecting the dataset are presented in subsection Experimental setup and experimental protocol, respectively. 
Subsection Image and events annotation elaborates on the annotation methods for both RGB images and raw 
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events data. Section Data Records describes the dataset format and attributes. Additionally, the constructed data-
set was technically validated, and benchmarking of segmentation by the state-of-the-art approaches is provided 
in Section Technical Validation.

Methods
Experimental setup. As mentioned in Section Background & Summary, the availability of depth informa-
tion is crucial in the context of the segmentation task, especially when addressing objects affected by occlusion. 
Depth information in the vision system can be acquired through various methods. The most common approach 
involves the use of a stereo camera setup, which calculates depth through triangulation by comparing disparities 
between corresponding points in the images34,35. Additionally, Multi-View Stereo (MVS) techniques leverage 
multiple images of a scene from different viewpoints, even with a single camera36,37. With the development of 
machine learning and deep learning, monocular depth estimation has recently gained high attention. These mod-
els are trained on extensive datasets to predict depth from single images, leveraging features, context, and object 
relationships38,39. Some cameras are equipped with integrated depth sensors, which may be based on stereo vision, 
Time-of-Flight (ToF) technology, or other methods to provide depth information alongside traditional RGB 
imagery. Therefore, we proposed this dataset to enable the community to test different methods of depth esti-
mation for the segmentation task, and that’s why we provide both stereo event camera configuration and RGBD.

Specifically, mono event-based camera does not directly get this depth information, so in our dataset, the 
depth associated with each event is derived through a transformation process that maps the depth information 
from the RGBD camera frame into the event coordinate system. Therefore, by providing event-wise depth infor-
mation, our dataset can facilitate the development of algorithms for segmentation that utilize depth information 
with mono event-based cameras. Moreover, another significant advantage resides in its applicability to real-time 
depth estimation tasks. Through the use of stereo event cameras, depth information can be derived through 
coordinated mapping. Furthermore, the inherently dynamic nature of event-based cameras opens the possibility 
of depth calculation even with mono event-based camera. The depth map captured from RGBD camera in our 
dataset can serve as the ground truth. Thus, by offering a dataset sourced from a stereo event camera system 
and depth information from RGBD camera, our dataset can be employed in a wide array of applications beyond 
segmentation tasks, such as depth estimation, optical flow and 3D reconstruction.

The hardware setup is built on the UR10 robot, as it can provide flexible and stable control of the camera’s 
movement with positional repeatability of 0.1 mm. Three cameras, including one RGBD camera Intel D435 and 
two event cameras Davis 346c, are fixed in the camera holder attached to the robot’s end-effector. The overview 
of the setup is illustrated in the left image of Fig. 1.

To ensure the complete overlap of left and right cameras, the relative tilt angle between the two event cameras 
is calculated as 5 degrees with the assumed height of 0.82 m. Therefore, the two event cameras are tiled with  
5 degrees towards the RGBD camera. Furthermore, synchronization connectors are employed to synchronize 

Fig. 1 Hardware setup. Experimental hardware setup (left-side figure): three cameras are fixed on the end-
effector of the UR10’s manipulator. Camera configuration (right-side figure): The RGBD camera Intel D435 is 
placed in the middle, and two event-based cameras Davis 346c are mounted on the left and right sides with a 
tiled angle of 5 degrees towards the middle.

https://doi.org/10.1038/s41597-024-02920-1


4Scientific Data |          (2024) 11:127  | https://doi.org/10.1038/s41597-024-02920-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

the two event-based cameras, ensuring that events are triggered simultaneously. Given the microsecond-level 
sample rate, synchronization between the event cameras and the RGBD camera is achieved by identifying the 
nearest timestamps.

Experimental protocol. We collected and assembled the Event-based Segmentation Dataset (ESD) into two 
distinct subsets: ESD-1, designated for training purposes, and ESD-2, reserved for testing, primarily focusing on 
unseen object segmentation tasks. The training dataset encompasses up to 10 objects, whereas the testing dataset 
includes up to 5 objects. The data sequences were collected under various experimental conditions, which will be 
elaborated on in the subsection Dataset Challenging Factors and Attributes. These conditions encompass different 
object quantities (ranging from 2 to 10 objects in ESD-1 and 2 to 5 objects in ESD-2), varying lighting conditions 
(normal and low light), heights between cameras and tabletop (0.62 meters and 0.82 meters), occlusion condi-
tions (with and without occlusion), varying camera movement speeds (0.15 m/s, 0.3 m/s, and 1 m/s in ESD-1, and 
0.15 m/s and 1 m/s in ESD-2), as well as different camera trajectories (linear, and rotary and general motion in ESD-
1, where general motion is a combination of linear and rotary motion, and linear and rotary motion in ESD-2).  
Furthermore, it is noteworthy that the objects present in ESD-1 differ from those in ESD-2, thereby rendering this 
dataset can be used for addressing challenges related to unknown object segmentation.

Before conducting experiments to collect data, all of the event cameras and the RGBD camera were cal-
ibrated to obtain the intrinsic and extrinsic parameters40, crucial for subsequent data processing and anno-
tation. Then setting up the specific conditions for each particular experiment, such as the height of cameras 
and the lighting condition. The UR10 robot’s end-effector, carrying the cameras, consistently started from the 
same position for all experiments. Generally, the majority of experimental setups for robotic grasping adopt 
an “eye-in-hand” configuration10,41, where the camera is attached to the end effector. In scenarios involving 
object pick-and-place tasks, the camera commonly maintains a downward orientation focusing on the tabletop. 
Consequently, manipulating the end effector at various speeds and trajectories, along with the attached camera, 
facilitates the simulation and replication of conditions encountered in robotic manipulation. Additionally, in 
event-based camera observation, an issue arises when no events are detected as the camera’s motion direction 
aligns parallel to object edges. Therefore, we formulated three distinct motion patterns: linear motion, most 
affected; general motion, less affected due to rotation; and pure rotary motion, effectively eliminating this issue. 
Furthermore, in many table-top grasping scenarios, event camera has an “act-to-perceive” nature, where the 
resulting events depend heavily on the linear and angular velocity of the camera, and not just the scene. That is 
why it is important to generate events using different camera motion types to generate a sufficient dataset that 
can be used to train models capable of generalization. Figure 2 illustrates the three designed different moving 
trajectories in x–y–r space using quaternion, where x–y indicates the plane that the cameras move on, and the 
rotation is denoted in r axis.

Overall 115 experiments and 30 experiments were conducted for ESD-1 and ESD-2, respectively. The RGB 
part of the dataset consists of 14,166 annotated images. In total, 21.88 million and 20.80 million events from the 
left and right event-based cameras were collected, respectively.

To measure the differences between similar frames, the difference between two adjacent frames is calculated 
by Root Mean Square Error (RMSE) of pixel values, which is a measure of the average pixel-wise difference pro-
viding a single scalar value representing the overall dissimilarity between the frames. The RMSE for the entire 
ESD dataset is 62.31. Additionally, we calculate RMSE for two specific scenarios: one involving a sequence with 
the slowest movement, consisting of two objects with fewer features, and the other with the fastest movement, 
involving ten objects with more features. The calculated RMSE values for these scenarios are 55.17 and 65.61, 
respectively. We also quantitatively evaluated the difference of consecutive RGB frames of widely used and newly 
released video datasets DAVIS42, MOSE43 and CLVOS2344. The calculated average RMSEs are 30.20, 28.69 and 
26.27, respectively. By comparing the difference RMSE between our dataset and recently published datasets, we 
demonstrate that our dataset has sufficient variation in the collected images. This variation would supplement 
the generalization capabilities of machine learning models trained on our dataset.

(a) linear movement (a) rotary movement (a) general movement

Fig. 2 Designed moving trajectories in x–y–r space, where x–y indicates the plane that cameras move on, and 
the rotation is denoted in r axis.
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where Ii and Ii + 1 denote the i th and (i + 1) th images. The total number of images is described as N. Additionally, 
even if consecutive frames look similar, the same does not necessarily apply to events. For example, performing 
the same linear motion at different speeds could result in different RGB frames, but the associated events data 
would exhibit significant differences. As depicted in Fig. 3a,b show the RGB visualization captured from the 
RGBD camera which looks quite similar to each other. However, when we examine the corresponding events 
stream within 1 ms in x-y-t coordinate, a substantial difference becomes evident as shown in (c,d). The discrep-
ancy arises because events are generated asynchronously, leading to variations in temporal information captured 
by the events data.

Image and events annotation. We tested different methods for the automatic annotation of RGB images 
and event data. Due to different features appearing with different perception angles of the camera, achieving pre-
cise automatic labeling of RGB images is quite challenging. Consequently, we manually labeled all RGB frames 
and utilize these manual annotations as references for the automatic annotation of event-based data.

Manual annotation of RGB frames. Our proposed ESD dataset contains 11,196 images for training and 2,970 
images for testing in total. We used the online web annotator CVAT45 to manually annotate the tabletop objects 
in each frame. CVAT offers automatic features for pixel labelling. The polylines tool is used to draw the bounda-
ries around the objects. Dealing with occlusion is one of the challenges of annotating this dataset. The occluded 
object is declared as the background whereas the front object is declared as the foreground.

Furthermore, the motion blur resulting from the low sampling rate of the RGBD camera introduces ambi-
guity when manually labeling the boundaries of objects. Therefore, we addressed this challenge by conducting 
a two-step labeling process, as illustrated in Fig. 4. The initial annotation was established based on manual 
inferences of the objects’ positions in accordance with the trajectory of camera movement. Following this, 
once the corresponding events were fitted and annotated (as elaborated in section Automatic labeling of events 
data), we can observe the events frame to understand whether the mask frame had been accurately labeled with 
well-defined shapes and object outlines. If the event frame exhibited precise annotation, the initial annotated 
mask was retained as the final version. However, if the event frame indicated imprecision, we initiated the sec-
ond step, involving the re-labeling of the RGB frame, continuing this process until the events were meticulously 
annotated.

Automatic labeling of events data. Events are labeled according to the annotated RGB masks, and the Pseudo 
code of automatic annotation of a sequence of events captured in one experiment as described in Algorithm 1.

Fig. 3 Visualization of RGB frames captured from RGBD camera and events streams obtained by event-based 
cameras in linear motion in the same time interval.
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Algorithm 1Automatic Annotation for Events Data.

Events recorded can be considered as a continuous data stream with a high frequency (few microseconds). 
Thus, we divided sequences of events into intervals “E” of around 60 ms which is the same sampling period of the 
RGBD camera by finding the nearest timestamp between events and the RGB frame. Simultaneously, annotated 
mask frames “S” in RGBD coordinate are transformed to events coordinates as “Se” as described in Eqs. 2–4. 
First, the forward projection is applied to transform mask frames “S” in RGBD coordinate into RGBD camera 
coordinate as “Sc” using the camera intrinsic parameters (Eq. 2). As expressed in Eq. 3, the coordinate transfor-
mation is applied twice to transform “Sc” into world coordinate and event camera coordinate in sequence using 
the cameras’ extrinsic parameters. Building on that, masks in event camera coordinate are backward projected 
into events coordinate as described in Eq. 4.
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where (x, y, z), (u, v), (xe, ye, ze), (ue, ve) and (X, Y, Z) represent the same point in RGBD camera coordinate, RGB 
image plane, event camera coordinate, events image plane, and world coordinate systems respectively. c c,x y and 
c c,xe ye, indicate the center points in RGB and events image planes, respectively. Similarly, f f,x y

 and f f,xe ye
 

denote the focal length of RGBD and event camera, respectively. R and T express the rotation matrix and trans-
lation vector from the RGBD camera coordinate to the world coordinate system. Re, Te describes the rotation 
matrix and translation vector from the event camera coordinate to the world coordinate system.

However, the events recorded asynchronously appear in different locations since the camera keeps moving. 
Thus, events between two consecutive RGB frames are sliced into sub-intervals with 300 events “Eij”. Then fitting 
transformed event mask “Se” into events coordinate as “Set” by applying the Iterative Closest Point (ICP) algo-
rithm46 to find the rigid body transformation between the two corresponding point sets X = {x1, x2, ‥, xn} and 
P = {p1, p2, ‥, pn}. The ICP algorithm assumes that the corresponding points xi and pi are the nearest ones, so the 
working principle is to find the rotation matrix R and translation t that minimizes the sum of the squared error 
E(R, T) as expressed in Eq. 5.
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Leveraging the transformation matrix derived from rotation and translation, calculated through ICP 
(Iterative Closest Point), the corresponding location of events on annotated mask frames will be obtained as 

=′x xRT[ ]i i. Therefore, the labels assigned to pixels on the RGB mask are inherited and applied to the events as 
well. The working principle is illustrated in Fig. 5.

In our setup, we position two event cameras and an RGBD camera in different locations, as illustrated in 
Fig. 1. Consequently, their views may not entirely overlap due to constraints on the distance between objects and 
the cameras. As a result, areas exclusively sensed by the event camera may be erroneously labeled as background, 
even when they correspond to actual objects. To tackle this issue, we crop out the blind area which is only 
sensed by the event camera. The event-based camera not only captures spatial information but also temporal 
information. As a result, the event occurrences that are cropped at a specific timestamp persist in subsequent 
timestamps, making them amenable to further processing.

Data visualization. We partitioned ESD into training (ESD-1) and testing (ESD-2) subsets for unseen object 
segmentation tasks. Training and testing dataset consists of up to 10 objects and 5 objects respectively. Notably, 
the testing dataset presents a challenge in addressing unseen object segmentation tasks, as it features different 
objects compared to the training dataset, ESD-1. Data sequences were collected under various experimental 
conditions which will be discussed in detail in subsequent subsection Dataset challenging factors and attributes. 
Examples of ESD-1 in terms of the number of objects’ attributes can be visualized in Fig. 6. The raw RGB image, 
annotated mask, and the corresponding annotated events (N = 3000) are illustrated for conditions of the different 
number of objects. Particularly, in the clusters of 2 objects, both the objects (ie. Book and box) are distanced from 

Fig. 4 Two steps of labeling blurred images: initial annotation and re-annotation. If wrong labels show in the 
event frame, the second-round labeling of the RGB mask will be triggered according to the initial annotated 
events.

Fig. 5 Principle of mapping the interval of events on the RGB frame coordinate for annotation.
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each other. For clusters of more than 2 objects, there are occlusions among objects. Besides, examples of ESD-2 
for unseen object segmentation in terms of other attributes are depicted in Fig. 7.

Data Records
All of the ESD47 is available at Figshare, whose structure is demonstrated in Fig. 8.

Data format. In each sequence, event-related data is stored in four distinct files within the “events” folder, 
which correspond to specific conditions. The “left.mat” file contains events information from left Davis 346c, 
RGBD information from Intel 435, and data regarding the movement of the cameras. Similarly, right.mat con-
tains events and frames information from the right event-based camera and RGBD camera and information of 
cameras’ movement. Additionally, synchronous image frames and mask frames converted from RGBD camera 
coordinates for both event-based camera coordinates are reserved in events_frame.mat and mask_events_frame.
mat. Moreover, the raw RGB images and ground truth masks are also provided in the “RGB” folder of all exper-
imental conditions.

Dataset challenging factors and attributes. We constructed ESD47 dataset with various scenarios and 
challenges in the indoor cluttered environment. We briefly define the attributes as below, and the symbol * is 
varying in specific conditions:

Fig. 6 Example of the ESD-1 in terms of the number of objects attributes, under the condition of 0.15 moving 
speed, normal light condition, linear movement, and 0.82 height. Different colors in the RGB ground truth and 
annotated event mask mean different labels. Better view in color.
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•	 Various number of objects (O*): The complexity of the scene can be affected by the number of objects. 
Thus, we selected different numbers of objects with various shapes and layouts to increase the diversity of the 
scenes. Particularly, scenes of 2, 4, 6, 8, and 10 objects were collected in ESD-1. Scenes of 2 and 5 objects were 
collected in ESD-2.

•	 Cameras’ moving speed (S*): Motion blur is an open challenge in computer vision tasks. We collected data 
with different moving speeds (S015: 0.15 m/s, S03: 0.3 m/s, S1: 1 m/s) of cameras to introduce various degrees 
of motion blur of RGB frames.

2 
ob

je
ct

s

Raw RGB images Ground truth Annotated events

5 
ob

je
ct

s

Fig. 7 Example of unknown objects ESD-2 dataset in terms of the number of objects attributes, under the 
condition of 0.15 moving speed, normal light condition, linear movement, and 0.82 height. Different colors in 
the RGB ground truth and annotated event mask mean different labels. Better viewed in color.

Fig. 8 Dataset structure. Each sequence was recorded in the “events” subfolder under different experimental 
conditions with a unique name under the training or testing path. Event-related and frame-related information 
is stored under “events” and “RGB” folders, respectively. Particularly, raw images and annotated masks are 
contained in the “RGB” subfolder under different experimental conditions. Events with RGBD information of 
both event cameras, image, and mask frames converted from RGBD coordinates and cameras’ movement are 
recorded under the “events” folder.
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•	 Cameras’ moving trajectory (M*): From the observation, events may not be captured if they are on the edge 
which is parallel to the camera’s moving direction that is challenging in event-based processing. We introduce 
this attribute as linear (ML), rotary (MR), and general (linear + rotary (MLR)) moving trajectory to cover all 
the edge directions.

•	 Illumination Variant (*L): Illumination has a substantial impact on an object’s appearance and is still an 
open challenging problem in segmentation. In the dataset recording, we collected data in low lighting (LL) 
and normal lighting (NL) conditions.

•	 Height between tabletop and cameras (*H): It affects the size of the overlap area of stereo cameras. Thus, 
we introduce it as one of the attributes. The dataset is collected with a higher height (HH) and a lower height 
(LH) indicating that the sensing areas from the stereo camera are fully overlapped and partially overlapped, 
respectively.

•	 Occlusion condition (*O): Occlusion is a classical and challenging scenario in segmentation, that is caused 
by the integration of objects in the scene. We placed objects with occlusion (OY) and without occlusion (ON).

Sample images taken from our proposed ESD47 dataset with various attributes are shown in Fig. 9. To address 
the needs of applications involving unknown objects, two distinct subsets were collected, namely ESD-1 and 
ESD-2, each featuring different sets of objects. ESD-2 serves as a dataset for testing the performance of models 
with unknown objects. A total of 115 sequences are collected and labeled in ESD-1, and their attributes are 
statisticized in Fig. 10 including different light conditions, moving speed, moving trajectories and objects with 
occlusion. ESD-2 comprises 30 sequences with corresponding data statistics illustrated in Fig. 11. Each sequence 
in both sub-datasets encompasses eight key aspects: end effector’s pose and moving velocity, RGB frames and 
depth maps from D435, RGB frames and events stream from left and right Davis 346 C.
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Raw RGB images Ground truth Annotated events

Fig. 9 Sample images of RGB, masks and annotated events are selected from our proposed ESD47 dataset. (a) 
Shows tabletop objects under low lighting conditions. (b) Shows the motion blur scenarios because of the fast 
camera motion with 1 m/s speed. (c) Shows the objects are occluded by others. (d) Shows the lower height of 
cameras with 0.62 m from the tabletop. Different colors in the RGB ground truth and annotated event masks 
mean different labels. Better view in color.
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technical Validation
Evaluation metrics. Our dataset ESD47 provides labels of events for individual objects, making it suitable for 
instance segmentation tasks. Additionally, ESD47 includes objects from various categories, rendering it useful for 
semantic segmentation as well.In this work, we assess our dataset by applying instance and semantic segmenta-
tion methods. Standard segmentation metrics, specifically accuracy and mean Intersection over Union (mIoU), 
are employed to quantify the testing results. Pixel accuracy, as defined in Eq. 6, measures the percentage of pixels 
correctly classified.

∑δ′ = ′( )Acc p p
N

p p( , ) 1 ,
(6)i

N

i i

where p, p′, N, and δ represent the ground truth image, the predicted image, the total number of pixels, and 
Kronecker delta function, respectively. However, its descriptive power is limited for cases with a significant 
imbalance between foreground and background pixels. Therefore, mIoU is also utilized in this work as the eval-
uation metric due to its effectiveness in dealing with imbalanced binary and multi-class segmentation. Mean IoU 
(mIoU) is calculated across classes as Eq. 7:

∑
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(a) Sequences statistic (b) Frames statistic

(c) Events statistic

Fig. 10 ESD-1 statistic: sequences (a), frames (b) and events (c) statistic in terms of attributes. ML, MR and 
MLR indicate linear, rotation and hybrid moving types; LN and LL represent normal and low light conditions; 
S015, S03, and S1 describe the camera’s moving speed of 0.15 m/s, 0.3 m/s and 1 m/s; Similarly, O2, O4, O6, O8 
and O10 express sequences of 2–10 objects; The occlusion cases are with and without occlusion referred as OY 
and ON, respectively. Additionally, the total quantities of sequences, frames and events are also presented in 
(a–c), respectively. Better viewed in color.
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where C denotes the number of classes. If a pixel i of prediction or ground truth belongs to a certain class c, pi, c 
and p′i, c are 1; otherwise, pi, c and p′i, c are 0.

Segmentation on RGB images. The approaches for RGBD instance segmentation are sophisticated, so 
we selected several well-known and widely used methods to evaluate our manually labeled RGB frames, such as 
FCN19, U-NET20, and DeepLab21. The testing results of ESD-1 and ESD-2 datasets using mIoU metrics is 59.36% 
on FCN, 64.19% for U-Net, and 68.77% for DeepLabV3+. Moreover, the segmentation results on other public 
conventional datasets MSCOCO17, PascalVoc13, and CityScape18 are also listed in Table 1. When comparing the 
segmentation results on known objects from ESD-1 to those of most publicly available datasets, both accuracy 
and mIoU scores appear lower. This discrepancy can be attributed to the shuffling of RGB frames within the 

(a) Sequences statistic (b) Frames statistic

(c) Events statistic

Fig. 11 ESD-2 statistic: sequences (a), frames (b) and events (c) statistic in terms of attributes. ML and MLR 
indicate linear and hybrid moving types; LN and LL represent normal and low light conditions; S015 and S1 
describe the camera’s moving speed of 0.15 m/s and 1 m/s; Similarly, O2 and O5 express sequences of 2 and 5 
objects; The occlusion cases are with and without occlusion referred as OY and ON, respectively. Additionally, 
the total quantities of sequences, frames and events are also presented in (a–c), respectively. Better view in color.

Datasets

FCN19 U-Net20 DeepLab21

Acc mIoU Acc mIoU Acc mIoU

ESD-1 Known obj (ours) 81.37 59.36 86.27 64.19 90.59 68.77

ESD-2 Unknown obj (ours) 64.21 32.79 69.05 40.70 72.16 43.04

MSCOCO17 71.6 31.43 77.2 47.21 79.13 58.01

PascalVoc13 87.09 62.20 92.05 72.70 96.52 87.30

Cityscape18 84.3 65.30 89.07 73.50 93.17 82.10

Table 1. Evaluation results of the state-of-the-art segmentation networks FCN, U-Net and DeepLab on RGB 
frames from ESD47. Furthermore, benchmarks of the same networks on other public datasets MSCOCO, 
PascalVoc and CityScape are also provided.
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sequences, which leads to image blurring when the camera is in motion. However, it is worth noting that, in con-
trast to other datasets with complex backgrounds, ESD, which is designed specifically for tabletop objects, offers 
a setting that is relatively more conducive to distinguishing between foreground and background. For this reason, 
the segmentation results on RGB images from MSCOCO dataset are comparatively lower. On the other hand, 
these evaluation results underscore the challenges posed by the RGB component of our dataset. These challenges 
arise not only from object occlusions but also from the impact of motion blur. In addition, the performance of 
all testing results on unknown objects from the ESD-2 sub-dataset exhibits a reduction of approximately 30%.

Segmentation on events data. As mentioned in Background & Summary section, there are several 
approaches for semantic segmentation of autonomous driving, such as EV-SegNet (2019)24, VID2E (2019)25, 
EVDistill (2021)26, EV transfer (2022)27, and ESS (2022)28. Given the limited availability of deep learning-based 
approaches for instance segmentation utilizing neuromorphic vision, transfer learning from semantic segmen-
tation models presents a viable strategy for tackling instance segmentation tasks. However, some of these models 
are not fully open-sourced, and pre-trained models are not readily provided, which can hinder their implemen-
tation and testing on our datasets. Therefore, we applied transfer learning on EV-SegNet and ESS by unfreezing 
the last 4 convolution layers of the encoder, the entire decoder module, and the classifier. As a result, we achieved 
testing accuracy rates of 76.98% and 81.59% for EV-SegNet and ESS, respectively. Nevertheless, the mIoU scores 
for EV-SegNet and ESS stood at 7.73% and 8.92%, as detailed in the Table 2.

Compared to the mIoU results on the autonomous driving dataet DDD1731 which is 51.76% and 51.57%, the 
aforementioned results demonstrate unsatisfactory segmentation performance on our dataset. This discrepancy 
may be attributed to the substantial differences in features between our tabletop objects dataset and the auton-
omous driving dataset. Our ESD47 captures events of static objects and backgrounds using moving cameras, 
which provides homogeneous features on events. However, the DDD17 dataset records dynamic moving objects 
such as on-road vehicles and pedestrians, providing additional features including various moving velocities, 
directions, and postures. Moreover, this comparison underscores the inherent challenges posed by our dataset, 
given the homogeneity of features among tabletop objects and the background, which contributes to the com-
plexity of the segmentation task.

Segmentation on integrated RGB and events data. Since the transfer learning of the 
event-based semantic segmentation approach fails to provide satisfactory results, we tested our dataset using 
vision-transformer-based cross-modal fusion networks SA-GATE48 and CMX29 to extract features from RGB 
frames and events stream. The quantitative testing results of both known and unknown objects are listed in 
Table 3. In the case of known object segmentation, both models demonstrate the capability to achieve high accu-
racy and mIoU scores in their predictions. When compared to the testing results based solely on pure RGB frames, 
segmentation using the integrated RGB and events data achieved even more accurate results. This enhancement 
can be attributed to the complementary features that are extracted and fused from both RGB frames and events 
stream. However, the performance of segmenting unseen objects drops dramatically by 80.66% and 80.00% using 
SA-GATE and CMX, respectively, indicating the challenge of unknown object segmentation. This sharp decline 
highlights the challenge associated with segmenting unknown objects.

Besides, the testing results are also shown in Fig. 12 for comparison.

Varying moving trajectories. We also conducted experiments to compare the performance of the methods 
according to the type of robotic arm movement or direction of the camera motion. There are three types of 
robotic arm movement, i.e. linear, rotational, and linear-rotational. In the case of an event-based vision sensor, 
the direction of motion is an important factor as object edges perpendicular to the motion direction are rela-
tively more exploited than the parallel edges. The impact of the phenomenon evident in Fig. 12a in terms of 
the accuracy of segmentation. In general, rotational motion provides richer information as compared to linear 
motion. Consequently, the fusion of event frames with RGB, as exemplified by the CMX model, delivers the 
highest accuracy, at 88.82%. This accuracy level surpasses the results of linear and partial linear motion by 3.77% 
and 4.42%, respectively.

Terms

EV-SegNet24 ESS28

Acc mIoU Acc mIoU

ESD47 76.98 7.73 81.59 8.92

Table 2. Quantitative evaluation results of transfer learning of EV-SegNet24 and ESS28 on our proposed dataset 
ESD47 using accuracy and mIoU.

Datasets

SA-GATE48 CMX29

Acc mIoU Acc mIoU

ESD-1 (Known objects) 91.53 84.08 94.58 85.81

ESD-2 (Unknown objects) 73.04 16.26 76.78 18.90

Table 3. Quantitative evaluation results of SA-GATE24 and CMX29 on RGB frames and events stream from our 
proposed dataset ESD47 using accuracy and mIoU.
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Moving speed of cameras. The testing results under various camera movement speeds are illustrated in Fig. 12b. 
In comparison to approaches solely utilizing RGB frames, as discussed in Section [insert section number], CMX, 
when applied to both RGB images and events data, exhibits the highest mIoU, reaching 85.58% for a camera 
speed of 0.15 m/s. However, this score diminishes slightly to 84.90% when the camera speed is increased to 
1 m/s. This demonstrates the significant impact of event-based vision at high speeds, which aids in recovering 
information along contours and mitigates the adverse effects of motion blur in RGB frames.

Varying lighting conditions. Figure 12c demonstrates the testing results under conditions of varying lighting 
conditions. The integration of event data substantially improves the performance of the hybrid model, which 
employs both RGB frames and event information, outperforming other approaches relying solely on RGB 
images. This improvement is particularly notable in low-light conditions, where the mIoU scores for traditional 
RGB testing often fall below 50%. The diminished performance in conventional RGB images is primarily due to 
the reduced perception quality under low-light conditions. However, when events data is integrated, the segmen-
tation mIoU surges to approximately 85%. This notable enhancement can be attributed to the event camera’s high 
sensitivity to changes in light intensity, enabling more robust performance even in challenging lighting scenarios.

(a) The case of varying moving trajectories (b) The case of varying moving speeds

(c) The case of varying lighting conditions (d) The case of varying heights

(e) The case of varying objects & w/o occlusion

Fig. 12 The testing results in terms of different attributes: (a) moving trajectories of cameras, (b) moving speed 
of cameras, (c) lighting condition, (d) the distance between table and cameras, and (e) clutter objects w/o 
occlusion. Better view in color.
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Varying distance between cameras and table. The distance between the camera and the object is varied between 
62 cm and 82 cm, the results are illustrated in Fig. 12d. Although, there is a minimal impact of the camera and 
object distance on the accuracy of all the models, yet the effect in the performance of the CMX is 0.67% com-
pared to the DeepLabV3 2.18%.

Varying objects/occlusion. The segmentation results for different numbers of objects are shown in Fig. 12e. 
The scenario of two objects also indicates the condition without occlusion, and scenarios of more than 2 objects 
represent the occluded condition as depicted in Fig. 6. As the number of objects in the scenarios increases, 
the complexity of the task also grows. Thus, we can observe a decrease in the mIoU score for all models when 
dealing with RGB frames as the number of objects increases. However, the testing results of both cross-modal 
networks exhibit a trend resembling a U-shape. The lowest mIoU value is observed in the 6-object scenario. This 
phenomenon may be attributed to the specific configuration where one object is fully stacked on top of another 
object, leading to a particularly challenging segmentation scenario.

Usage Notes
This dataset serves as a data source for the exploration of event-based tabletop object segmentation within 
the context of robotic grasping tasks. To the best of our knowledge, it represents the inaugural dataset to pro-
vide event-wise depth information, segmentation labels, and corresponding RGBD frames. Nevertheless, it is 
imperative to acknowledge that our dataset does possess certain limitations, such as the simple background 
and objects. Therefore, this dataset ESD constructed can be continually expanded to cover more subjects and 
more challenging scenes for the development of segmentation algorithms as well as depth estimation tasks. In 
addition, more ground truth information such as the bounding box and classes can be added to facilitate the use 
of the dataset for various event-based applications such as object detection, semantic segmentation, and object 
tracking.

Furthermore, based on the validation results of state-of-the-art algorithms applied to our dataset, it is evident 
that further explorations in algorithm development are essential to attain successful event-based object segmen-
tation, particularly when relying on pure event data. Therefore, in the future, we intend to delve into the devel-
opment of learning methods, such as graph neural networks and spiking neural networks, for the event-based 
segmentation of tabletop objects, with a focus on facilitating robotic grasping tasks.

code availability
All the events were automatically labeled by the Matlab programs. All Matlab codes are available on GitHub49 
https://github.com/yellow07200/ESD_labeling_tool.
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