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a pre-failure narrow concrete 
cracks dataset for engineering 
structures damage classification 
and segmentation
Karolina tomaszkiewicz   ✉ & tomasz Owerko

Monitoring of structures’ condition plays a fundamental role in providing safety for users and extending 
the structures’ lifespan. the monitoring is conducted through on-site inspections by engineers thus this 
process is time-consuming, labor-intensive and prone to subjective engineering opinions. Detecting 
damage using machine learning algorithms on images can support engineers’ work, especially for early 
damages which are difficult to see with the human eye. This article is focused on the concrete crack 
detection problem in engineering structural elements. Despite the availability of several concrete crack 
detection datasets, no dataset allows semantic segmentation of cracks narrower than 0.3 mm (the 
crack width limit for typical engineering structures elements and environmental conditions according to 
EC 1992-1-1) and the ability for crack classification is limited. The provided open dataset represents only 
cracks below the crack width limit of 0.3mm, which do not yet indicate concrete elements failure. It is 
dedicated for early crack classification and segmentation, so that damage protection can be taken at an 
early stage to prevent structural element damages.

Background & Summary
Assessing and monitoring the concrete structure condition play a fundamental role in providing safety for 
its users, maintaining the utility functions of the object and extending the life of the structure. This makes it 
possible to realize activities for sustainable development, such as reducing the carbon footprint of road and 
rail infrastructure, and re-using structural elements as a result of keeping them in good condition. This paper 
focuses on the problem of crack detection for concrete elements of engineering structures. It is one of the more 
difficult aspects in the diagnosis of concrete structures due to the very low limits of acceptable damage and the 
far-reaching consequences for the damaged structure.

Observation of the appearance and possible propagation of concrete element cracks has a significant role 
in the process of monitoring the technical condition of concrete structures. Concrete cracks are caused when 
the tensile stress at a given point in the structure exceeds the tensile strength of the concrete. The appearance of 
cracking is a natural phenomenon occurring in concrete structures. It is necessary to ensure that the width of 
cracks that occur at the stage of construction and use of the structure does not exceed the acceptable values in 
accordance with the design of the structure and the applicable standard values for the country (such as those 
included in EC 1992-1-11 or national standards). At the same time, it is important to determine the most proba-
ble cause of the cracks. This allows to them to decide correctly on the necessary scope and urgency of the repair 
and protection actions. For this reason, not every crack will indicate a risk to the structure. The correct classifica-
tion of damage should be done by an experienced engineer who knows how to correlate the working conditions 
of the structure and the environmental conditions with the time and location of damage appearance. In addition, 
crack detection is a difficult problem due to the very narrow limit of damage allowed and the far-reaching con-
sequences for the damaged structure if this value is exceeded.

Inspections of construction structures are required by relevant national regulations. A different approach is 
used in the Authors’ country that is Poland2–4, and others in European countries5,6, or non-European countries7–10.  
These regulations, depending on the type of construction, determine the frequency of inspections and their 
scope. It should be pointed out that inspections of construction structures are still mainly realized by inspectors, 
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who personally verify the appearance of damage to individual elements of the structure, assess their condition 
and decide on the scope and urgency of the necessary repairs. This process is labor-intensive, time-consuming 
and is dependent on the inspector’s subjective opinion depending on the engineer’s experience. It is estimated 
that about 50% of the given condition assessments are incorrect or vary from inspector to inspector11.

Every year, the number of bridges that are in deteriorating condition increases. It seems rational to invest 
more in monitoring the growing number of aging structures and detecting damage at an early stage. 38% of 
bridges (224,000 spans) in the U.S. need repair, 78,800 bridges should be replaced. More than 43,500 bridges 
are in poor condition and have been classified as “structurally deficient”12. The same report indicates that at the 
current rate, it would take nearly 30 years to repair these structures12.

Detecting and observing narrow cracks in time, i.e. at an early stage of their formation, makes it possible to 
protect the damage and slow down its propagation so as to prevent the structure’s progression to failure. Proper 
protection of the damage also reduces the possibility of other damage, such as the possibility of water penetrating 
deep into the structure in the location of the crack, and thus the risk of reinforcing bar corrosion and material 
degradation. Crack detection in a pre-failure state not only reduces repair costs, but most importantly reduces 
the number of bridges out of service. The importance of the problem can be illustrated by reports that, using the 
US as an example: 43,500 bridges classified as “structurally deficient” drivers cross 167.5 million times a day12.  
It should be noted that bridges are one of the critical infrastructures of countries and have an important role in 
the aspect of defense. All this underscores the need to detect damage at the earliest possible stage, both in terms 
of financial, social and security aspects.

Narrow cracks in this paper are understood as cracks with a width not exceeding the permissible limit of 
0.3mm according to EC 1992-1-11. EC 1992-1-11 defines the limit widths of cracks depending on the type of 
element (i.e., reinforced members and prestressed members with unbonded tendons or prestressed members 
with bonded tendons) and the exposure class, i.e., the environmental conditions under which the structure is 
working.

EC 1992-1-11 identifies three values, that is, 0.2mm, 0.3mm and 0.4mm. For the dataset presented here, the 
assumption was made to consider only those cracks whose width does not exceed 0.3mm. This value corre-
sponds to elements reinforced and prestressed with unbonded tendons and typical environmental conditions 
(expressed as exposure classes) in which bridge structure elements are working.

By detecting the crack in the pre-failure stage, it is possible to start monitoring the progression of the damage, 
as well as to carry out the necessary protection or repair work. At the same time, this is the stage when cracks are 
potentially much more difficult to recognize with the human eye than cracks of wider width. For this reason, in 
many cases the inspector may not identify such damage at an early stage. As a support for the inspector’s work, 
deep learning algorithms can be used for the identification of structural cracks on images. It should be pointed 
out that algorithms dedicated to the problem of cracks detection based on classical machine learning methods 
(i.e. not deep learning), e.g. edge filters, do not provide good results for each width of the crack. Very often they 
make mistakes due to the presence of dirt, shading and differences in the texture of concrete on the surface 
recognizing them as cracks.

Currently available datasets are dedicated to solving the problems of computer vision and machine learning 
for cracks of wider width, which can indicate the failure status of structure. Many satisfactory results have been 
achieved both in the area of crack detection using image processing techniques and machine learning methods, 
as well as algorithms which enable the inspection of crack course, its length and width13–15.

Even though it is possible to have good measuring equipment to take images specific to the considered 
problem, the dataset creation for the pre-failure condition requires to fulfill several additional prerequisites.  
The actual measurement material acquired in the process of a formal bridge inspection procedure is needed2–10. 
The person creating the masks must have a high degree of content knowledge to identify the damage the way not 
to confuse the cracking resulting from the pre-failure condition with other sources of cracking of the concrete 
surface such as dirt, etc. The interpretation of a crack as potentially leading to failure of a bridge structure in the 
future must be related to the nature of the element’s work and the point in the structure’s life cycle at which the 
damage occurred.

Despite the increasing number of datasets dedicated to structural damage detection using machine learning16,  
at the moment there are no open datasets dedicated to solutions based on semantic segmentation relating to 
narrow cracks, and the number of classification datasets is strongly limited. By “open datasets” the Authors mean 
such datasets that can be downloaded without contacting the author. Thus, the available datasets do not solve 
the key problem from the bridge engineer’s point of view, which is creating solutions using machine learning for 
pre-failure states.

In the context of classification, mention should be made of the SDNET17 dataset, which admittedly includes 
cracks with widths ranging from 0.06mm to 25mm. It means that this dataset includes a set of damage that 
does not exceed the limit of 0.3mm, as well as cracks indicating that the failure states of the structure have been 
exceeded. However, the dataset’s authors do not extract and specify the set size in terms of individual damage 
widths, and also do not assign damage causes to the images. The KrakN dataset18, on the other hand, contains 
cracks with a width of up to 0.2mm, but is based only on images from a single bridge pillar, which is not repre-
sentative of the wide range of possible damaged elements and causes of damage.

As the authors’ experience shows, the use of available datasets and the use of transfer learning to train a crack 
detection network does not provide correct results for narrow cracks19. This solution is successful only for such 
images when the size of the crack in the tested image is similar to the size of the crack in the images used to train 
the network19,20.

The authors also conducted an experiment using weights of the network trained on narrow cracks21 using 
images from the KrakN18 dataset. The solution’s effectiveness was verified on one of the images, which was 
later used to build a dataset for the narrow cracks. It was shown that the solution’s based on automatic methods 
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and an undifferentiated dataset (i.e. KrakN18 including images of only one pillar) does not support the bridge 
engineer’s work. The number of incorrect identifications - as shown in Fig. 1 - does not allow the use a network 
trained in this way to support the inspection process.

Based on this, it can be concluded that crack classification on images at the stage when their width does not 
exceed the permissible limit is strongly limited, and their segmentation is not possible (https://www.ck.gov.pl/
review/id/54326/type/ud.html). As a consequence, it is not possible to diagnose and monitor the progression of 
cracks at an early stage of their formation using the open datasets available so far.

The dataset presented in this paper addresses a diagnosed gap in the field of publicly available datasets for 
problems related to the use of deep learning for semantic segmentation and classification of narrow cracks, 
characterizing the pre-failure condition of engineering structure concrete elements. This dataset is dedicated to 
all researchers working in the field of computer vision, machine learning and deep learning, but in particular, 
it contains domain knowledge in the field of structural health monitoring, so it can support engineers in the 
damage detection of concrete elements in a pre-failure state.

The approach presented by the authors for the dataset creation presented here moves the focus of the work to 
domain-specific aspects of the bridge industry. This dataset is intended to provide a basis for research into issues 
of computer vision and machine learning to fulfill the requirements of the bridge sector. It is the intention of 
the authors to provide the data science industry with such datasets that will allow for the creation of algorithms 
that will support the day-to-day work of the bridge engineer in accordance with aspects of structural work and 
standard requirements. In this approach, the authors consider a binary problem: there is a visible crack on the 
concrete surface representing the pre-failure state that can be observed by the human eye, or there is no such 
artifact on the concrete surface. Therefore, it is a binary problem, not one with an ad hoc assigned probability 
density distribution. However, the authors assume that a predicted crack course involving the result of a trained 
neural network based on the considered dataset, structural scheme and occurring loads may in the future lead 
to the indication of probable locations of cracks in concrete structures that are not visible on the surface. Such a 
situation, however, is not the subject of research at this stage.

The possibility of using this dataset to solve machine learning problems was verified by the Authors in the 
prototype solution presented in subsection “Validation the possibility of using dataset for machine learning-based 
solutions”.

The main goal of this dataset is the possibility of developing efficient and robust deep machine learning algo-
rithms for both concrete structures crack classification and segmentation problems. This dataset can be used 
to train new models, as well as to verify the ability of already developed neural network models for early crack 
detection. Using the dataset to develop deep learning algorithms for early crack detection can be considered in 
many directions.

The dataset can be expanded both in terms of adding more images to increase the number of images, as well 
as in the direction of solving multi-class problems, for example, by adding a “bughole” or “formwork marks” 
class. Due to the size of the sub-image in the dataset, it can also be used to expand the dataset for crack inspec-
tion of also small but important elements of bridge structures such as deviator cracks. The next step in the data-
set’s improvement will be a situation where the ML-based solution will not only support the bridge engineer’s 
work so that cracks observable to the human eye are not overlooked but will also allow automatic diagnosis of 
cracks that are identified only by machine means. The criterion for the dilation of an element can be based, for 
example, on the practice resulting from cartographic representations on maps (the unaided human eye is able to 
recognize 2 lines parallel to each other as separate if they are at least 0.2mm apart).

In connection with the development of BIM and Digital Twin technologies, the Authors are pointing out 
an important direction for the use of results obtained from training models based on the dataset presented. 

Fig. 1 Limitations of using the network trained on the KrakN dataset for the case of narrow cracks. Green 
rectangle - cracks correctly detected, red rectangle - detection of a cracks by the network in a place where they 
do not actually occur, yellow rectangle - a crack not detected by the network, despite the fact that it occurs in 
that place.
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Addressing the problem of the crack occurrence for the pre-failure state is to link the identification of the crack, 
diagnose it, assign the occurrence of the damage in terms of geometric location on the structural model, and link 
the occurrence of the crack to the potential cause, i.e. the stress model resulting from the FEM analysis of the 
structural element. The model linking the type and attributes of a given structural element and the occurrence of 
a crack can be, for example, a BIM model in the IFC schema, in which for each structural element the attributes 
concerning the type of element, concrete class, exposure class, load capacity of the element can be included. It is 
also possible to link detected defects to data from SHM systems feeding the Digital Twin of the structure. This 
makes it possible to build models not only based on vision aspects, but also containing detailed information 
about the damaged element and their source.

Thus, this leads to significant development of AI-based services for SHM for pre-failure condition.

Methods
This dataset was prepared on the basis of images taken in 2019–2022 by an experienced bridge engineer at con-
struction sites and during inspections of engineering structures (bridges, viaducts, tunnels) in southern Poland.

This dataset contains images of cracks in elements made of reinforced concrete such as abutments, tunnel 
walls, concrete barriers, pillars. The damage images are differentiated by the cause of the cracking (e.g., exces-
sive stresses, thermal and shrinkage stresses in young concrete). The origin of the images also differentiates the 
stage of the structure’s life cycle, because they were acquired from the stage of construction (at the stage when 
elements are only loaded by self-weight) to the stage when the structure is in use (at the stage when most design 
loads are applied). In addition, the structures were constructed by different contractors, which may indicate 
the different quality of work execution. Thus, this significantly expands the applicability of the dataset and its 
robustness to different boundary conditions.

In terms of exposure of photographed elements, this dataset covers:

•	 the full range of the concrete classes which are practically used for elements transferring loads characteristic 
for engineering structures,

•	 the full range of exposure to environmental conditions - images were taken for engineering structures ele-
ments transferring loads over inland watercourses, roads, as well as in tunnels,

•	 while the photos presented do not show damage for engineering structures in the marine area exposed to 
brine, this dataset is fully representative due to the fact that the photographed engineering structures elements 
are maintained in the winter season with brine, and the dataset also includes photos of tunnel structures 
exposed to groundwater,

•	 the dataset does not show damage to elements of the underwater engineering structures,
•	 the photos were taken in all four seasons and in the full range of pressure and humidity conditions character-

istic for Central Europe.

The images were acquired using fixed-focus cameras without prior conditioning. It should be noticed that 
inspecting bridge structures often is connected with difficult access to structural elements (e.g., spans over riv-
ers, high pylons) and the use of boom-type equipment in many cases. Documenting damages is in most cases 
required to create a condition assessment report. This makes that if the requirements for image acquisition con-
ditions are set too high, it can significantly limit or even eliminate the possibility of image acquisition. For this 
reason, the Authors’ intention was to use equipment that is available for each engineer and can be used under 
any inspection conditions. It was also important for the Authors to work later with images that were acquired 
without the use of specialized and calibrated equipment and which may be of lower quality.

It should be noticed that a characteristic feature of this dataset is the very complicated nature of the concrete 
surface finish, including, for example, the presence of formwork marks (Fig. 2g), concrete troweling marks 
(Fig. 2b), dirt (Fig. 2h,k), and mechanical damage of the concrete surface (Fig. 2e). As the Authors’ experience 
has shown19, these damages can potentially be recognized as cracks and provide additional difficulties for dam-
age detection by machine learning algorithms. However, they are very common and they occur independently 
of the work contractor (that is, their occurrence is unavoidable) therefore, from a practical point of view, they 
must be taken into account in the final solution. In the dataset presented here, the cracks can be located in dif-
ferent areas on the image, i.e. they do not necessarily occur in the central part of the image (Fig. 2f). In addition, 
the dataset also includes different colors of the concrete surface (e.g., Fig. 2b,c,d,k,l), bugholes (Fig. 2b,e,g,j) and 
background obstructions (Fig. 2l).

To create the dataset, images in .jpg format were used, in the resolution in which they were taken (i.e. 
3464 × 4618 px to 3840 × 5120 px), without affecting the quality of the image.

A mask was prepared for each image in GIMP by manually selecting the pixels representing the damage by an 
experienced engineer. A detailed description of the annotation process is presented in the subsection “Validation 
of correct class assignments to pixels”. Each mask was exported to a .png file. An example of the image and its cor-
responding mask is shown in Fig. 3. The image-mask pairs were then divided into sub-images according to the 
defined sub-image size (i.e., 224 × 224 px), without overlapping sub-images. In order to eliminate errors related 
to the export of the mask from GIMP (i.e., with the possibility of having in the mask, in addition to pixel values 
of 0 and 255, also values close to 0 and 255, such as 1, 4, 253), a thresholding operation was performed for each 
mask sub-image to receive a binary image. The sub-images of images and masks prepared in this way were used 
to create a segmentation dataset. An example image and its corresponding mask after dividing into sub-images 
is shown in Fig. 4.
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The classification dataset was created based on the segmentation dataset. The adopted approach was that 
the image for which there are pixels indicating crack in the mask is automatically classified as “Cracked” and 
“Uncracked” for images in which there are no crack pixels in the mask. It is important to note that after the 
process of automatic classification of the image assignment to each class, the correctness of the algorithm was 
manually verified in the context of the proper image assignment to each class. For details of this classification 
validation, see the subsection “Validation at the stage of creating the classification dataset”.

A schematic representation of the dataset creation process is shown in Fig. 5.

Fig. 2 Examples of characteristic damage or complex concrete surface finish present in the dataset.

Fig. 3 Example of full-resolution images before sub-image division (a) original image (b) segmentation mask.

https://doi.org/10.1038/s41597-023-02839-z
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Data Records
The dataset titled “NCCD-PF - A pre-failure narrow concrete cracks dataset for engineering structures damage 
classification and semantic segmentation” is publicly available in the Zenodo data repository22. The dataset is 
divided into two main folders, namely “Dataset_for_classification” and “Dataset_for_semantic_segmentation”.

The classification dataset contains two subfolders, namely “Cracked” and “Uncracked.” Each sub-folder con-
tains 224 × 224 px images, saved in .jpg format. The images have been reshuffled and numbered starting from 
0. The file naming convention is as follows: for images in “Cracked” subfolder, the filename is “image_C_X.jpg” 
and the filename of the image is “Uncracked” subfolder is “image_UC_X.jpg “, where X is the next image num-
ber in the subfolder. The number of images in each class is shown in Table 1.

The dataset for semantic segmentation contains two subfolders, namely “Images” and “Masks.” The “Images” 
folder contains images in.jpg format, and the “Masks” folder contains binary masks in .png format (where white 
color indicates damaged pixels and black color indicates background pixels). As with the classification dataset, 
the images (and corresponding masks) have been reshuffled and numbered starting from 0. The file naming 
convention is as follows: for images, the filename is “image_X.jpg” and the filename of the corresponding mask 
is “image_X_mask.png”, where X is the next image number in the dataset. The number of images in each class 
is shown in Table 1.

It should be noted that each dataset has its own universal numbering of images (i.e., image #1 in the classifi-
cation dataset does not necessarily correspond to image #1 in the semantic segmentation dataset).

technical Validation
Due to the complexity of the problem with the detection of concrete element cracks (Section “Background & 
Summary” and “Methods”), the development of datasets for crack detection of concrete elements is not an obvi-
ous and straightforward issue. It requires domain knowledge of the bridge structures’ work and their diagnostics. 
The correctness of the approach to dataset creation was verified in two stages, i.e., making assumptions about 
the conditions of image acquisition and at the stage of image processing, where three parts were distinguished, 
i.e., the creation of a segmentation and classification dataset as well as the correctness of class assignments to 
pixels. In addition, the possibility of using the dataset to build a solution based on machine learning algorithms 
was verified.

Validation at the stage of image acquisition. The images that were the basis for the dataset were taken 
by an experienced bridge engineer. Such cracks of individual concrete elements were selected which are most 
characteristic for these elements in terms of location and cause of appearance. The moment of crack appearance 
was also taken into account, i.e. the dataset contains both cracks appearing already at the construction stage 
(whose condition may get worse under further loads), as well as those appearing at the structure’s use stage (under 
most design loads).

The selection of representative damages considered, in particular, damages such as:

•	 Cracks caused from non-uniform ground settlement – characteristic for foundations, abutments, pillars, 
retaining walls, tunnel walls;

•	 Cracks caused by casting in stages – where the shrinkage of the fresh concrete is restrained by the hardened 
concrete cast in the previous stage. E.g. vertical cracks in the webs of box girders;

•	 Cracks in prestressed structures, including cracks caused by corrosion of tendon anchorages, corrosion 
of tendons, decompression effects or not enough reinforcement in the anchorage zone – characteristic for 
girders;

•	 Cracks caused by corrosion of steel reinforcement – as the rust builds up, tensile stresses increase, causing 
cracking of concrete. Dangerous in particular because of the risk of concrete spalling and exposure of cor-
roded reinforcing bars – characteristic for abutments, piers, girders;

•	 Cracks caused due to increased shear stress – appearing near supports like wall or pillar;
•	 Cracks due to increased bending stress near the center of the element’s span (in extremal bending moment 

zones) – characteristic for girders;
•	 Cracks due to compression failure – appearing at the top of the element when it is over-reinforced;
•	 Cracks caused by plastic shrinkage, i.e., too fast evaporation of moisture from the setting concrete – charac-

teristic for slabs, footpaths.

Fig. 4 Examples of images and their segmentation masks after sub-image division (a) Crack in the center of the 
image (b) Crack in the corner of the image.

https://doi.org/10.1038/s41597-023-02839-z
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In order to show the complexity of each problem, the following paragraphs discusses in more detail one of 
the possible causes of cracks, i.e., damage in the lower part of the front wall of the bridge abutment.

In the case of bridge structures, we are dealing with a special type of cracking, which is characteristic for 
massive structures and occurs already at the construction stage – when the strength of concrete is much lower 
than designed and when there are no service loads yet. Examples of massive elements in bridges are foundation 
slabs, pillars, pylon, or – as in the case of the dataset presented here – abutments.

We can determine the massiveness of an element by comparing the ratio of the element’s surface area to 
its volume. This is related to the cement hydration processes that occur in concrete elements. So in the case of 
massive elements, in the process of cement hydration during the setting of concrete, the ratio of surface area 

Fig. 5 Schema of creating segmentation and classification dataset.

https://doi.org/10.1038/s41597-023-02839-z
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(through which the heat of hydration is dissipated) to volume (in which heat is released) is small, which is one of 
the main problems in the technology of massive structures.

In the case of abutment walls, we are dealing with the constraint on the freedom of deformation by external 
links. Abutment walls are made after the foundation has hardened and cooled, hence the maturation of the wall 
occurs when the bottom of the wall is restrained in the foundation and there is no possibility of deformation. 
Thermal-shrinkage cracks of abutments are vertical cracks that begin above the wall-foundation joint and dis-
appear at the top of the wall. They are a danger, because under further loads (by structural elements or traffic) 
cracks can propagate through the entire thickness of the concrete. As a consequence, the monolithicity of the 
structure may be lost and its static scheme may be changed. In addition, the crack is that place through which 
water can penetrate into the element. This, in turn, can promote the development of corrosion processes in steel 
and concrete.

As this extended description of a single crack for a single element and a single cause shows, the problem of 
crack detection is a very multi-threaded problem.

Therefore, this article often emphasizes the importance of not only having information about the occurrence 
of the crack, but also the importance of being able to assess the threat it poses to the damaged element and, con-
sequently, to the entire structure (in relation to the probable cause and location of the damage).

Validation at the stage of creating the semantic segmentation dataset. Analyses conducted by 
the Authors have shown that in the case of narrow cracks and complex finish of the concrete surface, which is the 
background for the crack, the use of automatic methods to support crack detection (e.g. edge detection filters, 
sharpening operations, thresholding operations) are not effective.

This is confirmed by examples of the use of the above-mentioned filters or operations that affect the quality of 
the image, which are popular for crack detection problems23,24. It should be noticed that in the cases identified in 
the literature, we are mainly dealing with wide crack widths and a uniform concrete surface or wide crack widths 
and a complex concrete surface20, so that these methods can provide high detection results.

Figure 6 shows an example of a concrete surface finish with a narrow crack (marked on the image as “A”) 
as well as non-crack elements (dirt – marked as “B”, mechanical damage - marked as “C”, bugholes – marked 
as “D”). Table 2 shows examples of the application of various automatic methods for crack detection and mask 
creation. The filters were applied to the same image as shown in Fig. 6. The table shows the result of applying the 
filter to the image (column “Image of the crack”) and the applied correct crack (column “Image of the crack with 
the mask applied”). For narrow cracks and complex concrete surface finishes, the use of these methods makes 
it possible to identify the main direction of the crack (ex. Sharpening operation), but is ineffective for smaller 
widths (ex. Sobel filter, Gauss filter, thresholding operation). As important, these operations do not provide the 
domain knowledge to determine whether a particular crack could pose a potential threat to the structure in 
the future and should be included in the monitoring. In addition, the use of these operations makes visible, for 
example, mechanical damage or dirty concrete with colors similar to cracks, which do not pose any threat to the 
structure and should not be considered as crack. However, this requires domain knowledge.

Dataset for classification Dataset for semantic segmentation

Data format .jpg (images) .jpg (images), .png (masks)

Images size 224 × 224 px (images)
224 × 224 px (images)

224 × 224 px (masks)

Number of images

Cracked 668 —

Uncracked 4720 —

Total 5388 5388

Table 1. Parameters and number of data in the dataset.

Fig. 6 Example of concrete surface appearance. “A” – crack, “B”. – dirt, “C” – mechanical damage, “D” – 
bugholes (in order to ensure the image’s clarity, only some are marked).

https://doi.org/10.1038/s41597-023-02839-z
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Therefore, it is not possible to use automatic methods to support narrow crack detection (e.g. edge detection 
filters, sharpening operations, thresholding operations) to create masks for narrow cracks occurring on a con-
crete surface with a complex finish. Thus, automatic methods do not allow to detect crack and to develop reliable 

Type of filter or operation used Image of the crack Image of the crack with the mask applied

Original image

Sharpening operation

Sobel filter

Gauss filter

Thresholding (170–255 px)

Thresholding (185–255 px)

Table 2. Example of filter and operations applied on crack images from dataset.
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datasets. For the dataset presented in this paper, after the images were taken, each pixel was manually annotated 
by an experienced bridge engineer in GIMP and received an assignment to a crack or background class. This 
made it possible, on the one hand, to isolate the non-crack damage and, on the other hand, to identify those 
crack pixels that should be further analyzed at the stage of applying machine learning algorithms.

Validation at the stage of creating the classification dataset. As explained in the “Methods” section, 
the creation of the classification dataset used an automatic algorithm based on the created segmentation masks. 
Images whose mask contained a crack class were automatically classified as “Cracked,” and images that did not 
fulfill this requirement (i.e. having only background class pixels) were classified as “Uncracked.” Classified images 
were placed in the corresponding class folders in the classification dataset.

After the automatic classification process of the images was completed, the correctness of their assignment to 
each class was verified manually. This was also supported by the analysis of the created segmentation masks. In 
particular, attention was paid to two cases observed in the images:

 a) There is a final section of crack on the image (Fig. 7a) – on the segmentation mask, the percentage of crack 
pixels is small compared to the background pixels. In the engineer’s opinion, such a small section of crack 
would not be detectable in the image. In this case, the decision was made to change the classification of this 
kind of image to “Uncracked”.

 b) The crack is larger than in the case of a) (Fig. 7b) – in terms of the pixel percentage of the crack compared 
to the background on the segmentation mask – but has such a small width, that it is difficult to see with the 
human eye and the classification as a crack without having the context of the whole crack’s progression. 
In the engineer’s opinion, having the role of classifying such an image (without having the support of a 
segmentation mask), it would not be possible to recognize a crack on it. For the purpose of image classifi-
cation, it was decided to change the classification of such an image to “Uncracked”.

Validation of correct class assignments to pixels. The mask preparation was based on the domain 
knowledge of the engineers who carried out the inspections of the structures. The mask preparation was done 
manually by selecting pixels. In particular for the mask creation, other machine learning and deep machine learn-
ing methods were not used.

The correctness of class assignments to pixels was made by providing consistent annotation in terms of con-
tent and by verifying possible labeling of accidental inclusion of non-crack pixels or missing crack pixels.

The criterion for assigning a group of pixels to a crack class was:

 1) Identifying the pixel as representing a discontinuity in the concrete surface.
 2) Eliminating this pixel based on engineering knowledge and site context as a pixel representing dirt, form-

work marks, etc. - that is, other changes in the concrete surface structure that do not represent potential 
structural damage.

Regarding providing consistency of annotation in terms of content before annotating the crack pixels, the 
bridge engineer received two documents: a rule of what should be annotated and a set of examples that con-
tained images corresponding to the elements of the confusion matrix, i.e. annotations understood as False 
Positive, False Negative, True Positive, True Negative. At the stage of verifying the pixel annotation correctness, 
another engineer who did not perform the annotation process received the annotation results and annotation 
rules. Based on the rules, that engineer performed a quality check.

Regarding the possible labeling of accidental inclusion of pixels without cracks or missing crack pixels the 
correctness of the pixel label assignment was verified at two stages - in the first step at the stage of creating the 
segmentation mask and in the second step at the stage of creating the classification dataset. Two aspects were 
verified:

 1) Whether all crack pixels were classified correctly. The authors verified in the first step by overlaying the 
segmentation mask (strictly speaking, the “crack” class) on the original image and verifying that all pixels 
in the crack course were covered by the “crack” class. In the second step, each sub-image of the mask was 
analyzed for pixels not marked as a crack in the crack course (discontinuity within the crack).

Fig. 7 Examples of manual verification of correct class assignment (a) final section of crack (b) crack with very 
small width.
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 2) Whether random pixels marked as cracked were found. In the first step, the verification was done by 
checking the mask image to check if there are any pixels labeled with the class “background” in the range 
of pixels labeled with the class “crack” outside the crack course. In a second step, each mask sub-image was 
analyzed for the visibility of incorrectly labeled crack pixels outside its course. If any errors were identified 
in any aspect and in any step, the pixel labeling was corrected, and the segmentation and classification 
dataset was created again, based on the corrected mask.

Validation the possibility of using dataset for machine learning-based solutions. In order to 
verify the standard of dataset delivery (including image size, dataset size) and to verify that this dataset is valuable 
for machine learning, the authors built a prototype solution. A U-Net model was trained from scratch on a subset 
of 791 images of size 224 × 224 px. The solution showed satisfactory results for pixel classification in detecting 
narrow cracks, as shown in Figs. 8, 9.

Code availability
No custom code was generated for this work.
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