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Occupant behavior, thermal 
environment, and appliance 
electricity use of a single-family 
apartment in China
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the household is the basic unit of a residential community or building. High-resolution, long-term 
open data are necessary to help study residential electricity consumption, smart home technologies, 
and electricity flexibility technologies at household level. This paper introduces an IoT-based data 
collection platform (IDCP) consisting of gateways, sensors, and cloud servers. This platform can 
collect data on the occupant presence, indoor environment, window-opening states, and appliance 
electricity consumption simultaneously. This study deployed the IDCP in a single-family apartment in 
Beijing, China, and compiled a dataset, namely, CN-OBEE, including data on the per-minute occupant 
behavior, thermal environment, and appliance electricity use of the apartment for an entire year (from 
May 31, 2021, to May 31, 2022), and hourly meteorological data collected by the nearest national 
weather station during the same period. This dataset is the first detailed and publicly available occupant 
behavior and electricity use dataset for Chinese homes. as a regional feature, the dataset compiled by 
this study includes window-opening behavior and the use of split air conditioners (ACs).

Background & Summary
In recent decades, global consensus has aligned with the imperative of fostering low-carbon development, 
and researchers have made significant efforts and innovations toward achieving this objective. Among them, 
electricity flexibility and demand response technology can guide users toward maximizing the utilization of 
clean electricity produced by solar or wind energy, improving power grid stability, and reducing carbon emis-
sions1. Buildings are major energy consumers, accounting for more than 34% of the total energy demand and 
approximately 37% of CO2 emissions globally, while residential buildings comprise over 50% of this portion2,3. 
Therefore, it is essential to incorporate residential building loads into demand response schemes.

Smart home technologies allow more flexible electricity usage for residential buildings, making them more 
amenable to participating in demand response than ever before4. From the perspective of electricity flexibil-
ity, domestic appliances in residential buildings can be divided into schedulable and non-schedulable devices. 
Typically, non-schedulable loads, such as lights, TVs, and refrigerators, are not easy to shift without affecting the 
normal use of occupants. For example, it is unreasonable for occupants to turn off the lights at night. In contrast, 
schedulable loads, including buffered appliances such as air conditioners (ACs) and water heaters, and postpon-
able appliances such as rice cookers and washing machines, can be shifted easily1. Typically, schedulable appli-
ances are high-power devices and considered as flexible resources, whereas non-schedulable appliances, such as 
lights and all types of low-power electrical equipment, are not well-suited for participation in demand response5.

The household is the basic unit of a residential community or building. To determine the quantity of elec-
tricity flexibility and find a way to shift loads at household level, it is necessary to know the existing load char-
acteristics and understand the actual needs of households before they participate in power grid interaction. 
This knowledge and understanding rely on detailed data measured per household to the extent possible. Unlike 
commercial and industrial buildings, residential buildings have more occupant behavior-related appliances. 
Owing to private ownership, appliance use is freely controlled by the occupants, and the diversity of occupant 
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behavior is an important reason for the difference in building energy use6,7. For example, the electricity use of 
appliances depends on how long they are switched on, and their on/off state is typically related to the occu-
pancy state (presence or absence). Split ACs are commonly used in Chinese residential buildings, contributing 
to the electric power peak in summer, and are important flexibility resource. Moreover, their usage is closely 
related to the indoor/outdoor thermal environment and window-opening behavior8,9. A typical behavior pat-
tern is that the AC in a room is turned on only when the room is occupied and the room temperature reaches a 
certain level8,10. In China, window-opening is the most effective and convenient natural ventilation method for 
improving the indoor environment quality11, and is typically related to the use of split ACs, that is, occupants 
may close the windows or leave them open when turning on ACs, which affects the power consumption of 
ACs. In other words, residential energy use is affected by many factors and has strong intrinsic relationships. 
A comprehensive dataset combining such data as occupant behavior, the indoor and outdoor environment, 
and appliance electricity use will help in better understanding intrinsic relationships in residential buildings.

High-resolution, long-term in-situ monitoring datasets are strongly needed to study residential building 
energy. For example, Ren et al.12 established several typical usage patterns for household appliances by meas-
uring the power of appliances in a single-family residence. Jin et al.13 verified a TV usage behavior model using 
a single-family residence’s long-term per-minute occupancy and television power data. Lu et al.14 proposed an 
AC turning-on behavior model based on room-level occupancy and temperature data. Based on the monitoring 
of water temperature, indoor temperature, and electric power, Tejero-Gomez et al.15 designed an energy man-
agement system for electric heaters, and tested it in a single-family residence. However, the collection of such 
data is often time-consuming and challenging, owing to cost and privacy concerns. Traditional building energy 
monitoring relies on many wired sensors and a central monitoring system, which are typically available only for 
new buildings. Therefore, independently packaged meters are generally used for existing residential buildings. 
However, collecting occupant behavior and appliance electricity use data is not convenient owing to the size, 
cost, and required amount of meters8,12,16.

To date, few public residential datasets have included detailed energy use and occupant behavior data. 
The details of existing publicly available residential datasets are shown in Supplementary Table 117–33. These 
datasets have their own application purposes and focus on different data elements. The REDD17, BLUED18, 
FIRED19, DEDDIAG20, ENERTALK21, UK-DALE26, SustDataED28, REFIF29, EMBED30, and fIEECe31 datasets 
focus on the high-frequency electricity consumption data of the entire house and individual appliances, aim-
ing to investigate building electricity disaggregation and energy use models. Typically, these datasets have a 
sampling rate in seconds or milliseconds and a short collection period ranging from a few days to dozens of 
days. The BLUED18 dataset only labels the switching state of individual appliances and does not include energy 
consumption data. The DEDDIAG20 and ENERTALK21 datasets include data on many electrical appliances; 
however, the appliance types are relatively few and include only non-schedulable appliances such as kitchen, 
cleaning, and entertainment appliances, while schedulable appliances such as ACs are not included. Several 
datasets23–25 focus on occupancy data and are intended for use in building occupancy detection analysis. The 
Global Building Occupant Behavior Database25 focuses on occupant behavior, and includes four in-situ res-
idential datasets: Dataset-834, which is a dataset of the indoor and outdoor environment and window status 
over three months from one Canadian residential building; Dataset-1135, which is a dataset of occupant pres-
ence over one year from three American houses; Dataset-1336, which is a dataset of the outdoor environment 
and daily AC energy consumption over one year from one Polish residential building; Dataset-15, which is 
a dataset of the outdoor environment and window status over six months from four Chinese apartments. A 
few datasets27,32,33 focus on building energy use, but lack occupant behavior and indoor environment data.

Public residential datasets generally include inadequate data on the occupant behavior, thermal environ-
ment, and electricity use, and have inadequate balance between the measurement period and sampling fre-
quency, weakening their application potential in residential energy flexibility analysis. Particularly, there is a 
lack of data considering the occupancy, window-opening behavior, and electricity of schedulable appliances 
(split ACs) simultaneously. One important reason for the lack of such data is the lack of small, portable, low-cost 
meters for various measurements in residential buildings16. With the popularity of Internet-of-Things (IoT) 
devices in recent years, it has become possible to use smart IoT devices to carry out convenient, low-cost, and 
long-term comprehensive monitoring of residential occupant behavior and energy use.

This paper introduces an IoT-based Data Collection Platform (IDCP) consisting of gateways, sensors, and 
cloud servers. This platform can simultaneously collect and upload data on occupant presence, the indoor ther-
mal environment, window-opening behavior, and appliance electricity consumption. The IDCP was built based 
on smart IoT devices and cloud services, and has the following advantages: 1) tiny wireless sensors consume 
little space and have little impact on home appearance; 2) low-power sensors support long-term measurement 
and do not require frequent battery replacement; 3) automatic, continuous, and remote real-time data collection; 
4) the devices have low cost. This study deployed the IDCP in a single-family apartment in Beijing, China, and 
compiled a dataset, namely, CN-OBEE37, which includes per-minute data on the occupant behavior, thermal 
environment, and appliance electricity use of an apartment over an entire year (from May 31, 2021, to May 31, 
2022), and hourly weather data for the same period, which were collected from the nearest national weather sta-
tion. The selected family home is representative of Beijing’s urban family residences. As one of the regional fea-
tures in the dataset, the dataset compiled by this study covers window-opening behavior and the use of split ACs, 
which is currently the mainstream cooling method in Chinese residential buildings. To the authors’ knowledge, 
the CN-OBEE dataset37 is the first publicly available and detailed occupant behavior and electricity consumption 
dataset of Chinese homes, contributing to the regional diversification of globally available datasets.
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The features of the CN-OBEE dataset37 are as follows:

•	 This study focused on most Chinese homes’ appliances, including schedulable appliances, such as split ACs, 
water heaters, washing machines, and rice cookers, and non-schedulable appliances, such as fridges and TVs.

•	 The data were collected over one year, and the sampling frequency is one minute after processing.
•	 The dataset was automatically, continuously, and remotely collected using the IDCP.
•	 The dataset consists of data on room-level indoor environmental parameters, window-opening states, occu-

pancy presence, appliance electricity use, and outdoor meteorological conditions from the nearest national 
weather station.

This dataset can be directly used to analyze the quantitative and temporal characteristics of the electricity 
loads of various appliances (e.g., power peaks, seasonal changes, differences between weekdays and weekends, 
dependence on occupancy and indoor/outdoor environment, correlation between the use of various appliance), 
and is the basis for investigating electricity flexibility at household level. In addition, the dataset can be used 
for (1) electricity load shape analysis to reveal the whole-family and appliance-level demand profiles12,13; (2) 
electric power forecasting using statistical or machine-learning algorithms38; (3) physical-based or data-driven 
modeling and validation of occupancy, window-opening behavior, and energy-use behavior for appliances6,39;  
(4) analytics on the indoor thermal environment and indoor thermal comfort40. Although the dataset represents 
a single household, it is still an important initial contribution to this research field owing to its comprehensive-
ness and uniqueness.

Methods
Description of apartment and family. In this study, data were collected from a single-family apartment 
that was recruited and screened by the research team. The recruitment was aimed at college students, and infor-
mation such as family structure, income, housing type, and appliance type was collected through an online ques-
tionnaire. The family considered in this study was recruited as a representative family, because it is a middle-class 
nuclear family residing in a privately-owned, well-maintained apartment with a wide variety of modern appli-
ances, which is representative of Beijing’s urban family residences. The family’s participation in this study was 
completely voluntary and monetary compensation was not provided.

The apartment building has the most common housing form in urban China, and is located in Miyun 
District, Beijing. The building (Fig. 1) was constructed in 2005 and consists of 13 floors and 48 households.

The apartment is a two-story duplex located at the middle floor of the building, and has an area of 172.73 m2 
and floor height of 3 m. The apartment has eight rooms, including a master bedroom, secondary bedroom, 
cloakroom, home office, living room, kitchen, and two bathrooms. The apartment’s floor plans are shown in 
Fig. 2.

The apartment is used by a family of three: a middle-aged couple and their adult offspring. The couple occu-
pies the master bedroom and works only on weekdays. Their adult offspring is a full-time student at a local 
university and occupies the secondary bedroom, but often resides at school instead of living at home. To assist 

Fig. 1 Building appearance (south elevation).
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in collecting and sharing the CN-OBEE dataset37, the family kindly agreed to install metering devices in their 
apartment and allow public access to the measured data. They acknowledged that their typical living habits 
were not affected by the study. Unnecessary or private information about the family was removed from the final 
dataset by pre-processing.

Data collection. The IDCP is currently deployed for monitoring, and various sensors are installed through-
out the apartment to collect data on the occupancy presence, indoor thermal environment, window-opening 
state, and appliance electricity usage. The measurand and platform details are described in the following section.

In addition, hourly outdoor weather data, including the dry-bulb temperature, relative humidity, atmos-
pheric pressure, wind speed, wind direction, ground temperature, horizontal total solar radiation intensity, and 
horizontal diffuse solar radiation intensity, were obtained from the national weather station in Miyun District.

Measurands and sensor deployment. The measurands in the apartment were obtained using smart IoT 
sensors from a brand manufacturer with industrial-grade reliability and accuracy. The deployment layout of all 

Fig. 2 Floor plans of apartment and sensor locations.
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sensors is shown in Fig. 2. Table 1 lists the sensors installed in each room. The measurands were divided into four 
categories as described below.

Indoor thermal environment. The dry-bulb temperature and relative humidity of the six main rooms (mas-
ter bedroom, secondary bedroom, living room, home office, cloakroom, and kitchen) were monitored. To 
measure the mean indoor thermal environment more effectively, temperature and humidity sensors were 
placed in the middle or corner of a wall at the height of 1.5 m, and away from the heat source. In addition 
to temperature and humidity, the air pressure of each room was also monitored by these sensors to assist 
in calculating the humid air’s thermophysical properties and analysing the natural ventilation between the 
rooms.

Occupant presence. The occupancy state (presence or absence) in the six main rooms was monitored by infra-
red motion sensors mounted near the door of each room and facing the occupant activity area. Because the 
rooms are not very large, one motion sensor can cover almost the entire room without dead corners. Motion is 
detected when someone enters, leaves, or moves in a room. Because the family has no pets, the infrared motion 
sensors only detected human movement.

Window-opening state. The open or closed state of all operable windows in the apartment was monitored 
using magnetic switch sensors. The window sensor consists of two parts: a primary unit and a magnet. These 
sensors were mounted along the edges of the fixed border and movable part of each window, respectively, 
and aligned with each other. The window-open or window-closed state was detected by considering the 
distance between the primary unit and the magnet. When a window was opened or closed, the action was 
detected and recorded. For windows with two movable parts, a window sensor was installed on each part 
for independent monitoring. Because the cloakroom windows are always closed, a window sensor was not 
installed there.

Appliance electric power. The use of major electrical appliances (six split-type ACs, one computer, one TV, 
one kettle, one rice cooker, one fridge, one washing machine, and two water heaters, amounting to a total of 14 
appliances) were monitored. The six ACs were located in the six main rooms. The computer was in the home 
office on the first floor, which is typically used by the family’s offspring. The TV and electric kettle were located 
in the living room. The rice cooker and fridge were located in the kitchen. The washing machine was located 
in the bathroom on the first floor, and the two water heaters were located in the upstairs and downstairs bath-
room, respectively. Each appliance was equipped with a plug power sensor to monitor the operating power and 
cumulative electricity consumption. The plug sensor had ultra-low standby power consumption (approximately 
70 mW), which has minimal impact on power measurement.

Sensors. All smart sensors were lightweight and compact, and occupied minimal space when installed. The 
temperature and humidity sensor, infrared motion sensor, and window sensor were powered by built-in bat-
teries, while the plug sensor drew power from a standard socket. Owing to their excellent low-power design, 
sensors using new button batteries can operate continuously for over a year. Smart sensors only support wireless 
communication and have no data storage function. Unlike traditional sensors, which sample data at regular 
intervals, smart sensors are designed to generate data when the cumulative change of the sensing status exceeds 
a pre-set threshold or when there is no change beyond the threshold during a long pre-set period. The threshold 
and period are pre-set in the firmware by the manufacturer and cannot be configured by users. Once sampled 
data are generated, the sensors immediately report the data to the cloud through the data collection platform 
developed by this study.

The manufacturer’s technical specifications (https://developer.aqara.com/console/equipment-resources) for 
each sensor type (exposed view, measuring variables, data unit, sensor range and accuracy, and reporting mech-
anism) are summarized in Table 2.

IoT-based data collection platform. A schematic of the IDCP and data flow process is shown in Fig. 3. 
Smart sensors, gateway devices, and cloud services are standard configurations of mainstream IoT smart home 
systems in the current market. The components used in this study belong to the same IoT manufacturer brand. 
Each smart sensor was connected to a gateway through the ZigBee protocol, while the gateway was connected to a 
wireless router through the Wi-Fi protocol. One gateway device and two Wi-Fi routers were used to ensure com-
plete signal coverage. Notably, the plug power sensor (16 A), which is referred to as the AC companion (https://

Room Sensor Master bedroom Secondary bedroom Cloak room Home office Living room Kitchen Bath room1 Bath room2

Temperature and humidity sensor 1 1 1 1 1 1 N/A N/A

Infrared motion sensor 1 1 1 1 1 1 N/A N/A

Window sensor 1 1 2 2 1 N/A N/A

Plug 
power 
sensor

16A 1 1 1 1 1 1 1 (Water 
heater)

1 (Water 
heater)

10A N/A N/A N/A 1 (Computer) 2 (TV, Kettle) 2 (Rice cooker, 
Fridge)

1 (Washing 
machine) N/A

Table 1. Number of sensors in each room.
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www.aqara.com/prodCenter), is an integrated device containing a power sensor and a gateway directly con-
nected to a Wi-Fi router. Through the gateways and wireless routers, the successive sensing data of the sensors 
are uploaded and stored on the manufacturer’s cloud server. Typically, the data flow in a closed platform built by 
the manufacturer and can only be viewed through specific mobile apps. This study selected a specific IoT man-
ufacturer because they provide an open cloud service and have released RESTful HTTP APIs for remote calls by 
authorized third-party applications, thus enabling device status queries, message pushes, and other functions. The 
message push service allows the reporting of real-time data collected by the sensors to a third-party server. Hence, 
this study built a virtual private server and an authorized app to accept the pushed messages, sort out the target 
data, and store the data in a SQLite database. Then, the single-file database can be downloaded for processing 
and analysis. Moreover, issues during the entire data collection process can be identified through real-time data 
analysis, and solved in time.

The advantages of the IDCP are as follows: 1) tiny wireless sensors occupy minimal space and have little 
impact on home appearance; 2) low-power sensors support long-term measurement and do not require frequent 
battery replacement; 3) automatic, continuous, and remote real-time data collection is achieved; 4) the devices 
have low cost. Therefore, this platform is convenient for large-scale deployment and the long-term monitoring 
of buildings. During deployment in a single-family apartment, the platform has been running stably for approx-
imately two years.

Data pre-processing. This section describes the data pre-processing steps required to obtain the dataset 
from the SQLite database. The database stores the raw timestamp records of the indoor thermal environment, 
occupant presence, window-opening state, and appliance electric power, which comes in at varying intervals, as 
mentioned above. The pre-processing tasks include the regularization of irregular time series data and identifica-
tion and handling of missing data.

Sensor Type Exposed View Measuring Variables
Data 
Unit

Sensor Range and 
Accuracy Sensor Reporting Mechanism

Temperature 
and humidity 
sensor

Dry-bulb temperature °C

Temperature: 20 °C–
50 °C, ± 0.3 °C; 
Humidity: 
0%–100%, ± 3%; Air 
pressure: 30 kPa–110 
kPa, ± 120 Pa.

1) Temperature: report when 
the change exceeds ± 0.5 °C, or 
report along with the humidity.
2) Humidity: report when the 
change exceeds ± 6%, or report 
along with the temperature.
3) Periodic reporting if no change 
is detected.

Relative humidity %

Air pressure Pa

Window sensor Window state 0/1
The maximum 
sensing distance of 
22 mm

Report when a state change is 
detected. When the magnet 
moves toward the primary unit, 
it reports 0 (closed); when the 
magnet moves away from the 
primary unit, it reports 1 (open).

Infrared 
motion sensor Occupant presence 0/1

Infrared horizontal 
detection distance 
7 m, detection angle 
170°

Report “1” when occupant 
motion is detected.

Plug power 
sensor (16 A)

Power (air conditioner 
and water heater) W Max 

4000 W, ± 0.01 W
Report when the change exceeds 
3% or 5 W, or periodic reporting 
if no change is detected.

Plug power 
sensor (10 A)

Power (other electrical 
appliances) W Max 

2500 W, ± 0.01 W
Report when the change exceeds 
3% or 5 W, or periodic reporting 
if no change is detected.

Table 2. Technical specifications of IoT Sensors.

https://doi.org/10.1038/s41597-023-02891-9
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Regularization. The raw time series data reported by the smart sensors have irregular time intervals, as 
shown in Fig. 4(a), which is inconvenient for display and analysis. Therefore, the irregular time series data must be 
converted to regular time series data using a unified starting time, ending time, and time interval. This study used 
a one-minute interval to maintain high temporal resolution. The regularized timestamps follow the date-time 
format (Year-Month-Day Hour: Minute: 00), in the UTC + 08:00 time zone (Beijing Time). Figure 4 shows an 
example of temperature time-series regularization.

The following strategies are used to calculate temporal values at one-minute intervals, fill the “normal” gaps 
caused by the sensor-reporting mechanism, and merge multiple data records corresponding to the one-minute 
interval.

•	 For temperature and humidity sensors, window sensors, and power sensors, the resampled value at one min-
ute is the average of the data records occurring in that minute (from the 0th second to the 59th second); the gap 
between every two records is filled with the value recorded at the last valid timestamp (forward propagation).

•	 For occupancy motion sensors, the resampled value for a given minute is 1 if any motion record occurs; gaps 
are filled with zeros, because an algorithm that can effectively interpolate presence data does not exist. This 
study retains the status quo for further research in the future.

Handling of missing data. In addition to the normal gaps caused by the sensor-reporting mechanism, 
there are two additional gap types in the raw dataset: 1) gaps caused by network interruptions, including lost 
connection between the sensors, gateways, and Wi-Fi router, and the router being powered off; 2) gaps caused by 
occupant habits, such as unplugging the sensors of appliances that are unused (AC, rice cooker).

The following gaps are caused by the occupants’ unplugging habits: 1) the AC power sensor is unplugged 
when the AC is not in use, resulting in data gaps but not missing data. These gaps were filled with zeros to ensure 
that the AC is not in use; 2) the plug of the rice cooker is often inserted when the appliance is in use and pulled 
out when the appliance is not in use. The plug often needs to be removed from the power sensor, and the sensor 
is occasionally removed with it, which causes inconvenience to the occupants. The occupants unplug the sensor 
to avoid trouble, resulting in missing data. These gaps are deleted in the regularized data.

Gaps caused by network interruptions are deleted in the regularized data. The rules for determining missing 
data are as follows:

Fig. 3 Schematic of IDCP.

Fig. 4 Regularization of temperature time series.

https://doi.org/10.1038/s41597-023-02891-9
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•	 Data are considered to be missing if the temperature and humidity sensors have not reported data for 
12 hours.

•	 Window sensors and infrared motion sensors report data when the window state changes and occupant 
motion is detected, respectively; therefore, the online status of the sensors is considered to determine whether 
data are missing. Data are considered to be missing when the sensors are offline.

•	 Data are considered to be missing if plug power sensors have not reported data for 36 hours.

Data Records
The CN-OBEE dataset is publicly available for download from figshare37, and consists of eight comma-separated 
value (CSV) files. Electric power data were placed in a separate file to facilitate the analysis of electricity use. 
These files can be classified into the following three types.

room data file. There are six composite data files for the six main rooms, including five categories of meas-
urement variables: dry bulb temperature, relative humidity, air pressure, window state, and occupant presence. 
Notably, the number of data columns for each variable is different owing to the different number of window 
sensors in each room.

electric power file. A file with instantaneous electric power data is available for all appliances. This file can 
be used for power analysis of each appliance, but can also be used to calculate the cumulative power consumption 
of all appliances in the family home.

outdoor weather file. There is an outdoor weather file, which includes data on the dry bulb temperature, 
relative humidity, atmospheric pressure, wind speed, wind direction, ground temperature, horizontal total solar 
radiation intensity, and horizontal diffuse solar radiation intensity.

The first column of each file is a regularized timestamp. Because data regularization follows 1-minute inter-
vals, this amounts to 1440 data points per day (there are 24 data points per day in the outdoor weather data). The 
data collection period was 365 days, from May 31, 2021 to May 31, 2022. The details of the eight files are listed 
in Table 3.

technical Validation
This section discusses the technical effectiveness of the proposed dataset. First, a preliminary analysis of the 
missing data was conducted. Then, the accuracy of the data was validated.

Missing data. A detailed breakdown of the missing data in the relevant columns for each room is presented 
in Table 4. A time chart of the missing data in each column is shown in Fig. 5.

For the rice cooker in the kitchen, there are no data in the later period because the plug power sensor 
was unplugged. The remaining data gaps were caused by network interruptions, which led to data not being 
uploaded in time. For the temperature and humidity sensor in the master bedroom, the sensor was not found to 
be offline in time, owing to the authors’ negligence, resulting in a large amount of missing data.

Indoor and outdoor thermal environment. The dry-bulb temperature, relative humidity, and air pres-
sure box diagram for each room and the outdoor environment over one year are shown in Fig. 6. As can be seen, 
the indoor dry-bulb temperature is between 15 °C and 30 °C, and the outdoor temperature is between -15 °C and 
35 °C throughout the year. The indoor relative humidity is lower than the outdoor relative humidity, and mostly 
lies between 20% and 60%. The indoor thermal environment changes normally under the outdoor conditions, 
and extreme values do not exist. The outdoor weather data conform to the typical climate of Beijing.

Occupant presence. The provided source data represent occupant motion and are used to determine the 
presence of occupants. Because this study considered a three-person family, most of the time, no more than three 
occupant simultaneous motions should be detected by all motion sensors. Owing to the occupants’ work routine, 
the occupant motion patterns on weekdays are different to those on weekends.

Figure 7 shows the number of occupant motions detected every minute in the apartment. On some occa-
sions, the number of occupant motions exceeds 3, with a proportion of 0.024%, which may reflect occupants 
moving into multiple rooms in one minute or guests visiting the apartment.

Number File Name Sampling Frequency Number of Columns Type of Files

1 Master_bedroom.csv 1 min 6

Room data file

2 Secondary_bedroom.csv 1 min 6

3 Cloakroom.csv 1 min 5

4 Home_office.csv 1 min 7

5 Living_room.csv 1 min 7

6 Kitchen.csv 1 min 6

7 Power.csv 1 min 15 Electric power file

8 Outdoor_weather.csv 1 h 9 Outdoor weather file

Table 3. Files in dataset.

https://doi.org/10.1038/s41597-023-02891-9
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Figure 8 shows the hourly occupant presence probability for each room on weekdays and weekends over one 
year. For the master bedroom, cloakroom, living room, and kitchen, there is a significant delay in the peak of 
occupancy probability between weekdays and weekends because the couple wakes up, eats breakfast, and has 
dinner later on weekends compared with weekdays. For the secondary bedroom and home office, the occupancy 
probability on weekends is greater than that on weekdays because the family’s adult offspring typically stays at 
school on weekdays and returns home on weekends.

relationship between window-opening and occupancy. Occupant presence is a prerequisite for the 
occurrence of window-opening behavior. The opening or closing of a window must be accompanied by occupant 
motion. Figure 9 shows the relationship between the number of window opening and closing actions and the 
occupancy probability in the living room. To make the graph smooth and clear, the number of window opening 
and closing actions was averaged over 15 minutes. The occupancy probability per minute was obtained by averag-
ing the original motion data. As expected, window opening peaks after occupants move to the living room in the 
morning, and the two curves are in good agreement.

relationship between appliance power and occupancy. Occupant presence is also a prerequisite for 
the use of most electrical appliances. Figure 10 shows the relationship between the per-minute average power of 
the upstairs water heater and occupancy probability in the master bedroom. Figure 11 shows the relationship 
between the per-minute average power of the TV and occupancy probability in the living room. The couple 
mainly uses the upstairs water heater, therefore, its use peaks after the couple wakes up or before they go to sleep, 
which is consistent with their bathing habits. The TV usage peaks mainly during dinner or before sleep and 
matches well with the peak of occupancy probability in the living room.

Room Column Name Total Missing Data Number Missing Data Proportion

Master 
bedroom

dry-bulb temperature, relative humidity, and air pressure.

527041

219152 42%

window state 1464 0%

occupant presence 90 0%

air conditioner #1 9110 2%

Secondary 
bedroom

dry-bulb temperature, relative humidity, and air pressure.

527041

12828 2%

window state 0 0%

occupant presence 34085 6%

air conditioner #2 10423 2%

Cloakroom

dry-bulb temperature, relative humidity, and air pressure.

527041

12558 2%

occupant presence 118 0%

air conditioner #3 9097 2%

Home office

dry-bulb temperature, relative humidity, and air pressure.

527041

11269 2%

west window state 1407 0%

east window state 9947 2%

occupant presence 23858 5%

air conditioner #4 14162 3%

computer 10273 2%

Living room

dry-bulb temperature, relative humidity, and air pressure.

527041

15462 3%

west window state 93 0%

east window state 245 0%

occupant presence 0 0%

air conditioner #5 9020 2%

electric kettle 9017 2%

TV 9022 2%

Kitchen

dry-bulb temperature, relative humidity, and air pressure.

527041

13192 3%

window state 131 0%

occupant presence 256 0%

air conditioner #6 9094 2%

fridge 9014 2%

rice cooker 302397 57%

Bathroom 1
upstairs water heater

527041
9040 2%

washing machine 9039 2%

Bathroom 2 downstairs water heater 527041 9793 2%

Table 4. Detailed breakdown of amount of missing data in relevant columns in each room.

https://doi.org/10.1038/s41597-023-02891-9


1 0Scientific Data |           (2024) 11:65  | https://doi.org/10.1038/s41597-023-02891-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

Peak power of appliances. Air conditioners and water heaters, which have high instantaneous power and 
energy consumption, are typical peak loads in residential buildings. Moreover, they have significant thermal 
storage capacity and can be used as free resources to participate in demand response.

Fig. 5 Time chart of missing data for each column in each room.

Fig. 6 Box plot of dry-bulb temperature, relative humidity, and air pressure for each room and outdoor 
environment.

Fig. 7 Number of occupant motions detected every minute in apartment.
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Fig. 8 Hourly occupant presence probability for each room on weekdays and weekends.

Fig. 9 Number of window opening and closing actions and occupancy probability in living room.

Fig. 10 Per-minute average power of upstairs water heater and occupancy probability in master bedroom.
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The peak power of appliances by category is shown in Fig. 12a. Figure 13 shows the instantaneous power of 
all appliance types in two typical summer days, including all above-mentioned electrical appliances, but exclud-
ing lighting and other small electrical appliances (mobile electronic equipment), which were not measured. As 
expected, the electric power peak of the family mainly results from the use of water heaters and ACs.

Whole-year electricity consumption of appliances. The whole-year electricity consumption of appli-
ances by category is shown in Fig. 12b. As can be seen, ACs do not have large total consumption on the annual 
time scale because they are only used in summer. The family’s total and AC electricity consumption were com-
pared with those of other households in Beijing.

According to the China Building Energy Model41,42, the average annual electricity consumption of an urban 
household with three members and high-quality living standards in Beijing, is approximately 3300 kWh/a, exclud-
ing lighting. The reference value measured for the 120-m2 apartment of a single-family middle-class with five 
members in Beijing is approximately 2250 kWh/a42. In this dataset, the family’s electricity consumption, excluding 
lighting and other small electrical appliances, is approximately 2833 kWh/a, which is close to the reference value.

Figure 14 shows the family’s whole-year AC electricity consumption in this dataset, and that of 23 Beijing 
households41, from lowest to highest. The data for 23 households were obtained in an apartment building with 
split ACs during 2006 and 2007. The results reveal that the difference in the AC electricity consumption can be 
more than 10-fold, owing to the different lifestyles and different AC usage patterns of different families. The total 
electricity consumption of ACs in this dataset is 1.12kWh/ (m2·a), which is close to the median of the 23 house-
holds (1.33kWh/ (m2·a)) and indicates that the family’s AC usage is at a normal level.

Fig. 11 Per-minute average power of TV and occupancy probability in living room.

Fig. 12 Peak power and total electricity consumption of appliances by category.
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Usage Notes
The presented dataset includes the electricity consumption of each appliance, indoor temperature and humidity, 
open or closed state of windows, and the state of occupancy for a typical urban family in Beijing, China, at room 
and appliance level and one-minute time intervals over an entire year. This dataset can support the following: 
electricity load shape analysis; electric power prediction; occupant behavior modeling and validation; building 
energy modeling and validation; thermal comfort analysis; suitability of energy-related measures; other types of 
research for residential buildings at household level.

In addition, this paper proposes an IoT-based data collection method, which is highly available to facilitate 
data collection. The proposed method has the following advantages: 1) miniscule wireless sensors consume little 
space and have little impact on home appearance; 2) low-power sensors support long-term measurement and 
do not require frequent battery replacement; 3) automatic, continuous, and remote real-time data collection; 
4) the devices have low cost. The proposed method has good applicability to the measurement of room- and 
appliance-level information related to energy, the environment, and occupant behavior in residential buildings, 
and can be used to collect more data from households in the future, which will in turn help in responding to 
concerns on wide variations from household to household.

All data files in this study are available in CSV format with a total file size of 180 MB. The CSV data format 
is easy to use, and the file can be processed and analyzed by many popular programming languages, such as 
Python, Java, and C++. The Python pandas library is recommended for data processing and visualization.

Code availability
All data visualizations in this paper were created using Python and its publicly available libraries, including 
Pandas, NumPy, Matplotlib, Seaborn, and Missingno. A coding guide has been compiled in a Jupyter notebook 
and is provided along with the dataset in the Figshare repository.
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