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Genomic resources for a historical 
collection of cultivated two-row 
European spring barley genotypes
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Barley genomic resources are increasing rapidly, with the publication of a barley pangenome as one of 
the latest developments. Two-row spring barley cultivars are intensely studied as they are the source 
of high-quality grain for malting and distilling. Here we provide data from a European two-row spring 
barley population containing 209 different genotypes registered for the UK market between 1830 to 
2014. The dataset encompasses RNA-sequencing data from six different tissues across a range of barley 
developmental stages, phenotypic datasets from two consecutive years of field-grown trials in the 
United Kingdom, Germany and the USA; and whole genome shotgun sequencing from all cultivars, 
which was used to complement the RNA-sequencing data for variant calling. The outcomes are a filtered 
SNP marker file, a phenotypic database and a large gene expression dataset providing a comprehensive 
resource which allows for downstream analyses like genome wide association studies or expression 
associations.

Background & Summary
Barley is one of the most important crops worldwide (5th in 2020 on area harvested, FAOSTAT1) and has a high 
value in the European agricultural sector underpinning the beer and whisky industries2. New barley cultivars 
are introduced to the market every year, after being evaluated for multiple traits e.g., disease resistance, yield, 
and malting quality traits3. Barley breeding and the introduction of barley cultivars started at the beginning of 
the 19th century in the UK and by the end of the 19th century all over Europe4. Instead of seeds being grown by 
the farmer with some saved for subsequent sowing the following year, breeding institutes were established, with 
the mission to develop improved seed stocks. Early cultivars were developed through mass selection and later 
followed by line selection from landraces. Initial breeding efforts focused on increasing yield5. Due to the con-
siderable success of these breeding efforts, seed stocks soon became distributed across the continent and each 
country started their own breeding program by incorporating local landraces in crosses with these generally 
higher yielding genotypes. This cross-breeding technique of simple crosses followed by selection quickly led to 
an increase in yield as shown for spring barley in Germany with a doubling of yield from 1800 to 19006. Breeding 
developed further by intentionally mutating seeds with chemicals or radiation to induce higher genetic varia-
tion in the offspring7. One of the most notable results from mutation breeding were the dwarfing genes which 
were critical for the green revolution8. Shorter stature cultivars provided the advantage of preventing lodging 
which was crucial for the development of high-yielding cultivars with heavy spikes. Complementing traditional 
to cross- and mutation-breeding, molecular technologies developed further and were quickly adopted. One of 
the most successful advances was marker-assisted selection (MAS) which deploys molecular markers to detect 
allelic variations within a genome. The most common markers used in breeding nowadays are single nucleo-
tide polymorphisms (SNPs)9. MAS is used for rapid and high-throughput selection of new genotypes and has 
matured from single marker analysis to genome-wide selection approaches. While SNPs are a key component of 
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the genotyping platforms used in plant breeding purposes, they can also be used for gene discovery. Quantitative 
trait locus (QTL) mapping and genome wide association studies (GWAS) are valuable to identify alleles for 
genes underpinning genetically complex traits10–13. High throughput genetic markers are however only one 
of a number of genetic and genomic resources that have effectively revolutionised genetics and breeding. Next 
generation sequence data formed the basis of the first linear barley genome published in 2017 from the culti-
var Morex14 which has been followed quickly by additional genomes from other cultivars15. The availability of 
“reference genome sequences” has both simplified the process and allowed a more precise identification of the 
causative genes controlling phenotypic traits.

Here we introduce new genetic and genomic datasets assembled from a European two-row spring barley 
population that is representative of pan-European breeding progress across the years from 1830 to 2014. A total 
of 209 50 K SNP-array16 genotyped barley cultivars were selected and grown in replicated field trials across three 
contrasting environments and for two years to score agronomic traits. Six different tissues from each cultivar 
were harvested and RNA was isolated for the collection of tissue and genotype specific transcript abundance 
(RNA-seq) data. Using both this RNA-seq data and whole genome shotgun sequence data from all individuals 
in the population, an exhaustive collection of high confidence SNP markers was assembled. We describe these 
datasets and provide examples of how they can be used.

Methods
Barley material and field trials. We assembled a collection of 209 European two-row spring barley culti-
vars (Supplemental Table 1), which is a representative subset of previously described two-row spring European 
barley populations10,11,17–19 that show a significant increase in yield over time. A small number of seed are available 
on request from the corresponding author and after signing a Standard Material Transfer Agreement (SMTA). 
Pedigree data was collected from publications17,20, and the following two websites: https://grinczech.vurv.cz/
gringlobal/search.aspx and https://www.lfl.bayern.de/mam/cms07/ipz/dateien/abst_gerste.pdf. Field experi-
ments were conducted at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben, 
Germany, the James Hutton Institute (JHI) in Dundee, UK and the University of Minnesota (UMN) in St. Paul, 
USA in 2019 and 2020. At IPK and UMN, 100 grains of each genotype were sown in 1 m long double-rows in 
a completely random design with three replications in both years. At JHI, a seed density estimated to produce 
350 plants per m2 for plot sizes of 2 m × 1.5 m was established. In 2019 a single replicate was grown and in 2020 a 
completely random design with two replicates. In addition, a polytunnel trial was included at JHI in 2019. Plant 
material was grown in 7 litre sized pots, 4 seeds per pot, in 3 replicate sets in a completely random design. Each 
replicate set had 8 columns and 30 rows and contained a replicate of each of the 209 genotypes.

Phenotyping. In total, 29 phenotypes were recorded on a per-plot basis in the field trials or on a per-pot 
basis in the polytunnel experiment. Developmental traits, growth habit and plant height measurements were 
recorded in the trials as described in Table 1. To measure spike and grain traits, ten to 15 main tiller spikes were 
harvested at full maturity (Zadoks stage 92) per plot, excluding the outermost plants of each row to avoid edge 
effects. After recording of all spike traits, spikes were hand-threshed, and grains were subjected to size and weight 
measurements on a Marvin SeedAnalyzer 6 (MARViTECH GmbH, Germany). Samples were first weighted and 
then added on to the Marvin tray for optical measurements of the grain size.

Tissue sampling for RNA-seq. Six different tissues were sampled for RNA-seq analysis: crown, root, inflo-
rescence, peduncle, spikelet and grain. For each tissue one RNA-seq sample per genotype was generated. At 
UMN, crown and root tissues were sampled from seven-day-old seedlings (GRO:0007060, first leaf unfolded). 
Ten seeds per genotype were surface sterilized and planted in moist vermiculite in individual Cone-tainers (6000 
RLC3 size, Ray Leach, Tangent, OR). The Cone-tainers were put into a dark cold room for four days to achieve 
more consistent germination. Then they were moved into a growth chamber at 20 °C with 16 hours of light for 
seven days. Tissues were harvested within three hours, starting at 9:00 am USA Central Time Zone to reduce the 
circadian effect on gene expression. Roots were sampled by cutting the longest root from each seedling adjacent 
to the germinated seed, and crowns by removing the roots and keeping the 1 cm shoot tissue immediately above. 
For each individual genotype five plants were combined and snap frozen in liquid nitrogen.

At JHI, the barley plants grown in 2019 under polytunnel conditions were used for tissue sampling. When 
plants reached the booting stage, which was 84–85 days after germination, 3 – 5 cm whole developing inflores-
cence tissue was taken, two from each replicate per genotype per sample. Whole peduncles were taken at 2–5 cm 
in length, three from each replicate per genotype per sample when plants were 88–90 days old. Sampling took 
place in a two-hour period between 10:00 and 12:00 Western European Summer Time and samples were snap 
frozen in liquid nitrogen and stored at −80 °C.

At IPK, barley plants grown in the 2019 field trial were monitored daily by dissecting single spikelets and 
recording the date of green anther stage and flowering stage on paper tags attached to the spikes. Sampling was 
limited to a two-hour period between 10:00 and 12:00 am Central European Summer Time each day to reduce 
the circadian effect on gene expression. Three spikes per plot of one repetition were selected at green anther stage 
and two central spikelets from the centre of each spike were sampled. At 5 days post anthesis, three spikes per 
plot of one repetition were selected and six developing grains per spike were sampled from the central region of 
each spike. All samples were snap-frozen in liquid nitrogen and stored at −80 °C until RNA extraction.

RNA extraction and RNA sequencing. RNA was extracted using the RNeasy Plant Mini Kit (Qiagen) 
with all buffers provided and treated with DnaseI following the manufacturer’s instructions. Buffer RLC was 
used for seedling root extractions, and Buffer RLT was used for all other tissue extractions. To ensure a high 
purity of spikelet and grain samples, a more rigorous cleanup using 700 µl RW1 and three wash steps with RPE 
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was performed. The integrity of samples was determined using an Agilent 2100 Bioanalyzer, an Agilent 4200 
TapeStation or a 1% agarose gel. All tested samples had a RNA integrity number (RIN) factor of > = 8 and were 
suitable for further processing. Paired-end libraries were constructed from spikelet and grain samples (IPK 
Gatersleben) and seedling root and crown samples (University of Minnesota Genomics Center, Minneapolis, MN, 
USA) using the Illumina TruSeq Stranded Total RNA Library Prep Plant with Ribo-Zero Plant kit and sequenced 
on the NovaSeq 6000 platform with a read length of 150 bp. For the inflorescence and peduncle samples (JHI) 
Illumina RNA-seq library preparation and RNA-seq was carried out by Novogene (Company Limited, Hong 
Kong). The libraries were prepared using NEBNext® Ultra™ Directional RNA Library Prep Kit and sequenced 
using Illumina NovaSeq 6000 (PE 150).

Bioinformatics. Read quantification. We generated 77.95 billion raw reads from RNA-seq of the six dif-
ferent tissues (Supplemental Table 2). Raw reads were trimmed with Trimmomatic 0.3921 to remove adapters 
and reads shorter than 60 bp. Salmon 1.3.022 was used for expression quantification including the gcBias setting 
to align trimmed reads to the transcriptome. We followed the approach of selective alignments by generating a 
decoy-aware transcriptome from the barley reference transcript dataset V2 (BaRTv2)23 and the reference genome 
of cv Barke15. This approach is recommended24 to reduce inaccurate transcript quantification caused by unanno-
tated genomic loci that have a high sequence similarity to annotated transcripts.

Trait Method

Developmental traits

Days to awn tipping 50% of the main tiller awns per plot have emerged up to 1 cm out of the flag leaf 
sheath. Recorded as days since sowing

Days to heading 50% of the main tiller spikes per plot have emerged halfway out of the flag leaf 
sheath. Recorded as days since sowing

Days to senescence 50% of the main tiller peduncles per plot are senescent (yellow). Recorded as days 
since sowing

Days from awn tipping to heading Derived from days to awn tipping and days to heading

Days from awn tipping to senescence Derived from days to awn tipping and days to senescence

Days from heading to senescence Derived from days to heading and days to senescence

Growth habit (GH) Visual evaluation using a scale of 1 (erect), 2 (intermediate) and 3 (prostrate). 
Recorded at the onset of stem elongation

Height and length traits

Peduncle base height Height of the base of the peduncle in cm

Flag leaf blade height Height of the flag leaf sheath in cm

Culm height Height of the base of the spike in cm

Plant height Height of the top of the spike in cm

Awn tip height Height of the tip of the awns in cm

Spike base to flag leaf Calculated distance from base of spike to flag leaf sheath (auricle) in cm

Peduncle length Calculated distance from base of spike to base of peduncle in cm

Awn length Calculated distance from tip of awns to top of spike in cm

Spike culm ratio Spike length divided by culm height

Spike traits (recorded on 10–15 main tiller traits per plot after harvest)

Rachis node number Number of rachis nodes

Spike length Spike length in cm

Spike density Rachis node number divided by spike length

Grain traits (recorded on 10–15 main tiller traits per plot after harvest) using a Marvin Seed Analyzer 6

Grain area Area of all kernels per spike in mm2. Recorded using the automatic grain area 
calculation function in the Marvin SeedAnalyzer 6 software

Kernel roundness Roundness of all kernels per spike. Recorded using the automatic kernel roundness 
calculation function in the Marvin SeedAnalyzer 6 software

Thousand kernel weight Calculated from the number and weight of the kernels using the Marvin 
SeedAnalyzer 6 software

Grain length Length of all kernels per spike in cm

Grain width Width of all kernels per spike in cm

Spike traits (recorded on 10–15 main tiller traits per plot after harvest)

Infertile florets at top and bottom ( = edges) of spike Number of infertile florets at the top of spike down to first fertile floret + number of 
infertile florets at the base of spike up to first fertile floret

Infertile florets in the middle of the spike Number of infertile florets in the centre of the spike

Number of fertile grain Total number of fertile florets per spike

Percent of fertile florets Total number of fertile florets per spike divided by rachis node number

Number infertile florets Total number of infertile florets per spike

Table 1. A summary of the phenotypic traits and a description on how they were scored.
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Expression analysis. Tissue-specific genes were identified using different R packages25. For each tissue the raw 
counts were imported and combined to gene expression counts using tximport26. Raw counts were normalised 
(calcNormFactor), and log transformed to counts per million (cpm) using edgeR27. The tissue-specific expressed 
genes were identified by filtering for an average cpm of above 1 across all samples in this tissue and an average 
cpm of below −1 for all the other tissues. In addition, gene expression for two and more tissues were filtered 
with the same parameters to build the intersection sets required to create an UpSet28,29 plot of expressed genes 
in the different tissues. Gene ontology (GO) enrichment for the identified genes and visualisation were done as 
previously described30.

Variant calling. For variant calling, the trimmed RNA-seq reads were mapped to the reference genome of 
cv Barke15 using the two-pass mode implemented in STAR v. 2.7.531 allowing 6% mismatches normalized to 
read length, intron lengths between 60 and 15000 bp, a maximum distance of 2000 bp between mates and a 
maximum number of 30,000 transcripts per window. Due to the high number of reads in the grain and spikelet 
tissue the splice junction files were filtered for at least one uniquely-mapped read in more than one sample, with 
non-canonical splice sites removed and then used to generate a new genome index for the second mapping run. 
For the other tissues, the splice junction files from the first pass were provided as part of the input for the second 
mapping step. Duplicated reads were marked with Picard 2.18.2932 followed by filtering with bamtools 2.5.133 to 
remove reads with > = 2% mismatches and a mapping quality < = 50.The legacy algorithm of Freebayes 1.3.234 
was used to call variants with a minimum fraction of alternate allele observations of 20%, a minimum alternate 
allele count of 2, a minimum coverage of 4, and minimum base and mapping qualities of 30.

Whole genome shotgun (WGS) approach. DNA was extracted from snap-frozen second leaves of 
greenhouse-grown (21 °C/18 °C day/night temperature) two-week old seedlings using a guanidinium 
thiocyanate-NaCl-based method as described35. DNA quality and quantity were assessed by agarose gel elec-
trophoresis. The Nextera DNA kit (Illumina) was used for constructing libraries which were multiplexed and 
sequenced on a NovaSeq 6000 platform at IPK Gatersleben to generate 150-bp paired-end reads. A total of 12.16 
billion raw paired-end reads (Supplemental Table 3) were trimmed with Cutadapt 1.1536 to remove adapters and 
reads shorter than 30 bp. Trimmed reads were mapped to the reference genome of cv Barke using Minimap2 2.1137.  
The resulting alignment files were sorted and duplicate-marked using Novosort 3.06.0538 and converted to cram 
files using samtools 1.839,40. On average the coverage was 4x across all samples with the lowest at 1.5x to the 
highest at 6.5x coverage (Supplemental Table 3). The ‘call’ function of Bcftools40 was used to call variants using 
genotype likelihoods calculated from alignments with a minimum quality score of 20 with the ‘mpileup func-
tion of BCFtools. Variants were re-called based on read depth ratios using a custom awk script similar to the 
one at https://bitbucket.org/ipk_dg_public/vcf_filtering/src/master/ with the following parameters modified: 
dphom = 1, dphet = 2, minhomn = 10, tol = 0.249, minmaf = 0.1, minpresent = 0.01.

Genotype marker file. The final genotype file was generated by filtering and merging multiple files. First all 
RNA-seq vcf files from the six tissues were filtered to remove insertions and deletions (Indels). SNPs corre-
sponding to the robust BOPA markers50 were extracted from all six RNA-seq files. Pearson correlation between 
the markers and RNA seq files was calculated and VCFtools v0.1.16 with the parameter--diff-in-site was used 
to identify identical variants between the sets and those which differed. These two methods allowed for the 
identification of switched samples, those which did not correlate and SNPs which were inconsistent across the 
datasets. Swapped samples were renamed and those which did not correlate removed from further analyses.  
In addition, samples with a high number of heterogeneous SNPs (above 10%) were removed. RNA-seq SNPs 

Fig. 1 Selection of a two-row spring population. (a) Multidimensional scaling plot of 647 European two-row 
spring cultivars. Genotype information came from 2,336 previously published BOPA markers. The 209 selected 
cultivars forming the population in this study are shown as triangles. The year range represents the year each 
individual cultivar was registered. (b) Distribution of the selected population of 209 cultivars (orange) as part of 
the total 647 European two-row spring cultivars (green) by year of registration.
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from individual tissues were then merged, prioritizing homozygous calls while retaining heterozygous calls 
only if no homozygous calls were present in any of the tissues. After merging the six RNA-seq SNP datasets, the 
other two datasets first the WGS SNPs followed by the 50 K array SNPs16 were compared and added in the same 
manner. Calculating the Pearson correlation coefficient between the datasets and running VCFtools with the 
parameter --diff-in-site, removing or swapping samples if applicable.

The resulting unfiltered dataset contained 209 cultivars and 32,484,981 bi-allelic SNPs. The merged SNP 
dataset was filtered using TASSEL541 to remove SNPs with more than 20% missing data, minor allele frequency 
(MAF) < 0.01, heterozygosity >0.02, and only keeping bi-allelic SNPs. Missing data was imputed using the 
FILLIN plugin42 in TASSEL5 by first identifying haplotypes. For haplotype identification each chromosome was 
split into 500 blocks. The number of markers per haplotype block (-hapSize) was the total number of markers 
per chromosome divided by 500 and rounded to be divisible by 64 (TASSEL5 software requirement). Haplotypes 
were identified for each block with a maximum number of haplotypes of 20 (-maxHap 20) and at least five differ-
ent genotypes per haplotype (-minTaxa 5). Haplotype information was used as input for the imputation. Further 
filtering removed seven lines that had more than 30% missing data after imputation (Aramir, Balder J, Dallas, 
KWS Irina, Power, Proctor and Spey), and one line was removed that had more than 2% heterozygosity (Rika). 
In a last filtering step, we removed SNPs which still had more than 20% missing data, MAF < 0.025 or heterozy-
gosity > 0.02. SNPs were LD pruned with PLINK (v1.9)43 using a window size of 5000, a step size of 50 and an r2 
threshold of 0.99. The final SNP dataset after pruning contained 201 cultivars and 1,509,447 SNPs. In the final 
SNP file 0.25% of markers represented markers from the 50k array, 25.1% from the RNA-seq data and 98.5% 
from the WGS data. The overlap between RNA-seq and WGS data is considerable with 98.6% of the RNA-seq 
markers also being identified by the WGS dataset.

Variant effect using SnpEff. To identify the effect of variants on the protein, we filtered the raw vcf files in a differ-
ent way to generate an input file for SnpEff44. The aim for the genotype marker set explained above was to reduce 
the number of SNPs with pruning to a size which can be used for association analysis. For the variant effect we 
needed all the available SNP information and more importantly did not want to lose any SNPs due to pruning in 

Fig. 2 Pearson correlation coefficient between the 29 scored phenotypes and, as a 30th variable, the year of 
registration. Phenotypic values were provided as best linear unbiased predictions for each phenotype for each of 
the 209 cultivars.
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gene space. For SNPs, the merged unfiltered vcf file containing RNA-seq, WGS and 50k data was filtered by remov-
ing heterozygous calls, removing SNPs with missing data in more than 20% of the samples and a minor allele 
frequency of <0.025. In addition, a dataset containing Indels was created by using the six vcf output files from the 
RNA-seq data after variant calling with Freebayes. All were filtered to keep Indels only, remove heterozygous calls, 
remove variants with missing data in more than 20% of the samples and a MAF of <0.025. The six Indel vcf files 
were combined into one. A SnpEff database was built based on BaRTv2 and the Barke reference genome.

Fig. 3 SNP and gene distribution along the seven barley chromosomes (a) SNP distribution and density of the 
final 1,509,447 SNPs in the genotypic marker file along the seven barley chromosomes in 1 Mb bins. The SNPs 
were identified from the 50k SNP array, RNA-sequencing and whole genome shotgun sequencing datasets and 
filtered to remove missing values and heterozygosity. (b) Gene density along the seven barley chromosomes.

https://doi.org/10.1038/s41597-023-02850-4
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Statistical analysis of phenotypic data, calculation of Best linear unbiased predictions (BLUPs) 
and heritability. Statistical analysis was performed using R 3.6.125. The Pearson correlation coefficient 
between experiments was calculated for each phenotypic trait and datasets showing an insignificant correlation 
(p > 0.05) with at least one other dataset of the same trait were removed before calculating BLUPs. The datasets 
being used in each of the BLUP calculations are listed in Supplemental Table 4. BLUPs were calculated across 
experiments using a randomized complete block model in META-R with experiments set as a random factor 
following formula 3 in Alvarado et al.45.

Genome wide association studies (GWAS). Association between phenotype and genotype was done 
using the Mixed Linear Model (MLM)46 with GAPIT (version 3)47. As input, we used the genotype marker file 
of 201 cultivars and 1,509,447 SNPs. The BLUP values of Awn length were used to provide an example of the 
process. Three principal components (PCs) were calculated within GAPIT and model selection set to TRUE to 
enable GAPIT to select the optimal number of PCs for the individual phenotype based on a Bayesian information 
criterion (BIC).

Data Records
All raw data files for both raw RNA sequencing data and whole genome shotgun data have been depos-
ited at the European Nucleotide Archive (ENA) under the following project number: PRJEB4906948 for the 
RNA-sequencing reads and PRJEB4890349 for the whole genome shotgun sequencing reads.

Phenotypic data and the SNP marker file are available through Germinate50: https://ics.hutton.ac.uk/
germinate-barn/

The database contains the raw data by year and by site plus the calculated BLUP dataset.
The SNP marker file has been deposited in the European Variant Archive51 under the following project num-

ber: PRJEB6587552.
Derived datasets are available through e!Dal53 with the following https://doi.org/10.5447/ipk/2023/15 The data-

sets consist of two sets of gene expression files per tissue; one for the raw read counts and one for the TPM values 

Fig. 4 Gene expression of 209 cultivars across six tissues. Multidimensional scaling plot of all genes expressed 
in any of the six studied tissues: root, crown, peduncle, inflorescence, spikelet and grain.

Fig. 5 An UpSet plot showing the overlap of the expressed genes for each of the tissues and tissue combinations.
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mapped against BaRTv2. In addition, the data has been uploaded to ArrayExpress54 with the following accession 
numbers: E-MTAB-13231 (spikelet tissue)55, E-MTAB-13236 (grain tissue)56, E-MTAB-13235 (root tissue)57, 
E-MTAB-13234 (crown tissue)58, E-MTAB-13233 (inflorescence tissue)59 and E-MTAB-13232 (peduncle tissue)60.

Two further files containing variant identification are available through e!Dal. The first contains the SNPs 
and the second the Indel information with SnpEff annotation.

technical Validation
Population. The 209 two-row spring barley population was selected from previously established datasets 
containing 647 cultivars10,11,17–19. To include a wide range of genetically representative individuals, we used avail-
able BOPA SNP data (as previously described)61 and did a multi-dimensional scaling plot (Fig. 1a). Dimension 1 
showed the progression from the oldest to the newest cultivars. Genotypes were then chosen to be spread across 
year of registration as a cultivar to the UK market. Except for the first time-range which encompassed 130 years 
(1830–1959) of cultivar releases, all other ranges were split into decades and each time-range is represented by a 
similar number of genotypes (Fig. 1b). The final population was representative of breeding progress in cultivated 
barley for improved yield over time.

Pedigree data showed that modern barley germplasm is highly connected with most current genotypes’ descend-
ants of a small number of “founder” genotypes (Pedigree file: Supplemental File 1, Pedigree attributes: Supplemental 
File 2). These supplemental pedigree files can be used as input for the pedigree visualisation tool Helium (https://
helium.hutton.ac.uk/)62. Intermediate crosses were omitted from the file to be able to display the pedigree and pro-
duce a tree which is both readable and navigable. Using the pedigree data within Helium allows for further analyses.

Phenotyping. Field trials were done in 2019 and 2020 in three different locations: Minneapolis (Lat. 44.987, 
Long: −93.258; MN, USA), Dundee (Lat. 56.462, Long. −2.971; UK) and Gatersleben (Lat. 51.823, Long. 11.287; 
Germany). In total 29 agronomic traits were scored associated with development (earliness and growth habit 
traits), grain and height measurements. All the phenotypic data can be viewed and studied in a Germinate data-
base: https://ics.hutton.ac.uk/germinate-barn/. Across years and sites, the results were consistent except for a 
few traits. All earliness traits showed a faster development to awn tipping all the way to peduncle senescence in 
Minnesota and slowest in Dundee. Outliers in the phenotypic scoring were the grain fertility measurements in 
Minnesota in 2019 where the spikes got stuck in the flag leaf sheath due to high temperatures during the growing 
season and did not emerge fully which led to a higher number of infertile florets. All phenotypic information 
was combined into BLUPs except for 24 out of 165 phenotype datasets which did not correlate with the rest 
(Supplemental Table 4 shows which phenotype values were combined; Supplemental Fig. 1 for distribution of 
BLUP values per phenotype). A strong positive correlation among the five different height measurements illus-
trate the robustness of the phenotypic dataset (Fig. 2).

Genotyping. To achieve the most extensive genotypic information for our population, variant calling from 
RNA-seq data, whole genome shotgun data and previously established 50 K SNP data was combined (32,484,981 
raw SNPs). For RNA-seq and WGS, the data was filtered to keep only biallelic SNPs. We extracted the SNPs corre-
sponding to the previous described BOPA markers across all 1463 sequencing datasets (six tissue-specific RNA-seq 
datasets with 209 genotypes each and one WGS dataset with 209 genotypes) for quality control. The Pearson corre-
lation coefficient for all genotypes between datasets was calculated. This identified mixed-up samples where the gen-
otype showed high correlation with a differently named sample and therefore allowed for correction of the genotypic 
information. Samples with a high number of heterogenous SNPs (above 10%) were removed as this pointed towards 
issues during sample preparation. The filtering step reduced the number of genotypes per tissue. The final numbers 
of genotypes per tissue varied between 191 to 199 (Supplemental Table 2 shows which genotypes per tissue where 
retained). The merged SNP file was filtered to remove highly heterozygous sites or those containing more than 20% 
missing data. The remaining sites were imputed using haplotype imputation. SNPs were pruned by LD using Plink 
to reduce the dataset size to the final 1,509,447 SNPs52. SNP distribution along the 7 chromosomes is shown in Fig. 3.

Gene expression. RNA-seq data for six different tissues (crown, grain, inflorescence, peduncle, root, 
spikelet) was mapped against the BaRTv2 transcriptome using Salmon22. The expression of all 39,434 genes in 
transcript per million (TPM)55–60 for each tissue were used as input to generate a multidimensional scaling plot 
(MDS). The MDS shows all 209 genotypes cluster together by tissue type (Fig. 4). The tissue furthest separated 
by the first dimension from the rest was the root tissue. The two tissues sampled from the spikelet at green anther 
stages (spikelet) and developing grain at five days post anthesis (grain) show the highest overlap.

Data use-case scenarios. In the following three examples we show how the above datasets can be used.
In the first example the expression data has been used to filter for tissue-specific gene expression. 

Tissue-specific genes showed that the root tissue was the most distinct with 776 genes identified as root specific 
(Fig. 5). Overall, of the tissue specific genes, 572 genes were only expressed in grain, 437 in spikelet, 198 in inflo-
rescence, 86 in peduncle and 64 in crown. Inflorescence and peduncle shared the highest overlap of expressed 
genes with 927 genes and 13,215 genes were expressed in all six tissues. While the MDS plot shows a high overlap 
of samples between spikelet and grain in the first two dimensions, the third dimension divides those tissues 
which fits with these two tissues showing the second and third highest tissue-specific gene expression. Gene 
ontology for the peduncle resulted in no significant terms. The Gene ontology results for all remaining five tissues 
are shown in Fig. 6. The associated terms were generally comparable to those previously identified in maize63.
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In the second example, we illustrate how the data can be used to explore the potential impact of genetic varia-
tion on gene activity or protein function by identifying premature stop codons or frameshift mutations in a high 
confidence variant dataset. For the SNP dataset we started with 32 million SNPs, removed heterozygous SNPs 
and filtered for variants with less than 20% missing data and a minor allele frequency of 2.5% which resulted 
in 4,012,229 SNPs64. Those were used as input into SnpEff which identified 9,219,271 effects (as described by 
SnpEff: http://pcingola.github.io/SnpEff/se_inputoutput/#eff-field-vcf-output-files) caused by those 4 million 
SNPs. Of those effects, 4% (368,650) were in exons, with 53.78% synonymous variants, corresponding to 199,545 
effects in 17,446 genes. The non-synonymous variants represented 45.57% (169,105 effects) of the exon effects 
in 19,057 genes and 0.65% classified as nonsense. The 0.65% corresponded to 2,425 transcripts and 1,105 genes 
with a premature stop codon in the sequence. For the Indel identification only the RNA-seq variant files were 
considered as those provided higher read depth for the genic regions. They were also filtered by removing het-
erozygous variants, keeping those with less than 20% missing data and a minor allele frequency of 2.5%. A 
total of 50,865 variants remained52 which SnpEff predicted to cause 558,991 effects. 50.31% (281,228 effects) 
were upstream or downstream of the gene and 41.81% (233,706 effects) in the intronic region. After filtering 
for disruptive frame shifts caused by insertions or deletions resulting in changes to the protein sequence, 1,912 
genes remained which we designated as potentially non-functional in some of the cultivars64. Such structural 
variation can be explored in relation to gene expression. For example, Fig. 7 shows the expression of two genes 
BaRT2v18chr5HG260690 and BaRT2v18chr2HG058650 with frameshift mutations in comparison to the Barke 
reference allele. The consequence of all such observed variation still needs to be explored.

Third, we show a genome wide association study (GWAS) using the 1,509,447 SNP markers and the morpho-
logical character “awn length” as a phenotype. We used the Mixed Linear Model (MLM) in GAPIT47 to identify 
associations in the genome. Using a -log10(p) cut-off of 5 resulted in 6 significant peaks (Fig. 8). The most signif-
icant SNP was found on chromosome 5H at position 441 Mb within 1 kb of HvDep1 (BaRT2v18chr5HG247460) 
previously shown to influence awn length65. The other associations and traits remain to be explored.

Fig. 6 Gene ontology (GO) enrichment for the tissue-specific genes in (a) root, (b) grain, (c) inflorescence,  
(d) spikelet and (e) crown. X-axis shows the percentage of genes associated with the GO term out of all genes in 
BaRTv2 associated with this term. Y-axis shows the significance as FDR adjusted -log(p-value) of the GO term. 
The area of the circle corresponds to the number of genes associated with the GO term.
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Usage Notes
To perform the analysis using the Snakemake66 pipeline (see code availability) a high-performance computing 
(HPC) cluster is needed. For example, the Salmon indexing step in this setup needed 56 Gb of memory using 
16 cores, mapping of each individual sample needed 31 Gb of memory using 8 cores. Downstream analyses like 
the genome wide association studies can be performed by downloading the BLUPs of the phenotypes and the 
marker file from Germinate.

Code availability
The code for analysing the RNA-sequencing data from mapping to genome and transcriptome to variant calling 
was combined into a Snakemake66 pipeline and is available on GitHub: https://github.com/SchreiberM/BARN.
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