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Multi-frequency steady-state visual 
evoked potential dataset
Jing Mu  1,2 ✉, Shuo Liu  1, Anthony N. Burkitt  1 & David B. Grayden  1,2

The Steady-State Visual Evoked Potential (SSVEP) is a widely used modality in Brain-Computer 
Interfaces (BCIs). Existing research has demonstrated the capabilities of SSVEP that use single 
frequencies for each target in various applications with relatively small numbers of commands required 
in the BCI. Multi-frequency SSVEP has been developed to extend the capability of single-frequency 
SSVEP to tasks that involve large numbers of commands. However, the development on multi-
frequency SSVEP methodologies is falling behind compared to the number of studies with single-
frequency SSVEP. This dataset was constructed to promote research in multi-frequency SSVEP by 
making SSVEP signals collected with different frequency stimulation settings publicly available. In this 
dataset, SSVEPs were collected from 35 participants using single-, dual-, and tri-frequency stimulation 
and with three different multi-frequency stimulation variants.

Background & Summary
Brain-Computer Interfaces (BCIs), also called Brain-Machine Interfaces (BMIs), translate brain activity into 
commands to control external devices, such as computers, wheelchairs, or assistive robots1. BCIs can detect 
human intention in the absence of physical inputs so they can be used to assist people with movement disorders 
and provide an additional communication channel between humans and machines2.

Among the modalities that can be captured and decoded from the brain, the Steady-State Visual Evoked 
Potential (SSVEP) is one of the most widely used as it can be captured non-invasively using electroencepha-
lography (EEG) with relatively high signal-to-noise ratio and requires minimal user training3. The SSVEP is an 
automatic response of the visual cortex in reaction to periodic visual stimulation4,5. The SSVEP responses show 
the same frequencies as the stimulation frequencies as well as the harmonics of the frequencies4,6. The existence 
of harmonics enables higher SSVEP classification accuracy7 but, at the same time, limits the selection of frequen-
cies when constructing SSVEP-based BCIs8. Human brains respond to a constrained range of frequencies with 
optimal range identified as 12–18 Hz4,9,10 so, in cases where a large number of commands to be shown at once 
(i.e., a large number of frequencies need to be selected for stimulation), the frequencies become very close to 
each other and this makes decoding a very challenging task.

To increase the capacity of SSVEP-based BCIs to produce large numbers of commands, multi-frequency 
SSVEP was first proposed in 201011 and different multi-frequency stimulation methods have since been devel-
oped12–16. The multi-frequency stimulation methods combine multiple frequencies in each stimulus. Therefore, 
by using different combinations of input frequencies, more stimuli can be represented with a smaller num-
ber of input frequencies. This makes multi-frequency SSVEP superior to single-frequency SSVEP when the 
number of targets becomes large because multi-frequency SSVEP does not require as many frequencies as 
single-frequency SSVEP, so a larger frequency interval can be maintained17. However, it was not until 2020 that 
studies on understanding better frequency selection in multi-frequency SSVEP were conducted18,19 and, in 2021, 
the first training-free decoding algorithm for multi-frequency SSVEP was developed20. It was demonstrated that 
multi-frequency SSVEP has more complex frequency components compared to traditional single-frequency 
SSVEP, including the existence of interactions between the input frequencies12–15,20. This feature creates redun-
dancy in the information carried by the signal that can be used in decoding. Even though multi-frequency 
SSVEP has demonstrated its potential in delivering large numbers of commands, the research in this field is still 
lagging behind that of single-frequency SSVEP.

One way to facilitate research and encourage more people to study a topic is to create relevant datasets 
and make them widely accessible. The benchmark dataset21 for SSVEP-based BCIs has been used in over 200 
scholarly works (based on Google Scholar citations) since its publication in 2017. Following this, more datasets 
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on SSVEP have been published that focus on collecting SSVEP across multiple days and in multiple frequency 
bands22, SSVEP collected in a closer-to-real-world application setting23, comparing SSVEPs collected with wet 
and dry EEG electrodes24, SSVEP in the ageing population25, and feature-based selective attention in SSVEP26. 
BCI datasets that include SSVEP components were assembled to investigate BCI illiteracy27, facilitate the devel-
opment of BCIs when users are in mobile situations28, and hybrid BCI combining EEG and other biosignals29. 
However, all of these datasets use single-frequency SSVEP, and there is not yet a publicly available dataset for 
multi-frequency SSVEP.

In this work, we constructed the first Open Access dataset for multi-frequency SSVEP30. Our dataset 
includes SSVEP collected from 35 participants with dry EEG electrodes. All participants were presented with 
single-frequency, dual-frequency, and tri-frequency visual stimulation using up to three different stimulation 
methods for each modality. EEG data is provided in complete session format to allow everyone to have access to 
all details in the recordings and thus simulate a real-time experiment experience. Matlab scripts are included 
to assist in separating data into trial lengths.

Methods
Participants. Thirty-five volunteers (aged 19 to 42 years, 25.91 mean ±5.30 standard deviation) participated 
in this experiment, who are free of neurological or facial muscle conditions. Out of the 35 participants, 25 were 
naïve to BCIs (had never previously participated in a BCI experiment); 27 were naïve to SSVEP-based BCIs (had 
never previously participated in an SSVEP experiment). For the eight experienced SSVEP-based BCI participants, 
the time since they last participated in an SSVEP experiment ranged from 4 months to 36 months (11.36 ± 10.38 
months, mean ± standard deviation). Two participants were left handed and the rest were right handed. All par-
ticipants had normal or corrected-to-normal vision (e.g., with glasses or contact lenses).

This study was approved by the University of Melbourne Human Research Ethics Committee (Project ID 
24178). Written consent was collected from each participant. Each participant was compensated with an AUD 
$20 gift card.

EEG Setup. EEG was recorded with g.USBamp and g.SAHARA dry electrodes (g.tec medical engineering 
GmbH, Austria) inside a Faraday shielded room. Brain activities were measured from six channels, PO3, POz, 
PO4, O1, Oz, and O2, according to the international 10-10 system. Reference and ground electrodes were posi-
tioned on left and right mastoids, respectively. Dry electrodes were selected due to the ease of setting up without 
gelling, which makes it more convenient in real-world applications.

During data acquisition, a 0.5–100 Hz band-pass filter and a 50 Hz notch filter were applied to all channels in 
g.USBamp settings. Data was recorded at a sampling rate of 512 Hz.

Stimulation setup. An Alienware monitor AW2518HF (24.5 inch, 1920 × 1080, DELL Technologies, USA) 
was used to present all visual stimulation in this study. Participants sat in a chair at a distance of 70 cm from the 
screen measured from their eyes and with their head centred to the screen.

Stimulation was delivered through an interface programmed in Unity (Unity Technologies, USA) that ran 
on an EliteBook 840 G5 laptop (Hewlett-Packard, USA) with Core i7-8550U CPU @ 1.80 GHz, 16 GB RAM 
(Intel, USA) and UHD Graphics 620 integrated graphics unit (Intel, USA). The programmed interface displayed 
stimuli (targets) in white squares of size 108 × 108 pixels on a black background and 108 pixels gaps between 
adjacent targets in both vertical and horizontal directions. The interface was set to a 120 Hz refresh rate.

The frequencies used in this study were 7, 11, 13, 17, 19, and 23 Hz. These are prime numbers that are in the 
most responsive range of SSVEP4. The combinations of these six frequencies made six single-frequency targets, 
15 dual-frequency targets (C 152

6 = ), and 20 tri-frequency targets ( =C 203
6 ). Table 1 lists the frequencies and 

frequency combinations used in single-, dual-, and tri-frequency stimulation.
The stimuli layouts in single-, dual-, and tri-frequency tests are shown in Fig. 1. Simple flicking was used in 

delivering single-frequency stimulation. Three different stimulation methods were used in dual-frequency stim-
ulation and two were used in tri-frequency stimulation. Details will be explained below; visual representations 
of the stimulation methods can be found in Fig. 2.

Single-frequency stimulation. Single-frequency stimulation was delivered as square waves flickering at full 
brightness. The six targets were laid out in a 2 × 3 matrix, as shown in Fig. 1a. The signal for each frequency was 
generated using

π= +ftu 1
2

sgn(sin(2 )) 1
2

,
(1)

where f is the stimulation frequency and sgn() is the sign function.

Dual-frequency stimulation. Three different methods were used in dual-frequency stimulation: two frequency 
superposition methods (OR and ADD)15 and checkerboard12.

In dual-frequency superposition, two square waves are superimposed,

S u u (2)OR,2 1 2= ∨

S 1
2

u 1
2

u ,
(3)ADD,2 1 2= +
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where u1 and u2 are signals generated from Eq. (1) using two different frequencies f1 and f2 In frequency super-
position OR with two stimulation frequencies (SOR, 2), the OR logic is applied to the two square waves as shown 
in Eq. (2), where the stimulation is ON (1) when either (or both) of the signals is ON, and OFF (0) when both 
of the signals are OFF. Frequency superposition ADD with two frequencies (SADD, 2) is achieved by reducing 
the brightness of each signal by half, then summing the brightness from the two signals, as described in Eq. (3).

The checkerboard method delivers the two stimulation signals separately, with its two patterns represented 
in the alternating squares. In this study, 8-by-8 checkerboards are used in place of each solid square stimulus.

The fifteen dual-frequency targets were shown in a 3 × 5 layout (Fig. 1b).

Tri-frequency stimulation. Similar to dual-frequency stimulation, frequency superposition OR and ADD were 
used in presenting tri-frequency stimulation. However, the checkerboard method was excluded as it does not 
support more than two frequencies shown at a time.

= ∨ ∨S u u u (4)OR,3 1 2 3

= + +S 1
3

u 1
3

u 1
3

u ,
(5)ADD,3 1 2 3

where u3 is the signal generated with a third frequency. In tri-frequency stimulation with frequency superposi-
tion, the formulations are similar to those in dual-frequency stimulation. In OR (SOR, 3), instead of two signals, 
we now add a third signal u3 as shown in Eq. (4). In ADD (SADD, 3), the brightness of each signal is reduced to one 
third, as shown in Eq. (5).

The twenty tri-frequency targets were laid out in a 4 × 5 grid (Fig. 1c).

Experimental protocol. Experiment structure. The experiment consisted of nine sessions, with session 1 
testing single-frequency stimulation, sessions 2–5 testing dual-frequency, and sessions 6–9 testing tri-frequency. 
Three-minute breaks were provided between the sessions. A 10 minute break was placed between sessions 5 and 
6 when the participant had finished all single- and dual-frequency sessions and before they started tri-frequency 
sessions. All breaks were adjusted to the participant’s need to minimise fatigue. Figure 3 depicts the structure 
of the experiment. The whole experiment required 2 hours to complete including the preparation and clean-up 
time (dry electrodes were used so experimenter only need to remove the cap from the participant during the 
clean-up). The experiment was completed in one sitting.

Each setup was tested four times. In session 1, the single-frequency setup (T1) was tested four times in a row. 
In sessions 2–5, the three dual-frequency setups (T21: frequency superposition OR; T22: frequency superpo-
sition ADD; T23: checkerboard) were tested once in each session. Therefore, each session included three tests 
in a balanced randomised sequence. Table 2 lists all sequences used in the experiment and the participants that 
used each sequence. Sessions 6–9 tested the two tri-frequency setups (T31: frequency superposition OR; T32: 
frequency superposition ADD) with each session running each setup once. The tri-frequency sessions followed 

Target #

Frequencies (Hz)

Single Frequency Dual Frequency Tri Frequency

1 7 7, 11 7, 11, 13

2 11 7, 13 7, 11, 17

3 13 7, 17 7, 11, 19

4 17 7, 19 7, 11, 23

5 19 7, 23 7, 13, 17

6 23 11, 13 7, 13, 19

7 — 11, 17 7, 13, 23

8 — 11, 19 7, 17, 19

9 — 11, 23 7, 17, 23

10 — 13, 17 7, 19, 23

11 — 13, 19 11, 13, 17

12 — 13, 23 11, 13, 19

13 — 17, 19 11, 13, 23

14 — 17, 23 11, 17, 19

15 — 19, 23 11, 17, 23

16 — — 11, 19, 23

17 — — 13, 17, 19

18 — — 13, 17, 23

19 — — 13, 19, 23

20 — — 17, 19, 23

Table 1. Frequencies (in Hz) used in each target in single-, dual-, and tri-frequency stimulation.
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an AB-BA-BA-AB sequence alternating with BA-AB-AB-BA between the participants (participants with odd 
indices followed AB-BA-BA-AB, even indices followed BA-AB-AB-BA). Figure 4 shows the structure of each 
session. Test sequences for participant 1 are labelled in this figure as an example.

Trial structure. Trials were the smallest components in this experiment. Each trial started with a 1 s cue (green 
frame) to show the participant which target they should attend to. This was followed by a 5 s stimulation period 
with a fixation point provided to help them maintain attention on the target. Visual feedback (solid green or red 

Fig. 1 Stimuli layouts in single-frequency, dual-frequency, and tri-frequency tests. The 6 selected frequencies 
make 6 targets (2 × 3) in single-frequency, 15 (3 × 5) in dual-frequency, and 20 (4 × 5) in tri-frequency tests. “T” 
for target.

Fig. 2 Trial structure and visual representations of the stimulation methods. Each trial starts with a 1 s cue 
(green frame around the intended target), followed by 5 s stimulation with a fixation point shown at the centre 
of the target. The collected SSVEP was online decoded and outcome fed back to the participant for 0.5 s right 
after stimulation finished with the target turning to solid green or red indicating correct or incorrect decoding 
output, respectively. A 0.5 s rest period was provided at the end of each trial. Note that in tri-frequency tests, 
Feedback and Rest were swapped to allow sufficient time for decoding. By the end of the test, a score is shown 
on the screen indicating the number of correctly decoded trials.

Fig. 3 Experiment Structure. The whole experiment takes 2 hours to complete. The three parts of the 
experiment each focus on single-frequency, dual-frequency, and tri-frequency setups, respectively. Sessions 
have different session lengths and different numbers of tests. Details on sessions can be found in Fig. 4. Tests 
have 6 trials in part 1, 15 trials in part 2, and 20 trials in part 3, consistent with the numbers of targets in single-, 
dual-, and tri-frequency setups.

https://doi.org/10.1038/s41597-023-02841-5
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block for correct or incorrect, respectively) was shown to the participant for 0.5 s after stimulation. Then the 
screen turned to solid black for 0.5 s as a resting period. Each trial was 7 s in total. Note that, in tri-frequency 
tests, the feedback and rest were swapped to allow sufficient time for the decoder to produce an output. Figure 2 
shows the structure of the trials.

Test structure. A test refers to the action of going through all targets on the screen once each. In a 
single-frequency test (T1), one test has six trials as there are six targets. In a dual-frequency test (T21, T22, T23), 
one test has 15 trials. In a tri-frequency test (T31, T32), one test has 20 trials. In a test, participants went through 
the targets in a fixed sequence: from left to right and top to bottom. However, the stimuli were randomly shuffled 
on the screen to reduce undesirable bias. By the end of each test, a score is shown on the screen informing the 
participants of the number of correctly decoded trials, as shown in Fig. 2.

online decoding. Data were processed online with four training-free decoders operating in parallel to keep 
the experiment compact while minimising the effect of inaccurate modelling of each individual’s SSVEP responses 
in the decoding process. Canonical Correlation Analysis (CCA)31 for single frequency only, Multi-Frequency 
CCA (MFCCA)20 for multi frequency only, and Linear Diophantine Equation (LDE) decoding algorithms32 were 
used. The recorded EEG during the 5 s stimulation period were used in decoding.

Fig. 4 Session structure in the experiment. Test sequences for participant 1 are shown as an example. Session 1 
includes the 4 repeated tests on single-frequency (T1). Sessions 2–5 are the 4 repeats of the three dual-frequency 
tests (T21, T22, and T23) with the test sequence in each session shuffled according to Table 2. Sessions 6–9 
repeat the two tri-frequency tests (T31 and T32) 4 times in an AB-BA-BA-AB format alternated with BA-AB-
AB-BA between the participants.

Seq.# Session 2 Session 3 Session 4 Session 5 Participants #

1 T21, T22, T23 T22, T23, T21 T23, T21, T22 T21, T22, T23 1, 10, 19, 28

2 T23, T21, T22 T22, T23, T21 T21, T23, T22 T22, T21, T23 2, 11, 20, 29

3 T23, T22, T21 T21, T23, T22 T23, T22, T21 T22, T21, T23 3, 12, 21, 30

4 T22, T21, T23 T21, T23, T22 T23, T22, T21 T22, T21, T23 4, 13, 22, 31

5 T23, T22, T21 T21, T23, T22 T22, T23, T21 T21, T22, T23 5, 14, 23, 32

6 T23, T21, T22 T22, T23, T21 T23, T21, T22 T21, T22, T23 6, 15, 24, 33

7 T23, T21, T22 T21, T22, T23 T22, T23, T21 T23, T21, T22 7, 16, 25, 34

8 T22, T23, T21 T21, T22, T23 T23, T22, T21 T21, T23, T22 8, 17, 26, 35

9 T22, T21, T23 T23, T22, T21 T22, T21, T23 T21, T23, T22 9, 18, 27

Table 2. Sequences for dual-frequency sessions (sessions 2–5) and the list of participants that used each  
dual-frequency sequence.
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CCA. Canonical Correlation Analysis (CCA)31 is a decoding algorithm that focuses on comparing the 
time-domain correlation ρ of the recorded multi-channel EEG X and predefined templates Y based on knowl-
edge of the set of frequencies used. CCA looks for the weight vectors WX and WY, which constructs x = XTWX 
and y = YTWy, and maximises the correlation between x and y,

ρ = =
E

E E

E

E E
x y

x y

x x y y
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where E is the mathematical expectation. The template Y in CCA is constructed with the sine and cosine signals 
at the stimulation frequency f and its harmonics,
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where Nh is the number of harmonics included in the formulation. For each stimulation frequency, a template 
Y is constructed and corresponding correlation calculated. The frequency that results in the highest correlation 
between x and y is selected as the decoder output.

In this work, two CCA configurations were used with Nh = 1 (decoder 1) and Nh = 2 (decoder 2).

MFCCA. Multi-Frequency Canonical Correlation Analysis (MFCCA)20 extends CCA to include the interac-
tions between input frequencies into the template formulation. The templates Y in MFCCA are constructed with 
the sine and cosine signals at the stimulation frequencies and the integer linear combinations of the stimulation 
frequencies. Instead of bounding the size of Y with Nh as in CCA, it is bounded in MFCCA by order NO, defined 
as the sum of absolute values of the coefficients in the combination. For example, in dual-frequency SSVEP with 
stimulation frequencies f1 and f2, the linear integer combination of the two frequencies +c f c f1 1 2 2

, ∈c c,1 2  
has order N c cO 1 2= + .

Fig. 5 Examples of time domain waveforms from the six tests. (a) T1 11 Hz, (b) T21 7 and 11 Hz, (c) T22 7 and 
11 Hz, (d) T23 7 and 11 Hz, (e) T31 7, 11, and 17 Hz, (f) T32 7, 11, and 17 Hz. Orange and yellow (only in (d)) 
show the waveforms of the stimulation signals. Blue plots the average SSVEP of all participants.
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Fig. 6 Examples of frequency domain magnitudes from the six tests. (a) T1 11 Hz, (b) T21 7 and 11 Hz, (c) 
T22 7 and 11 Hz, (d) T23 7 and 11 Hz, (e) T31 7, 11, and 17 Hz, (f) T32 7, 11, and 17 Hz. Red crosses label 
stimulation frequencies. In (a), red circles label harmonics. In (b–f), crosses label harmonics of the stimulation 
frequencies and circles label linear integer combinations of the stimulation frequencies. Different colours 
represent different numbers of harmonics or orders of interaction: magenta: 2, blue: 3, cyan: 4, green: 5.

Fig. 7 Estimated power spectral density of the average SSVEP of all participants in each trial in tests (a) T1, (b) 
T21, (c) T22, (d) T23, (e) T31, (f) T32. The trial number is the same as target index. Stimulation frequency in 
each target can be found in Table 1.
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An example of the template formulation with two input frequencies up to order 2 is
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The two configurations selected for MFCCA in this work are NO = 1 and NO = 2 (the best performing settings 
as identified by Mu and colleagues32).

LDE. The Linear Diophantine Equation (LDE) decoder32 is capable of decoding both single-frequency and 
multi-frequency SSVEP. In LDE, the top Np frequency peaks in the recorded SSVEP are first identified, then 
the coefficient(s) of the identified peak frequency in relation to the input stimulation frequency/frequencies are 
calculated through solving the formulated LDE. The frequency/frequency pair that has the highest number of 
integer solutions in solving the LDEs and lowest sum of orders is regarded as the decoder output.

The two LDE configurations for both single-frequency and multi-frequency decoding are selected as Np = 9, 
NO = 4 (the best performing setting as identified by32) and Np = 12, NO = 2 (decoders 3 and 4, respectively).

Data records
The dataset30 can be accessed on Figshare from https://doi.org/10.26188/22015694.

The dataset includes raw EEG data collected from 35 participants accompanied by metadata containing 
non-identifiable details of the participants. Data available in both.mat and.csv format. Matlab scripts are pro-
vided to assist users in preparing the data (.mat) in a more accessible form.

All nine sessions of EEG data from all participants are included in the dataset. Sessions are in data files 
named “P##_Ses#” where ## is a two-digit index for the participant, e.g. “P01”, and the last # is the session num-
ber (1–9). All data in .csv format are included in data_in_csv.zip.

EEG Data. EEG data were recorded in Simulink and Matlab 2015a (MathWorks Inc., USA). In all record-
ings, the data has 10 rows. The first row records timestamps, rows 2 to 7 are the six EEG channels (PO3, POz, PO4, 
O1, Oz, O2, respectively), row 8 contains triggers, row 9 is processed from row 8 to show stimulation periods, and 
row 10 has decoder outputs in the online experiment.

The trigger signal in row 8 labels both onsets and offsets of the visual stimulation, where a positive integer 
labels the onset of each stimulation period and −1 labels the end of stimulation in each trial. The value of each 
onset trigger is the frequency index in each trial: 1–6 in single-frequency, 1–15 in dual-frequency, and 1–20 in 
tri-frequency. The decoder output in row 10 is an 8-digit integer (sometimes appears as 7-digit as the ‘0’ on the 
first digit is omitted) where the first two digits are the index (01–20) of the target decoded by decoder 1; the third 
and forth digits are the index of the target decoded by decoder 2, etc.

The script dataset_processData.m extracts the data (.mat) in sessions to data in trials based on the 
trigger information. The extracted data will be stored in a separate folder, still keeping one participant for each 
folder. Trials are named “P##_T#_R#_#”, where T# is the test name (e.g. T21), R# is the number of the repetition 
of the test (R1-R4), and the last # is the trial number/frequency index, which is equal to the trigger value.

Metadata. Metadata dataset_metadata.xlsx includes non-identifiable participant information: 
sex and gender, age, dominant hand, and whether they have previous experience with EEG-based BCI and 
SSVEP-based BCI.

Technical Validation
The data quality was validated through inspection of both time domain and frequency domain signal profiles, 
order distribution in multi-frequency tests, signal-to-noise ratios, and decoding accuracies.

Signal profile in time and frequency domains. Figure 5 shows examples of the averaged time domain 
waveforms of the recorded SSVEPs overlaid on the waveforms of the stimulation signals. Here, 11 Hz in the 
single-frequency test T1 (Fig. 5a), 7 and 11 Hz in dual-frequency tests T21, T22, and T23 (Fig. 5b,d), and 7, 11, 
and 17 Hz in tri-frequency tests T31 and T32 (Fig. 5e,f) are shown as examples. The averaged waveforms were 
obtained by averaging the SSVEP from all participants in all four repeats, then band-pass filtering between 5 and 
45 Hz, and finally cutting the 5 s data into five 1 s epochs with no overlap and averaging across all.

https://doi.org/10.1038/s41597-023-02841-5
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In single-frequency SSVEP, the waveform matches the stimulation signal very well, with harmonics visible. 
Dual-frequency and tri-frequency SSVEP waveforms still follow the corresponding stimulation signals in gen-
eral, but the patterns are less prominent due to the additional stimulation frequencies and the complex interac-
tions between them. It can also be observed from the plots that different stimulation methods trigger different 
SSVEP responses. The responses from frequency superposition ADD and the checkerboard pattern seem to 
follow the stimulation signal closer than the responses from frequency superposition OR.

Fig. 8 Histograms of orders of the top 10 peaks in each test. Figures on the left show the total number of times 
each order was observed in the top 10 peaks from each trial and the total number of possible combinations 
that can be made by the input frequencies at each order. Figures on the right show the percentage of all possible 
combinations that were found in the top peaks.
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Figure 6 shows the frequency domain components in the recorded SSVEPs. It is expected that clear peaks 
should be observed at the stimulation frequencies as well as their harmonics in single-frequency SSVEP4, and 
harmonics and integer linear combinations between the stimulation frequencies in multi-frequency SSVEP15. 
We can see by the markers labelling input frequencies and their harmonics and interactions that the expected 
frequency domain features are clearly visible for all stimulation types.

The frequency domain characteristics are further shown as estimated power spectral density (PSD) in Fig. 7. 
The PSDs were calculated using the short-time Fourier transform with the 5 s SSVEP recordings averaged across 
all participants in all repetitions. Each subplot in Fig. 7 shows the PSDs of each trial, or target, in each test. The 
stimulation frequencies of each trial/target in each test can be found in Table 1. From the figure, except the high-
lights on the stimulation frequencies and their harmonics and interactions, we can see that the power distribu-
tion across the spectrum is relatively consistent with slightly higher power in alpha and low-beta ranges as the 
number of stimulation frequency increases. This is partially due to the more complex frequency characteristics 
in multi-frequency SSVEPs where the integer linear combinations of the input frequencies can also be found in 
the recorded SSVEP.

From the above observations, we can conclude that the recorded EEG have the expected SSVEP responses.

order profile. One important feature in multi-frequency SSVEP is the order of the interactions, which is 
defined as the sum of absolute values of the coefficients of interactions20. Fig. 8 shows the distribution of orders 
in the top 10 peaks in each trial in the five multi-frequency tests. Plots on the left hand side show the number of 
times each order was observed in the top 10 peaks (left/blue axis) and the total number of possible combinations 
(right/red axis). The plots on the right then show the percentage of the combinations observed out of all possi-
bilities at each order using the information in the left hand side plots. The percentage of occurrence on the right 
agrees with the previous observations that harmonics and interactions at lower order have higher chance of being 
observed in the top peaks20.

The order distributions across the different stimulation methods only have slight variations when com-
paring among the same number of stimulation frequencies. However, the distributions in dual-frequency and 
tri-frequency show a clear difference. The decrease in the observed higher order peaks in tri-frequency may be 
attribute to the large number of overlapped frequencies in the harmonics and interactions, as can be seen in 
Fig. 6, and those peaks being identified and labelled with a lower order and so excluded in the higher order bins.

Signal-to-Noise ratio (SNr). Narrow-band and wide-band SNRs23 were calculated to further demonstrate 
signal quality. The narrow-band SNR is the ratio between the power at the stimulation frequencies and the sum of 
powers in the ten neighbours of the stimulation frequencies on the spectrum (five on each side). Wide-band SNR 

Fig. 9 Narrow-band and wide-band signal-to-noise ratios (SNRs) from (a) T1 and (b) BETA (red) and 
Benchmark (purple) datasets (image directly taken from [23], used with permission). A: narrow-band SNR;  
B: wide-band SNR. Calculated with 5 s data bandpass filtered between 3 and 100 Hz.
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considers the whole spectrum by taking the ratio between the sum of powers at the stimulation frequencies along 
with their harmonics as well as interactions (in multi-frequency) and the sum of powers of the rest of the frequen-
cies in the spectrum. The mathematical formulations of the SNRs (in dB) in n (narrow-band) or w (wide-band) 
and SF (single-frequency) or MF (multi-frequency) scenarios are provided below.

Single-frequency narrow-band SNR:

P F
P F k f P F k f

SNR 10log
( )

[ ( ) ( )]
,

(9)k
n,SF 10

1
5=

∑ − Δ + + Δ=

Fig. 10 Narrow-band (left) and wide-band (right) signal-to-noise ratios for different numbers of stimulation 
frequencies: (a) single-frequency, (b) dual-frequency, (c) tri-frequency. Data bandpass filtered between 5 and 
120 Hz and zero-padded to 10 s.
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where F is the frequency of interest (stimulation frequency), P is the Power Spectral Density (PSD) of the signal, 
and Δf is the frequency resolution of the PSD.

Single-frequency wide-band SNR:
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where Nh is the number of harmonics to be considered, fs is the sampling frequency, and fs/2 denotes the Nyquist 
frequency.

Multi-frequency narrow-band SNR:
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where Nf is the number of frequencies in the stimulation (dual-frequency Nf = 2, tri-frequency Nf = 3) and Fi 
then denotes the ith stimulation frequency.

Multi-frequency wide-band SNR:
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where F is the set of frequencies including the stimulation frequencies, their harmonics and integer linear  
combinations up to order NO, F �f f f{ , , , }N n1 2O

= .
Before calculating SNRs, signals were filtered with a second-order Infinite Impulse Response (IIR) notch 

filter at 100 Hz with quality factor 35 to remove the harmonic of power line noise, and were averaged across all 
channels. All trials were considered in producing the SNR histograms.

We first compared the SNRs in T1 (single-frequency) with existing SSVEP datasets. To make the com-
parison as fair as possible, all trials in T1 were band-pass filtered under the same condition (between 3 and 
100 Hz, using Matlab function “bandpass” with ‘ImpulseResponse’ set to ‘iir’, 0.85 ‘Steepness’, and 60 dB 
‘StopbandAttenuation’), 5 s data were used in calculating the PSD to obtain a consistent 0.2 Hz frequency res-
olution, and number of harmonics Nh = 5. Figure 9 directly compares the narrow-band and wide-band SNRs 
in T1 and two publicly available SSVEP datasets: BETA dataset23 and Benchmark dataset21. It can be seen from 
the figures that the wide-band SNR in this study is similar to that in the BETA dataset, but the narrow-band 
SNR is around 10 dB lower than that in the two datasets. With the differences in setup taken into consideration, 
the results demonstrated a satisfactory quality of signals recorded in this dataset. There are some differences 
between the studies. First, in this work, a wider and, on average, higher frequency range was used compared to 
the other two studies, which may lower the SNR because SNR decreases as frequency increases23. Second, dry 
EEG electrodes were used in data collection compared to wet electrodes used in the two existing datasets. Dry 
electrodes are known to be more sensitive to artefacts and lead to lower decoding accuracy24; however, they are 

Fig. 11 Accuracies of all participants in all tests. Results from each participant is a different colour. Solid 
magenta lines show median. Cyan dashed lines show mean. 1 F: single-frequency; 2 F: dual-frequency; 3 F: tri-
frequency. OR: frequency superposition with OR; ADD: frequency superposition with ADD; CB: checkerboard. 
*significant difference (p < 0.05). Comparisons were only done between different stimulation methods on the 
same number of input frequencies (among the three 2 F groups, and between the two 3 F groups).
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more practical with the simplified set up procedure (no gelling). Third, different recording devices, sampling 
rates, and channel selections were used in the studies.

To examine the SNRs in multi-frequency SSVEPs, we compared the SNRs in single-frequency SSVEPs 
and dual- and tri-frequency SSVEPs. Different from above, we applied a band-pass filter between 5–120 Hz in 
Matlab to cover the 5th harmonic of 23 Hz. Considering that complex interactions in multi-frequency SSVEP 
may result in adjacent integer frequencies both considered as signal, all trials were zero-padded to 10 s for a 
0.1 Hz frequency resolution. This guarantees the 10 neighbours in narrow-band SNR calculation do not land on 
the signal frequencies. Figure 10 presents the distributions of narrow-band and wide-band SNRs in all single-, 
dual-, and tri-frequency trials. The histograms show the distributions of SNRs in all trials. The figures show a 
similar narrow-band SNR distribution in all cases with a small reduction in negative skewness as number of 
stimulation frequencies increases. In wide-band SNR, however, a clear reduction in variance with a positive 
shift in mean can be observed as number of stimulation frequencies increases. Overall, the SNRs fall within a 
reasonable range and demonstrated the quality of the signals in this dataset.

Decoding accuracy. In addition to the analyses of the signal characteristics, decoding accuracies were also 
investigated. Figure 11 summarises the decoding accuracies from all participants in all tests. Each participant is 
labelled with a different colour. Boxes show 25–75 percentiles, whiskers show maximum and minimum values 
excluding outliers, red plus signs mark outliers that are more than 1.5 times the interquartile range (box size) 

Participant #

Accuracy (%)

T1 T21 T22 T23 T31 T32

1 100.00 50.00 65.00 40.00 25.00 35.00

2 58.33 26.67 33.33 31.67 18.75 22.50

3 75.00 33.33 58.33 48.33 22.50 18.75

4 79.17 43.33 51.67 43.33 21.25 32.50

5 66.67 26.67 36.67 26.67 13.75 13.75

6 79.17 35.00 40.00 55.00 21.25 22.50

7 95.83 53.33 63.33 48.33 27.50 22.50

8 75.00 33.33 46.67 55.00 23.75 27.50

9 95.83 58.33 75.00 58.33 26.25 36.25

10 83.33 66.67 70.00 60.00 38.75 53.75

11 95.83 71.67 73.33 63.33 27.50 38.75

12 50.00 35.00 35.00 31.67 18.75 16.25

13 91.67 41.67 68.33 60.00 17.50 23.75

14 66.67 26.67 40.00 46.67 17.50 21.25

15 91.67 43.33 58.33 41.67 31.25 30.00

16 83.33 46.67 35.00 38.33 28.75 37.50

17 100.00 43.33 85.00 63.33 28.75 40.00

18 100.00 68.33 71.67 71.67 41.25 42.50

19 91.67 85.00 81.67 78.33 50.00 53.75

20 75.00 48.33 68.33 56.67 23.75 35.00

21 83.33 48.33 53.33 43.33 25.00 33.75

22 75.00 41.67 50.00 38.33 23.75 32.50

23 62.50 25.00 30.00 36.67 22.50 18.75

24 62.50 40.00 36.67 41.67 17.50 21.25

25 83.33 41.67 30.00 45.00 30.00 20.00

26 83.33 48.33 53.33 60.00 25.00 41.25

27 79.17 36.67 46.67 41.67 18.75 22.50

28 87.50 66.67 63.33 53.33 30.00 33.75

29 50.00 26.67 26.67 33.33 18.75 17.50

30 100.00 75.00 65.00 60.00 51.25 41.25

31 41.67 36.67 26.67 33.33 18.75 6.25

32 66.67 31.67 31.67 26.67 17.50 21.25

33 58.33 28.33 35.00 30.00 26.25 32.50

34 75.00 40.00 65.00 53.33 28.75 22.50

35 83.33 51.67 45.00 53.33 26.25 23.75

Mean 78.45 45.00 51.86 47.67 25.82 28.93

SEM 2.60 2.55 2.83 2.15 1.42 1.80

Table 3. Accuracies of each participant in each test with mean and standard error of the mean (SEM) shown in 
the bottom of each column.
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away from the boxes, solid magenta lines label median values, and cyan dashed lines label mean values. Asterisks 
label statistical significance between the two groups at 5% level (p < 0.05). Comparisons were done only between 
different stimulation methods with the same number of input frequencies (i.e., 2 F OR vs. 2 F ADD, 2 F OR vs. 2 F 
CB, 2 F ADD vs. 2 F CB, 3 F OR vs. 3 F ADD) with the Wilcoxon signed rank test.

Detailed accuracies from each participant in each test are listed in Table 3. The listed accuracy from each 
participant was calculated as the average accuracy they achieved in the four repeats of each test based on the 
number of trials correctly identified in online decoding divided by the total number of trials.

From Fig. 11 and Table 3, we can see that the average accuracies decrease as numbers of input frequencies 
increase. Overall, 85.7% (30/35) of participants achieved single-frequency accuracy over 60%, 48.6% (17/35) 
over 80%, 28.6% (10/35) over 90%, and 20% (5/35) over 95%. This is comparable to previous participant perfor-
mances with dry electrodes24.

It is worth noting that the tasks are at similar levels of difficulties for the participants in terms of visually fix-
ating on flickering blocks presented on the computer screen. A major contributor to the differences in decoding 
accuracies is the modelling accuracy of the multi-frequency SSVEP that was used in the decoding algorithms. 
This is also one of the reasons why we created this dataset. By making such a dataset public, we welcome others 
to join this research field to uncover the fundamentals in this complex response and improve its performance.

For future research, training-based decoding algorithms could also be explored to advance multi-frequency 
SSVEP, especially those that were shown to work well in single-frequency SSVEP decoding such as Task-Related 
Component Analysis (TRCA)33 and Task-Discriminant Component Analysis (TDCA)34.

Usage Notes
The most straightforward way to use the data is to load it in Matlab (MathWorks Inc., USA) in .mat format. 
When working with data in .csv format, please keep in mind that these are large matrices that may need to be 
carefully taken care of in the file reading process.

The code dataset_processData.m provided with the dataset cuts data (.mat) into trials for easier 
access to the SSVEP recordings. Options are provided in the code to select participant(s) and session(s). A pdf 
version of the code is also included (dataset_processData.pdf).

Data may be used in part or in full session form to simulate an online BCI at 512 Hz sampling rate.
Metadata dataset_metadata.xlsx is also included to provide general non-identifiable participant 

information.

Code availability
Provided code can be found in the same repository as the dataset30, named dataset_processData.m. This 
code is written and tested in Matlab R2020a. No additional toolbox is required to run this code. At the top of 
the code, there are options to set folder name and path with variable folderName. Select participants and 
sessions of interest for processing (cut data from whole sessions into trials) with variables Participants and 
Sessions. A pdf version of the code is also included (dataset_processData.pdf).
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