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Constructing a finer-grained 
representation of clinical trial 
results from ClinicalTrials.gov
Xuanyu Shi  1,2 & Jian Du  1,2 ✉

Randomized controlled trials are essential for evaluating clinical interventions; however, selective 
reporting and publication bias in medical journals have undermined the integrity of the clinical evidence 
system. ClinicalTrials.gov serves as a valuable and complementary repository, yet synthesizing 
information from it remains challenging. This study introduces a curated dataset that extends beyond 
the traditional PICO framework. It links efficacy with safety results at the experimental arm group 
level within each trial, and connects them across all trials through a knowledge graph. This novel 
representation effectively bridges the gap between generally described searchable information and 
specifically detailed yet underutilized reported results, and promotes a dual-faceted understanding 
of interventional effects. Adhering to the “calculate once, use many times” principle, the structured 
dataset will enhance the reuse and interpretation of ClinicalTrials.gov results data. It aims to facilitate 
more systematic evidence synthesis and health technology assessment, by incorporating both positive 
and negative results, distinguishing biomarkers, patient-reported outcomes, and clinical endpoints, 
while also balancing both efficacy and safety outcomes for a given medical intervention.

Background & Summary
Clinical trials, specifically randomized controlled trials (RCTs), are a type of prospective, randomly allocated, 
blinded clinical study. RCT is the golden standard to evaluate the efficacy and safety of a single or multiple 
clinical interventions. In the new evidence-based medicine pyramid, RCTs are rated as the highest position, 
representing the most reliable medical evidence1.

Clinical trial results published in medical journals often exhibit significant publication bias and selective 
reporting2. Clinical researchers tend to favor positive outcomes while neglecting negative results, thereby con-
tributing substantially to an unhealthy clinical evidence ecosystem and presenting significant challenges to 
high-quality, unbiased clinical decision-making. In complement to published clinical trial results, ClinicalTrials.
gov (CT.gov) has been proven to be a valuable but underutilized database for clinical trial results. The unique 
value inherent in CT.gov data has been demonstrated through various comparisons and analyses. When com-
pared with results from PubMed, it has been noted that CT.gov often contains a more comprehensive report 
of adverse events. In CT.gov, safety results were reported at a similar rate as in peer-reviewed literatures, yet 
with more thorough reports of certain safety events3. Most recently, a step-by-step guidance has been pub-
lished to instruct clinical researchers on how to conduct systematic searches for registered studies as well as 
reported results using clinical trials registers4. However, the current storage of CT.gov reported results is limited 
to web-based or raw XML format. The absence of automated processing tools and a lack of structured reporting 
results dataset constitute one of the major barriers to the widespread utilization of CT.gov.

Our work aims to fill the gap. We aim to facilitate the reuse of the current under-utilized reported results 
dataset hidden in registries, making it more feasible for inclusion in evidence synthesis practices. In addition, 
parsing CT.gov reported results into a structured dataset is not only an attempt to respond to the call for com-
putable evidence synthesis5, but also aligns with the recent introduced principle of “calculate once, use many 
times”6, where the clinical trial analysis results are respected as data.

Despite a study suggested that CT.gov had not altered the conclusions of systematic reviews7, we argue that 
the limited sample size in their analysis may have influenced these findings. Results of RCT, are either published 
in scientific articles, or reported on registry platforms, such as CT.gov, International Clinical Trials Registry 
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Platform (ICTRP), and Chinese Clinical Trial Registry (ChiCTR). Researchers found that in the 91 trials with 
reported results on CT.gov and published in high-impact journals, only 52% primary efficacy end points were 
described in both sources and reported concordant results8. One of the possible and biggest explanation for 
this phenomenon is selective publication or publication bias of clinical trials, meaning the existence of a higher 
reporting rate of positive results in published literature compared to that in registries9.

This study intends to construct a finer-grained representation of arm-centered clinical trial results by inte-
grating efficacy and safety information. Our methodology enables: 1) a detailed representation of “interven-
tion” entities, transcending the traditional PICO (Population, Intervention, Comparator, Outcome) concept 
representation; 2) a systematic unveiling of positive and negative results in efficacy outcomes; 3) a systematic 
disclosure of serious adverse events (SAE) in safety outcomes; 4) a dual-faceted understanding of interven-
tion effects from both efficacy and safety perspectives. 5) By providing a structured, ready-to-use dataset, we 
aspire to offer a new data source for meta-analysis, thereby facilitating a more discoverable dataset to enhance 
evidence-based health decision-making.

The discrepancy between PICO information in the design phase and reported results underscores the neces-
sity for real meta-analysis which mandates results-oriented information. Our study seeks to bridge this gap, 
fostering a more thorough and reliable synthesis of evidence that can potentially elevate the standards of medical 
research and practice.

existing studies. There have been studies focusing on the structuring trial results data. MedicineMaps10 
introduced a schema that represents clinical trial results from literature. The schema lost information about the 
comparators, and was annotated manually. EvidenceMap11 extracted PICO with observation data and efficacy 
relationships from 80 COVID-19 clinical trial abstracts. Similarly, entities such as ‘two groups’ were also labeled 
as interventional, losing the ability to build comparable relationships. TrialStreamer12 and TrialSummarizer13 
are tools that extracts results from clinical trials in a large scale. For data from registry platform, CTKG14 is a 
large knowledge graph version with embedding analysis of studies in the CT.gov database. The knowledge graph 
follows the basic structure of ClinicalTrials.gov, with nodes being sections and edges being ‘has’, focusing on pro-
cessing the metadata of clinical trials. The standardization of metadata and use of knowledge graph contributed 
to the obstacles to the reuse of study metadata in clinical trials15. In ‘outcome_analysis’, same as the representation 
in CT.gov, the compared arm groups were not separated as intervention versus comparator as well.

In this study. We focus on results data and introduce an arm-level representation of efficacy and safety results 
in studies registered on CT.gov. We optimize the data structure of clinical trials and present study results with 
one-to-one comparable relationships. Each efficacy result is represented by a relationship from an intervention 
arm group to an outcome, with the efficacy as the relationship value, the comparator arm as an attribute. Each 
safety result is represented by a relationship from an arm group to an adverse event, with the number of affected 
subjects as an attribute.

To represent arm-level efficacy and safety results in a knowledge graph, we started with acquiring registered 
clinical trials from the registry platform CT.gov, followed by extraction of statistical significance and adverse 
events from reported results. After separating arm groups and connecting outcomes, we eventually constructed 
a knowledge graph including results nodes, relationships and related attributes. Figure 1 shows the overall work-
flow of this study.

Methods
Data source. On December 25th in 2022, we downloaded full registered clinical trials dataset directly from 
CT.gov (https://classic.clinicaltrials.gov/AllPublicXML.zip). The dataset is a compressed zip file containing all 
the individual raw XML files of each study named by the NCT id. The total number of XML files of clinical trials 
downloaded is 437,173. We parsed and transformed each raw file into a Pandas DataFrame. A Pandas DataFrame 
is a data structure in Python’s Pandas library, primarily used for data manipulation and analysis (https://pandas.
pydata.org/docs/reference/api/pandas.DataFrame.html). Using Pandas DataFrames over individual XML files 
simplifies the integration and analysis of clinical trial results. This makes it easier to handle large datasets, per-
form complex analyses, and draw insights from clinical trial results. From the reported results section, we focus 
on efficacy and safety related to the intervention arm group, which are stored under the statistical analysis and 
adverse events section.

Arm group-level results. In the context of clinical trials, an “arm” refers to a group of subjects receiving 
a particular intervention, treatment, or control. The term is often used in RCTs, which are considered the gold 
standard for evaluating the efficacy of treatments. In a typical RCT, participants are randomly assigned to differ-
ent arms of the study to minimize the influence of confounding variables and to allow for a fair comparison of the 
interventions being tested.

Efficacy results. In evidence-based medicine, a record of clinical trial results has to be described in PICO 
framework, along with the efficacy (E). In clinical trials, population describes the characteristics of the selection 
of study subjects, such as age, gender, condition; intervention represents the treatment or strategy being studied, 
which can be a drug, a lifestyle or a dietary plan; comparator represents the strategy for comparison with the 
intervention, which can a placebo method or a standard care; outcome describes what is being measure in the 
study to assess the efficacy and safety of the intervention, which can be symptom relief, biomedical markers, or 
mortality rate.

The PICO framework is essential for formulating research questions and reviewing literatures for relevant 
clinical studies. In the search for the efficacy of an intervention, it is essential to determine the anticipated 
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corresponding population, comparator, and outcome. In natural language, a clinical trial result can be expressed 
as: ‘There exists a significant difference between the intervention (I) and the comparator (C) on the outcome (O) 
in the population (P).

In this study, to evaluate the efficacy of an intervention on an outcome, we searched for the statistical anal-
ysis section under each outcome in the study results page. For example, in the study NCT01050998, under the 
outcome measure of the primary outcome ‘Percentage of Participants Who Achieved Disease Activity Score of 28 
Joints Using C-Reactive Protein (DAS28 [CRP]) Response at Day 85 by Region’ exists a list of statistical analysis 
results. As we can see from an example of results (Fig. 2), the analysis section provides information such as 
groups, p_value, and confidence interval, etc. With these pieces of information, we are able to create a relation-
ship between an intervention arm group and the primary outcome.

To parse the XML files for efficacy results, we extracted results in the form of relationships between ‘groups’ 
under each outcome measure and corresponding ‘outcome’: group-outcome. Each group-outcome pair is saved 
in a row in a Pandas Dataframe, along with other columns including other important attributes such as NCT_
ID, p-value, statistical method, and confidence interval. An example is shown in Table 1.

Fig. 1 The overall workflow from data acquisition, results processing, to the final knowledge graph 
construction.
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Statistical significance. To better and directly represent the efficacy of an intervention group on an outcome, 
we created an automatic rule-based pipeline to summarize analysis attributes for statistical significance and 
eventually presented as positive vs negative.

 (1) check if the result has valid p-value
 (2) if no p-value found, check if the result has valid confidence interval
 (3) for results with p-value, we label the result as positive if it has a p-value smaller than or equal to 0.05, and 

negative otherwise
 (4) for results without p-value but with confidence interval, we check whether the statistical parameter is a 

ratio-type parameter (Odds Ratio, Hazard Ratio, etc.) or a difference-type parameter (Mean Difference, 
Risk Difference, etc.)

 (5) for results with a ratio-type statistical parameter, check if the number one:1 is contained between the 
lower and upper confidence interval limits. If 1 is not contained, label the result as positive, and negative 
otherwise

 (6) for results with a difference-type statistical parameter, check if the number zero:0 is contained between the 
lower and upper confidence interval limits. If 0 is not contained, label the result as positive, and negative 
otherwise

The detailed visualized pipeline and corresponding number of results in each step are shown in the result 
section (Fig. 4).

In the XML clinical trial files downloaded from the website, arm groups are labeled with ‘Experimental’ and 
‘Comparator’ in the study design section. But in the statistical analysis section, the intervention arm group is not 
distinguished from the comparator arm group using a label. The titles of the groups are also not always consistent 
with the titles from the study design section, meaning it is not feasible to simply match the labels using the exact 
strings. Thus, in this part, we utilized a transformer model BioBERT16 (‘dmis-lab/biobert-v1.1’) to automatically 
separate intervention arm group from comparator arm group. BERT, Bidirectional Encoder Representations 
from Transformers, is a transformers-based deep learning model that was introduced by Google in 201817. It 
is a language model that is pretrained on a large corpus of texts including Wikipedia. The model allows people 
to invoke weights (embeddings) of texts from the pretrained model without training on their own. BioBERT is 
a domain-specific adaptation of the original BERT and pretrained on a large corpus on biomedical texts. With 
BioBERT, we are able to perform various tasks such as named entity recognition and relation extraction on 
biomedical problems. In our specific task, we used the version BioBERT-Base v1.1 that is trained on around one 
million biomedical publications on PubMed.

Fig. 2 An example of statistical analysis in XML file.

NCT_ID Groups Outcome_title P_value

NCT01049373 [‘Lymphdiaral Basistropfen (HDC)’, 
‘Placebo Solution’] Change in FFbH-R Between Screening and 2 Weeks 0.0757

NCT03400800 [‘Inclisiran’, ‘Placebo’] Percentage Change in LDL-C From Baseline to Day 510 <0.0001

NCT02912650 [‘Placebo’, ‘Ibuprofen 250 mg’] Pain Intensity Difference on 11-Point Numerical Scale (PID11) <0.001

NCT02954354 [‘Baloxavir’, ‘Oseltamivir’] Percentage of Participants Reporting Normal Temperature at Each 
Time Point in Adults Randomized to Baloxavir or Oseltamivir 0.5908

NCT01795547 [‘Aripiprazole’, ‘Paliperidone’] Change From Baseline to Week 28 in the ‘Interpersonal Relations’ 
QLS Domain Score 0.07

Table 1. An example of transformed dataframe of efficacy results.
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In this experiment, to prepare the data in the form of the knowledge graph schema, we only kept results with 
exact two arm groups for comparison between intervention and comparator. Studies without valid labels of 
‘experimental’ and ‘comparator’ arm groups from the study design section were excluded.

We first produced semantic embeddings of the arm group titles from both the study design and statistical 
analysis sections using BioBERT. Then we calculated the similarities of semantic embeddings between the arm 
groups from different sections. Eventually we labeled the arm group from the statistical analysis section based 
on the label of the arm group that has the highest similarity score from the study design section. For examples 
shown in Table 2, the ‘Groups’ column are the original stored groups information from CT.gov. After comparing 
to columns ‘Intervention’ and ‘Comparator’ from the study design section, new columns ‘Intervention_group’ 
and ‘Comparator_group’ were created to represent the experimental and comparator groups. Validation on the 
applied approach is provided in the Technical Validation section.

Safety results. We integrated reported adverse events from CT.gov to represent potential safety harms related 
to the interventions. In the trial raw XML files, an adverse event is stored under the <event> section, along with 
<sub_title> and <count>, recording information including the corresponding group, the number of affected 
subjects, and the number of subjects at risk. The vast majority of adverse event titles are standardized into the 
Medical Dictionary for Regulatory Activities (MedDRA18) by CT.gov. The parent elements that incorporate the 
specific events cover health categories such as ‘Cardiac disorders’, ‘Ear and labyrinth disorders’, etc. The events 
are also classified as serious events vs. other events, giving users the ability to choose by event severity. In this 
study, we focus on serious adverse events of which the number of affected subjects is none-zero.

NCT_ID Groups Intervention Comparator Intervention_group Comparator_group

NCT03064438 [ACU-D1 Ointment, ACU-D1 
Ointment Vehicle] [ACCU-D1] [Vehicle] ACU-D1 Ointment ACU-D1 Ointment 

Vehicle

NCT02553317 [Caplacizumab, Placebo] [Caplacizumab] [Placebo] Caplacizumab Placebo

NCT00650806 [Placebo, Canagliflozin 50 mg] [Canagliflozin (JNJ-28431754)] [Placebo] Canagliflozin 50 mg Placebo

NCT02152605 [Placebo,UMEC/VI 
62.5/25 mcg] [UMEC/VI] [Placebo] UMEC/VI 

62.5/25 mcg Placebo

NCT00402246 [Remote Arm, In-Office Arm] [Remote Management] [In-Office Care] Remote Arm In-Office Arm

Table 2. Example results of separation of arm groups into intervention vs. comparator in efficacy results.

Fig. 3 An overview of the schema of arm-level efficacy and safety knowledge graph.
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In order to intuitively compare the efficacy and safety, we only kept serious adverse events in the studies 
that have valid efficacy analysis results (54.8%, 6,429 out of 11,729). On CT.gov, not all the expressions of arm 
groups in adverse events sections are 100% same as the ones in efficacy. In order to integrate efficacy and AE, we 
first tried using string matching among the arm groups. For arm groups in AE that were not string-matched to 
an arm group in efficacy, we utilized BioBert again to calculate the semantic similarities and return the closest 
match. For each adverse event title, we calculated the semantic similarities between the title and all the arm 
groups in the efficacy section. The closest matched arm group was saved as a unique column ‘matched_group’ in 
the dataframe, and we used the matched arm groups for integrating efficacy and safety. The columns for adverse 
events we saved in the dataframe include ‘NCT_ID’, ‘arm_title’, ‘event_title’, ‘category’, ‘serious/other’, ‘affected’, 
‘at_risk’, and ‘matched__group’. Each row can be comprehended as a reported adverse event named ‘event_title’ 
related to the arm group named ‘matched_group’ along with the number of affected and at-risk participants 
(Table 3).
•	 Events co-occurrence. In extra, we calculated co-occurrence weights among reported adverse events to pro-

vide the which SAE is frequently occurred with another SAE. We determined the co-occurrence of categories 
of SAEs by the following considerations: if both two categories have reported ‘affected’ participants in a same 
trial, and multiplying the ‘affected/at_risk ratio’ from the categories  ∑ × ×∈ ≠( )c a b r a r b( , ) ( ( ) ( ))a b S a b( , ) ,  
(c:co-occurrence, r:ratio). This ratio-based co-occurrence took the affected/at_risk ratio of SAE into account, 
representing the probabilistic extent of events co-occurrence.

Outcome. MeSH extraction. In clinical trials, expression of outcomes varies across different studies. 
Thus, we processed all the unique outcomes using the MeSH (Medical Subject Headings) extraction tool: NLM 
(National Library of Medicine)’s Medical Text Indexer (MTI)19,20. MTI allows us to extract MeSH terms from 
natural languages, in our case, outcomes. MeSH represents the simplest representation of biomedical languages 

NCT_ID Arm_title Event_title Category
Serious/
other Affected

At_
risk Matched_group

NCT00977080 Oral Paricalcitol in the Oral 
Stratum Abdominal pain Gastrointestinal disorders serious 1 72 Oral Paricalcitol in the Oral 

Stratum

NCT02254278 IMRT 5 Weeks Syncope Nervous system disorders serious 1 147 IMRT 5 Weeks

NCT00509145 Laquinimod 0.6 mg Uterine prolapse Reproductive system and breast 
disorders serious 1 550 Laquinimod

NCT00810199 Tocilizumab + Placebo Clostridium difficile colitis Infections and infestations serious 1 276 Tocilizumab + Placebo

NCT02853331 Sunitinib Hepatocellular injury Hepatobiliary disorders serious 1 425 Sunitinib

Table 3. Example adverse events with matched group in efficacy analysis section.

Fig. 4 The pipeline and numbers of classification of positive vs. negative results.
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for tasks including document retrieval, text classification, etc. For all the MeSH terms extracted, we also recorded 
the parent terms along with the codings based on the tree structure of MeSH. With MeSH terms of outcomes, we 
are able to not only standardize outcome titles with different expressions, but also classify outcomes into different 
clinical categories.

Outcome category. In clinical trials, the selection of outcomes has critical impact on the efficacy of the inter-
vention. A study proposed categories of outcomes as Mortality/survival, Physiological/clinical, Life impact, 
Resource use, and adverse events21. By assumption, with the same intervention, choosing biomarkers as the 
outcome potentially tend to produce positive results22. Also, biomarkers are usually used as surrogate endpoints 
that are easier to measure. In contrast, in most cases, clinical endpoints are more complicate to measure, and 
tend to produce negative results. In this study, we classified the outcome titles into three categories: Biomarker, 
Patient-reported outcome (PRO), and clinical endpoint.

•	 Biomarker. We took the advantage of MeSH to identiy biomarker outcomes. We first manually went through 
the MeSH tree to discover possible biomarker-related terms. We found that the majority of the terms we 
discovered (such as ‘E01.370.376.537.250-Brain Cortical Thickness’, ‘D12.776-Proteins’, and ‘D10.251-Fatty 
Acids’) belong to the root category D (Chemicals and Drugs) and E (Analytical, Diagnostic and Therapeutic 
Techniques, and Equipments). Thus, we preliminarily selected the root categories D and E as the biomarker 
identifier in outcomes. If any of the MeSH terms extracted from an outcome title starts with D or E, we labeled 
the outcome as biomarker. We excluded ‘E05.318.308.980-Surveys and Questionnaires’ as it is a PRO related 
MeSH term. 40,525 results with unique 14,217 biomarker outcomes were identified.

•	 PRO. Patient-reported outcomes are used to report the status of a patient’s health condition from the patient’s 
persepective23. Research identified PROs and inspected the inclusion of PROs in registered clinical trials 
from 2007 to 2013 and found 27% of the trials used one or more PRO measures24. Recently, the usage of 
PROs in novel artificial intelligence (AI) clinical trials was assessed by researchers (152/627 trials)23. Both 
previously-mentioned studies used PRO databases such as PROQOLID and GEM to match PROs in regis-
tered clinical trials. One of the major limits of exact text-matching for outcomes in registered clinical trials 
is that the writings or expressions are natural languages, meaning they can be inconsistent. In this study, we 
simplified the searching words and took advantage of the extracted MeSH terms. To identify PRO outcomes, 
we applied keyword matching on columns ‘outcome_title’ and ‘outcome_mesh’. The keywords are ‘Survey’, 
‘Questionnaire’, ‘Patient Reported’, ‘Patient-Reported’, ‘Scale’, and ‘Score’. We labeled the outcome as PRO if 
any lowercase of the keywords was matched in the outcome string. We eventually found 33,547 results with 
9,820 unique PRO outcomes.

•	 Clinical endpoint. In this study, we defined the disease-related outcomes as the clinical endpoint outcomes. 
The root category C from MeSH tree represents ‘Diseases’. We also added F03 (Mental Disorders) as a target 
disease-related category. If any of the MeSH terms extracted from an outcome title starts with ‘C’ and ‘F03’, we 
labeled the outcome as clinical endpoint. 23,557 results with 7,837 unique clinical endpoint outcomes were 
identified.

Biomarker outcome set. We provide a dataset of biomarker outcomes with the most positive and negative effi-
cacy results under each health problem. The dataset is provided in the supplementary Table S1. Note that the 
outcomes are not standardized by concept, meaning there might be variations of same outcomes that are not 
summed together. Besides, this example shows the top biomarker outcomes associated with health problems. In 
the full dataset, outcomes should be associated with the original condition name. This dataset provides clinical 
researchers and practitioners surrogate endpoints for measurement when it is infeasible, unethical, or ineffective 
to directly evaluate clinical endpoints.

Knowledge graph construction. A knowledge graph (KG) is a specialized graph-based data structure 
used for representing a collection of knowledge, entities, and their relationships. In this study, we stored the clin-
ical trial entities (outcome, arm group, adverse event, etc.) and their relationships in a knowledge graph for visual 
representation and complex data retrieval queries.

We created 3 main node types: intervention_arm, outcome, and adverse_event:

•	 Intervention_arm. The intervention_arm node is interventional arm group from the statistical analysis result 
section. The relationship representing the efficacy of results is either ‘positive’ or ‘negative’, with interven-
tion_arm as starting node and outcome as ending node, built based on the columns ‘intervention_group’, 
‘outcome_title’, and ‘significance’ from each efficacy result row. ‘Positive’ relationships are shown in green and 
‘negative’ relationships are shown in red. Some intervention_arm nodes are connected to a concept node that 
saves the mapped MeSH term of the intervention_arm title.

•	 Outcome. The outcome node is clinical outcome used in each study. The outcome node can be connected to 
an outcome_type node to exhibit the types of an outcome, including biomarker, PRO, and clinical endpoint.

•	 Adverse_event. The adverse_event node is reported serious adverse event in each clinical trial. For adverse 
events, we built the relationship ‘has_ae’ from the column ‘intervention_arm’ to ‘event_title’ from each 
adverse event result row. Each adverse_event node is connected to an adverse_event_category node, repre-
senting the parent biomedical categories of the adverse event name.

https://doi.org/10.1038/s41597-023-02869-7
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We loaded the created nodes and relationships along with their attributes into the graph database Neo4j 
(database version == 5.3.0).

To summarize, we presented a pipeline to construct a knowledge graph to represent arm-level clinical trial 
efficacy and safety results. Compared to existing large scale trial databases such as AACT and CTKG, we curated 
a result database containing identified comparable arm groups in results section. We also integrated efficacy 
and safety results by matching corresponding arm groups, providing an evidence dataset for evaluating clinical 
interventions. We constructed a knowledge graph based on the dataset, offering a data infrastructure for further 
analysis and applications. However, current limitations include: (1) In efficacy results, multiple testings are not 
adjusted yet. (2) Multiple arms were not included and classified as interventional and comparator. (3) Current 
dataset only covers clinical trials with both efficacy and safety results.

Data Records
We deposited this dataset to a publicly available repository on Figshare25. The dataset contains clinical trial 
efficacy and safety results data in CSV, JSON, and PICKLE formats. We also uploaded two sample files for data 
exploration.

Data structure. Knowledge graph schema. The knowledge graph schema exhibits the most important 
nodes, relationships, and attributes when evaluating clinical trial results. Compared to the sole ‘has’ relationship 
in the CTKG, in order to better represent the RESULTS across different studies, we saved all the study-related 
information of the results in different relationships instead of unique nodes, based on the efficacy and adverse 
event (Fig. 3). For efficacy, the schema shows the significance, the comparator arm, the parameter value, NCT_id, 
and condition. For safety, the schema shows the affected/at_risk ratio, NCT_id, and severity. Also, for all the 3 
main node types, we applied different techniques described in the method section to give each node type a stand-
ardized or taxonomic categories for data integrity and normalization.

Descriptive statistics. Nodes and relationships. Table 4 lists the statistics of nodes and relationships of the 
knowledge graph based on the above schema. The relation count of efficacy is the number of results with valid 
intervention group, comparator group and statistical significance. The relation count of safety is the number of 
serious adverse events with valid arm group and event title. 119,968 comparable efficacy and 803,052 safety rela-
tionships are built on reported results from 8,665 studies.

Outcome classification. 25,758 (61.03%) unique outcomes were successfully identified as biomarker, PRO, or 
clinical endpoint, contained in 76,575 (63.83%) efficacy results. We noticed that there existed differences of the 
coverage of outcome categories between primary outcomes and secondary outcomes. Table 5 shows the detailed 
coverage numbers of biomarkers, PROs, and clinical endpoint outcomes.

Efficacy. To determine the efficacy or statistical significance of an intervention on an outcome, we used 
p-values and confidence intervals. However, these fields lacked clarity and uniformed formatting. To transform 
the uncleaned string data into a computable format for our rule-based algorithm, we removed blanks in the 
strings, transformed the numbers to numeric, and processed the mathematical operators in standard representa-
tions. After using the classification pipeline, as we introduced in the method section, we eventually distinguished 
56.39% statistically negative results, and 43.61% statistically positive results (Fig. 4).

Node type 0 Count 0 Node type 1 Count 1 Relation name
Relation 
count

Intervention_arm 10,364 Outcome 41,708 positive/negative 119,968

Intervention_arm 10,364 Adverse_event 40,408 has_ae 803,052

Intervention_arm 10,364 Concept 1,439 Is_a 49,764

Outcome 41,708 Outcome type 3 Is_a 76,575

Adverse event 40,408 Adverse event 
category 28 Is_a 803,052

Table 4. Statistics of nodes and efficacy/safety relationships.

Primary (result) Secondary (result)
Primary 
(outcome)

Secondary 
(outcome)

Total 23,252 92,966 10,624 30,408

Biomarker 9,321 (40.09%) 29,931 (32.20%) 4,105 (38.64%) 9,702 (31.91%)

PRO 4,378 (18.83%) 27,838 (29.94%) 2,072 (19.50%) 7,501 (24.67%)

Clinical 4,133 (17.77%) 18,700 (20.11%) 2,080 (19.58%) 5,537 (18.21%)

coverage 14,388 (61.88%) 59,738 (64.26%) 6,609 (62.21%) 18,429 (60.61%)

Table 5. Coverage statistics of identified categories in primary and secondary outcomes (‘result’ means 
numbers of efficacy results, ‘outcome’ means numbers of unique outcomes in efficacy results).
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We also investigated the ratio of positive and negative efficacy results across different dimensions (Table 6). 
The table reveals varying efficacy of medical interventions across different outcome types, intervention types, 
and health problems. Among outcome types, choosing biomarker as the outcome is related to the highest 48.33% 
statistically positive ratio. Compared to other types of intervention such as behavioral and dietary supplement, 
there exists larger proportions of positive efficacy results related to drug and biological interventions (44.49% 
and 43.45%, respectively). The efficacy of treatments varies greatly among health problems, with some areas like 
nutritional and metabolic diseases showing more positive outcomes (53.33%), while others like mental disorders 
and nervous system diseases have predominantly negative results (65.52% and 70.88%, respectively).

Safety. We investigated the number of affected subjects of SAEs related to the arm groups. In this dataset, after 
removing events titled ‘Total, serious adverse events’, a total of 2,106,063 subjects (not necessarily unique indi-
vidual subjects) were affected by SAEs, and 3,538,554 were at risk. Table 7 shows the ranked intervention types 
of arm groups by the number of affected subjects. Table 7 only included SAEs with valid one-to-one mesh terms 
and types, meaning records with zero or multiple intervention types were excluded. Note that this is not a causal 
relationship between SAE and interventions. The reasons of appearances of SAEs can be possibly related to the 

Positive Negative

Outcome type

Biomarker 14,166 (48.33%) 15,148 (51.67%)

Patient-reported outcome 12,647 (37.70%) 20,900 (62.30%)

Clinical endpoint 9,820 (41.65%) 13,757 (58.35%)

Intervention type

Drug 43,521 (44.49%) 54,294 (55.51%)

Biological 5,507 (43.45%) 7,168 (56.55%)

Radiation 57 (28.50%) 143 (71.50%)

Behavioral 1,019 (30.02%) 2,375 (69.98%)

Genetic 18 (25.35%) 53 (74.65%)

Other 511 (34.60%) 966 (65.40%)

Device 1,223 (38.92%) 1,919 (61.08%)

Dietary Supplement 155 (28.49%) 389 (71.51%)

Procedure 147 (27.89%) 380 (72.11%)

Combination Product 71 (59.66%) 48 (40.34%)

Diagnostic Test 1 (25.00%) 3 (75.00%)

Health Problems

Infections 2,640 (41.90%) 3,660 (58.10%)

Neoplasms 1,152 (37.39%) 1,929 (62.61%)

Musculoskeletal Diseases 4,338 (45.92%) 5,108 (54.08%)

Digestive System Diseases 1,007 (42.69%) 1,352 (57.31%)

Stomatognathic Diseases 544 (45.18%) 660 (54.82%)

Respiratory Tract Diseases 4,520 (41.63%) 6,337 (58.37%)

Otorhinolaryngologic Diseases 520 (44.67%) 644 (55.33%)

Nervous System Diseases 2,090 (29.12%) 5,086 (70.88%)

Eye Diseases 478 (33.71%) 940 (66.29%)

Urogenital Diseases 1,438 (49.60%) 1,461 (50.40%)

Female Urogenital Diseases and Pregnancy 
Complications 1,614 (49.89%) 1,621 (50.11%)

Cardiovascular Diseases 2,071 (50.11%) 2,647 (56.10%)

Hemic and Lymphatic Diseases 434 (40.45%) 639 (59.55%)

Congenital, Hereditary, and Neonatal Diseases and 
Abnormalities 1,398 (51.34%) 1,325 (48.66%)

Skin and Connective Tissue Diseases 3,539 (47.77%) 3,870 (52.23%)

Nutritional and Metabolic Diseases 6,091 (53.33%) 5,331 (46.67%)

Endocrine System Diseases 3,546 (52.64%) 3,190 (47.36%)

Immune System Diseases 4,425 (41.96%) 6,122 (58.04%)

Pathological Conditions, Signs and Symptoms 5,483 (41.23%) 7,817 (58.77%)

Occupational Diseases 8 (4.40%) 174 (95.60%)

Chemically-Induced Disorders 107 (41.63%) 150 (58.37%)

Wounds and Injuries 131 (28.35%) 331 (71.65%)

Mental Disorders 2,408 (34.48%) 4,575 (65.52%)

Table 6. Distribution of positive and negative efficacy results across different dimensions.
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subjects’ personal health condition, trial design, disease complications, etc. Table 8 lists SAE categories ranked 
by the number of related affected subjects.

Also note that this is only the safety results that from studies having efficacy results at the same time, for the 
purpose of tracking original study for integrating efficacy and safety analysis. We imported the co-occurrence 
matrix to a network visualization software Gephi26 and output the co-occurrence map of SAE categories (Fig. 5). 
In the co-occurrence map, each node represents an adverse event category. Each edge represents the existence 
of co-occurrence between two categories. The width of edges represents the computed weighted co-occurrence 
scores. The size of nodes represents the sum of the scores. The co-occurrence between SAE category ‘Respiratory, 
thoracic and mediastinal disorders’ and ‘Infections and infestations’ has the highest degree of co-occurrence, 
meaning it is the most frequently and strongly co-occurred serious adverse event pair in the included clinical 
trials.

Knowledge graph: Antibiotic and infection. In order to present the functionality of evaluating efficacy and safety 
of an intervention based on the constructed knowledge graph, we retrieved a sub-graph based on a clinical 
scenario: serious adverse events related to infections while antibiotic ‘imipenem/cilastatin’ being used to treat 

Intervention_type Number of affected subjects

Drug 221,278

Biological 24,578

Device 1,060

Behavioral 215

Dietary Supplement 250

Radiation 215

Other 169

Procedure 67

Combination Product 8

Genetic 6

Table 7. Numbers of affected subjects by different intervention types.

Category name Number of affected subjects

Infections and infestations 294,602

Cardiac disorders 286,035

General disorders 195,018

Gastrointestinal disorders 168,440

Respiratory, thoracic and mediastinal disorders 147,184

Neoplasms benign, malignant and unspecified 132,976

Nervous system disorders 129,127

Injury, poisoning and procedural complications 104,784

Vascular disorders 93,766

Blood and lymphatic system disorders 78,164

Metabolism and nutrition disorders 72,235

Musculoskeletal and connective tissue disorders 70,352

Renal and urinary disorders 69,560

Investigations 58,024

Surgical and medical procedures 46,785

Hepatobiliary disorders 32,128

Psychiatric disorders 31,207

Skin and subcutaneous tissue disorders 20,295

Eye disorders 17,144

Reproductive system and breast disorders 16,274

Pregnancy, puerperium and perinatal conditions 10,356

Endocrine disorders 8,578

Immune system disorders 8,405

Ear and labyrinth disorders 5,646

Congenital, familial and genetic disorders 4,496

Social circumstances 2,242

Product Issues 2,240

Table 8. Numbers of affected subjects by SAE categories.
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infections. We queried the knowledge graph, retrieved efficacy results by matching the ‘intervention_group’ and 
‘intervention_MeSH’ with ‘imipenem’ or ‘cilastatin’, and retrieved adverse event results by matching the group 
and adverse events title ‘event_title’ and parent category ‘category’ with the keyword ‘infection’. This dual-faceted 
inspections of both efficacy and safety are crucial in clinical studies, especially with the population condition and 
potential adverse events belonging to the same clinical condition. The queried relationships are shown in Fig. 6. 
The infection-related SAEs give us evidence which types of infections should be paid attention when treated 
with imipenem/cilastatin.

Technical Validation
We introduced the full pipeline from data collection, data processing to the final knowledge graph in details. The 
knowledge graph and original dataset are transparent in the following aspects: 1) The origin of data comes from 
CT.gov, which is an open-access platform that everyone is able to download the full structured dataset. 2) The 
process of formation of the knowledge graph is reproducible. The codes will be available to access publicly. 3) 
Users are able to adjust the knowledge graph based on provided codes and sub-datasets, providing the flexibility 
to alter the data based on their own research interests.

Firstly, we acknowledge that conducting validation in natural language processing (NLP) is inherently chal-
lenging, primarily due to the lack of gold standard corpus. Constructing such a corpus for NLP algorithm vali-
dation is typically a time-consuming and labor-intensive task. Nevertheless, we made three attempts through a 
systematic literature search. We have identified two independent works done by other research groups related to 
CT.gov reported results analysis, which serve as our reference of alignment.

Reliability validation. Next, we present three approaches to validate the accuracy for efficacy determina-
tion, consistency with external resources, and feasibility for potential safety data resource.

Manual random sample checkup. We validated the applied BioBert algorithm with a manually-annotated data-
set by separating the groups manually. To build this validation dataset, we randomly selected the un-separated 
groups from 100 efficacy result records, and manually inspected the comparison information from the study 
design on CT.gov. Manually separated ground truth intervention group and comparator group are stored as 
columns ‘inter_label’ and ‘comp_label’. To evaluate the algorithm, we check whether the BioBert-extracted 
‘intervention_group’ matches the ground truth ‘inter_label’, also for ‘comparator_group’ and ‘comp_label’. The 

Fig. 5 Co-occurrence map of SAE categories.
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accuracy (correctly mapped) for the intervention group and comparator group is 84% and 80%, respectively. 
This manually-annotated dataset has been deposited to the Figshare repository.

Validation with a large-scale P-values research. To investigate manipulation of p-values in clinical trials, recent 
research collected 12,621 P-values in primary outcomes of 4,977 clinical trials from 2007 to 2019 in AACT27. 
From our dataset, we gathered 11,216 efficacy results with valid P-values in 4,222 clinical trials after filtering 
by the same condition (2007 to 2019, phase 2/3, primary outcome, valid P-value), showing in consistency with 
88.9% of the results and 84.83% of the number of trials from the existing study. Note that all of our efficacy 
results are in a comparable format, enabling conditional efficacy analysis and fast evidence synthesis.

Validation with safety analysis. To systematically validate the feasibility for an investigation of safety results in 
clinical trials, we went through three related representative studies that conducted quantitative analysis of safety 
results or serious adverse events3,28,29. Unfortunately, all the studies are manually collected with small sample 
size. Also, the related datasets are not publicly available. There also exists an inconsistency between safety results 
in published research, Drugs@FDA, and CT.gov3,28,29. Thus, we could not perform a systematic comparison of 
our work with the other resources. Nevertheless, we compared the distribution of affected subjects by SAEs in 
CT.gov with an analysis of reported adverse events in FAERS (FDA’s Adverse Event Reporting System) from a 
data visualization community (https://public.tableau.com/app/profile/simon.lafosse/viz/WYMD-Top20v0_5/
WYMD). We reproduced the distribution from 2018 to 2019 and visualized by SAE category (Fig. 7). The units 
used are different (number of affected subjects versus number of adverse events records). Nonetheless, it vali-
dates the feasibility for a potential large-scale safety results dataset.

Validation of the reproducibility of the dataset and method. In this study, we adopted an auto-
matic and transparent pipeline applying commonly used tools such as MTI19,20. The highly automated process 
of our method guarantees the reproducibility of the dataset and method. The primary data source is also an 
open-sourced dataset with high availability provided by NLM in XML format.

In summary, we curated a dataset beyond the meta-data of CT.gov30. This was achieved by linking efficacy 
with safety results at the experimental arm group level within each trial, and connecting them across all tri-
als through a knowledge graph. Following the computable principle of “calculate once, use many times” we 
anticipate that this structured dataset will enhance the reuse and interpretation of CT.gov results data. Regular 

Fig. 6 An example KG that shows the case of infection-related adverse events while intervening with the 
antibiotic imipenem/cilastatin to treat infections. Orange nodes are SAEs, yellow nodes are interventional arm 
groups, purple nodes are outcomes, visualized in Neo4j Bloom.
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updates to the dataset, occurring every two months, are planned. Our approach effectively connects the gener-
ally described searchable information and the specifically detailed yet under-utilized reported results.

Through technical validation aligned with other relevant studies, we affirm that CT.gov can serve as a poten-
tial valuable data source for monitoring adverse drug events. This resource is expected to facilitate a more sys-
tematic and feasible practice of evidence synthesis and health technology assessment, by incorporating both 
positive and negative results, distinguishing biomarkers, patient-reported outcomes, with clinical endpoints, 
while also maintaining a balanced consideration of both efficacy and safety outcomes for a given medical 
intervention.

Code availability
The source codes of data collection, processing and analysis are stored at: (https://github.com/xuanyshi/Finer-
Grained-Clinical-Trial-Results).
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