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Chromosome-level genome 
assembly of humpback grouper 
using PacBio HiFi reads and Hi-C 
technologies
Jinxiang Liu   1,2,3,5, Huibang Sun1,5, Lei Tang1, Yujue Wang1, Zhigang Wang1, Yunxiang Mao4, 
Hai Huang4 ✉ & Quanqi Zhang1,2,3 ✉

The humpback grouper (Cromileptes altivelis), a medium-sized coral reef teleost, is a naturally rare 
species distributed in the tropical waters of the Indian and Pacific Oceans. It has high market value, but 
artificial reproduction and breeding remain limited and need to be improved. Here, we assembled the 
genome with 1.08 Gb, with a contig N50 of 43.78 Mb. A total of 96.59% of the assembly anchored to 24 
pseudochromosomes using Hi-C technology. It contained 24,442 protein-coding sequences, of which 
99.3% were functionally annotated. The completeness of the assembly was estimated to be 97.3% 
using BUSCO. The phylogenomic analysis suggested that humpback grouper should be classified into 
the genus Epinephelus rather than Cromileptes. The comparative genomic analysis revealed that the 
gene families related to circadian entrainment were significantly expanded. The high-quality reference 
genome provides useful genomic tools for exploiting the genomic resource of humpback grouper and 
supports the functional genomic study of this species in the future.

Background & Summary
Groupers, as a series of important commercial and ecological reef fish, are distributed in tropical and subtropical 
waters worldwide. On present understanding, groupers consist of 165 species in 16 genera and vary considerably 
in terms of lifestyle, growth rate, and body appearance1. The humpback grouper is a naturally rare species that 
is widely distributed in the tropical waters of the Indian and Pacific Oceans2. The term “humpback grouper” is 
because its body is relatively higher than its head, which gives a humpback aspect. The humpback grouper is a 
medium-sized fish, which grows up to 70 cm. As a protogynous hermaphroditic species, all humpback grouper 
individuals are born female and can transform into male when they grow up and experience 2–5 spawning 
seasons. This fish has high market value and is exceedingly favored by consumers due to their high nutritional 
value, tasty flesh, and beautiful appearance. In recent years, overfishing has led to a sharp decrease in the wild 
humpback grouper population, whereas the market demand has increased rapidly. Its relatively slow growth 
rate, unique sex-change strategy, and susceptibility to various pathogenic diseases during cultivation severely 
restrict the development of artificial culture. Previous studies of humpback grouper focused on immunology, 
the establishment of cell lines, classification, and feed supplement3–6. The decoding of a high-quality reference 
genome could support more information on molecular biology, genetics, breeding, and conservation biology.

Recently, several types of grouper genomes have been assembled, such as giant grouper (Epinephelus lan-
ceolatus), leopard coral grouper (Plectropomus leopardus), and red-spotted grouper (Epinephelus akaara)7–9. 
Traditionally, grouper identification was primarily dependent on the surface profile and phenotype. Actually, 
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it could cause errors and challenges in taxonomy. The groupers had a close relationship in evolution. To bet-
ter understand the evolutionary relationship and taxonomy, it was necessary to acquire a specific solution by 
molecular biology. Besides, a high-quality reference genome resource could also provide an effective tool for 
genetic improvement and germplasm conservation. At present, the long-read and short-read sequencing tech-
nologies have been applied to the assembled genome. It was able to obtain highly integrated genome assemblies, 
especially circular consensus sequencing (CCS) improved the accuracy of PacBio SMRT sequencing. The HiFi 
sequence updated the genome assembly between read length and base quality significantly.

In 2021, a humpback grouper genome was constructed with the assembly of 1.013 Gb (contig N50 of 
18.09 Mb)10. In this study, we represent a chromosome-scale genome assembly and annotation of humpback 
grouper with the PacBio HiFi and Hi-C sequencing technologies. Approximately 1.08 Gb genome was assem-
bled with the contig N50 43.78 Mb. BUSCO analysis showed that 97.3% of the final assembly was complete 
BUSCOs. Overall, this high-quality reference genome provides a valuable basis for further genetic improvement 
and understanding the functional genes and molecular mechanisms in humpback grouper

Methods
DNA sample collection, library construction, and sequencing.  A female humpback grouper was 
collected from Hainan Chenhai Aquatic Co., Ltd. The muscle tissue was collected for DNA extraction and 
library construction. Genomic DNA was extracted by the QIAamp DNA purification kit (Qiagen, USA). The 
short fragment library was generated using the Truseq Nano DNA HT Sample Preparation Kit (Illumina, USA) 
with an insert size of 350 bp and the Illumina NovaSeq 6000 platform. For the HiFi read generation, DNA frag-
ment > 30 kb was selected using BluePippin Systerm (Sage Science, USA). The library was generated using the 
SMRTbell Template PrepKit 2.0 (PacBio, USA), and the library was sequenced in CCS on the PacBio Sequel II 
platform. The Hi-C library was constructed following the standard protocol described previously with certain 

Fig. 1  Genome assembly of the humpback grouper. (A) Genomic features. From inner to outer tracks: A, 
distribution of DNA TEs across the genome; B, distribution of RNA TEs across the genome; C, gene density 
across the genome; D, GC content across the genome. E, humpback grouper chromosomes. (B) Hi-C contact 
map of the humpback grouper genome. The blocks represent the contacts between one location and another. 
The color illustrates the contact density from red (high) to low (orange).

Genome evaluation Gene number Percentage %

Complete BUSCOs 3,263 97.3

Complete and single-copy BUSCOs 3,230 96.3

Complete Duplicated BUSCOs 33 1.0

Fragmented BUSCOs 47 1.4

Missing BUSCOs 44 1.3

Total BUSCO groups searched 3,345 100

Table 1.  BUSCO evaluation result of humpback grouper genome.
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modifications11, and it was sequenced using the Illumina NovaSeq 6000 platform. A total of 53.1 Gb of Illumina 
data, 21.5 Gb PacBio of PacBio data, and 96 Gb of Hi-C data after trimming the low-quality reads and adaptor 
sequences from the raw data.

RNA sample collection, library construction, and sequencing.  The samples of eight embryonic 
development stages (one cell, morula, high blastula, low blastula, gastrula, somite, neurula, and before the hatch-
ing stage) were collected for RNA extraction using TRIzol reagent (Invitrogen, USA). RNA-seq libraries were 
constructed using Illumina TruSeq Stranded mRNA Library Prep Kit (Illumina, USA) and sequenced by the 
Illumina NovaSeq 6000 platform. Further, RNA extracted from embryonic samples was mixed for Iso-seq. The 
Iso-seq library was constructed and sequenced on the PacBio Sequel II platform. The clean data was obtained by 
removing reads containing adapters, reads containing poly-N and low-quality reads from the raw data. Around 
55.6 Gb of RNA-seq data and 69.1 Gb of Iso-seq data were generated for genome annotation.

Genome assembly and quality assessment.  The characterization of the genome was estimated using 
the Illumina short-read data, and the 17 bp k-mer analysis was applied for estimation. The estimated genome size 
was 1,091.59 Mb, the heterozygosity rate was approximately 0.19%, and the repeated content was 45.81%. The 
genome was assembled using SOAPdenovo2 with k-mer set at 41 bp12. The gaps were filled with GapCloser. Then, 
the draft genome was corrected and re-assembled using HiFi long reads by Hifiasm 0.12-r304 with the param-
eters “-t 30 -D 10”13. The genome assembly was 1.08 Gb, with a contig N50 size of 43.78 Mb (Fig. 1A). To obtain 
the chromosome-level genome, we applied ALLHiC pipeline to link the mapped contigs to 24 pseudochromo-
somes14. Finally, 96.59% of scaffolds were mapped to 24 chromosomes (Fig. 1B).

To evaluate the assembled genome, BUSCO was applied to evaluate the completeness of genome assembly. A 
total of 3,345 BUSCO genes were identified, with 3,263 complete genes, 3,230 single-copy genes, 33 multi-copy 
genes, 47 fragmented genes, and 44 missing genes accounting for 97.3%, 96.3%, 1.0%, 1.4%, and 1.3% of the 
whole genome, respectively (Table 1).

Repeat and noncoding RNA annotation.  Repeat sequences of the humpback grouper genome were 
identified using a combination of homology-based and de novo approaches. For the ab initio method, the 
RepeatModeler (v2.0.1)15, RepeatScout (v1.0.5)16, and LTR_finder (v1.0.6)17 were used to build the humpback 
grouper custom repeat database. In the homology-based method, the Repbase database18 was used to identify 
repeats with the RepeatMasker and RepeatProteinMask. The total length of the repetitive elements accounted for 
44.38% of the humpback grouper genome (Fig. 2C). DNA transposons represented the most abundant class of 
repeats (17.85% of the genome) followed by long interspersed elements (LINEs, 15.20%), long terminal repeats 
(LTRs, 5.38%), and short interspersed elements (SINEs, 1.11%) (Table 2).

Noncoding RNAs, including rRNAs, snRNAs, miRNAs, and tRNAs, were identified by adopting INFERNAL 
(v1.1.2) through the Rfam database (release 13.0) for the humpback grouper genome using BLASTN 
(E-value ≤ 1e−5)19–21. Transfer RNA was predicted using tRNAscan (v1.3.1)22 with default parameters for eukar-
yotes. Ribosome RNAs and their subunits were predicted using the RNAmmer (v1.2)23. For non-coding RNA 
annotation, a total of 1,905 miRNA, 2,107 tRNA, 3,360 rRNA, and 1,637 snRNA were identified (Table 3).

Gene prediction and annotation.  Firstly, three strategies were used for gene structure prediction, includ-
ing de novo prediction, homology-based, and RNA-seq data-based prediction. Augustus (v2.5.5)24, Glimm 
erHMM (v3.01)25, SNAP26, Geneid27, and Genescan28, were used for de novo gene prediction with default set-
tings. Protein sequences of giant grouper, black rockfish (Sebastes schlegelii), stickleback (Gasterosteus aculeatus), 
large yellow croaker (Larimichthys crocea), grass carp (Ctenopharyngodon idella), Japanese flounder (Paralichthys 
olivaceus), and red-spotted grouper were downloaded from Ensembl and NCBI databases. These sequences 
were aligned to the humpback grouper genome with TBLASTN (E-value ≤ 10−5), and homologous genome 
sequences were then aligned against matching proteins by GeneWise (v2.4.0)29 to generate a gene structure based 
on the alignment. Furthermore, the RNA-seq data from different embryonic development stages were assembled 
using Trinity (v2.1.1)30 and mapped to the humpback grouper genome by using the Cufflinks (v2.1.1)31. Gene 
prediction from the above methods was merged to a consensus gene set using the EVM (v1.1.1)32. The func-
tional annotation of the predicted genes of humpback grouper was performed by alignment to the SwissProt33, 
NR34, KEGG35, Interpro36, GO37, and Pfam databases38. A total of 24,442 protein-coding genes were predicted 
(Table 4), of which 24, 268 (99.3%) genes were annotated (Fig. 2B). The lengths of average transcript and CDS 
were 19,080.10 and 1,607.91 bp, respectively (Fig. 2A).

Data Records
The genome assembly and raw reads of the genome and transcriptome sequencing for humpback grouper were 
deposited under the Sequence Read Archive SRP32259439. The genome assembly was deposited at GenBank 
with the accession number GCA_019925165.140. Besides, the assembled genome, predicted peptide, CDS, 
and GO term files were available in the figshare database with the DOI number: https://doi.org/10.6084/
m9.figshare.24145230.v241.

Technical Validation
Evaluation of the genome assembly and annotation.  To evaluate the integrity and accuracy of the 
genome assembly, the completeness of the final genome assembly was assessed using BUSCO (v4.0)42 with the 
lineage database vertebrata_odb10 and CEGMA (v2.5)43. It was shown that the assembly contained 97.3% com-
plete and 1.4% fragmented conserved single copy orthologue genes, and 94.35% of the 248 core eukaryotic genes. 
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Fig. 2  The structural and functional annotation of humpback grouper. (A) Comparisons of the predicted gene 
models between the humpback grouper genome and other teleosts, including CDS length, exon length, exon 
number, gene length, and intron length. (B) The functional annotation of humpback grouper using different 
databases. (C) The percentage of different types of repetitive elements in the humpback grouper genome.

Type

Denovo + Repbase TE proteins Combined TEs

Length (bp) % in genome Length (bp) % in genome Length (bp) % in genome

DNA 185,549,534 17.13 17,809,686 1.64 193,277,492 17.85

LINE 164,630,235 15.20 45,118,481 4.17 184,303,613 17.02

SINE 12,052,908 1.11 0 0 12,052,908 1.11

LTR 83,542,399 7.71 7,526,000 0.69 86,240,213 7.96

Other 0 0 0 0 0 0

Unknow 22,465,884 2.07 0 0 22,465,884 2.07

Total 451,213,734 41.66 70,355,897 6.50 468,059,310 43.22

Table 2.  Statistic results of different types of annotated repeat content.
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By aligning Illumina sequencing reads to the genome using BWA (v0.7.8)44, the reads mapping rate and the cov-
erage rates were 99.68% and 99.91%, respectively. It was indicating high mapping efficiency and comprehensive 
coverage. Thus, all of the above results indicated that we obtained the high-quality genome of humpback grouper.

Code availability
No specific code was used in this study. The data analyses used standard bioinformatic tools specified in the 
methods.
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