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PatagoniaMet: A multi-source 
hydrometeorological dataset  
for Western Patagonia
Rodrigo Aguayo   1 ✉, Jorge León-Muñoz2,3,4, Mauricio Aguayo1, Oscar Manuel Baez-
Villanueva5, Mauricio Zambrano-Bigiarini   6,7, Alfonso Fernández8,9 & Martin Jacques-
Coper7,10,11

Western Patagonia (40–56°S) is a clear example of how the systematic lack of publicly available data 
and poor quality control protocols have hindered further hydrometeorological studies. To address these 
limitations, we present PatagoniaMet (PMET), a compilation of ground-based hydrometeorological 
data (PMET-obs; 1950–2020), and a daily gridded product of precipitation and temperature (PMET-
sim; 1980–2020). PMET-obs was developed considering a 4-step quality control process applied to 523 
hydrometeorological time series obtained from eight institutions in Chile and Argentina. Following 
current guidelines for hydrological datasets, several climatic and geographic attributes were derived 
for each catchment. PMET-sim was developed using statistical bias correction procedures, spatial 
regression models and hydrological methods, and was compared against other bias-corrected 
alternatives using hydrological modelling. PMET-sim was able to achieve Kling-Gupta efficiencies 
greater than 0.7 in 72% of the catchments, while other alternatives exceeded this threshold in only 
50% of the catchments. PatagoniaMet represents an important milestone in the availability of hydro-
meteorological data that will facilitate new studies in one of the largest freshwater ecosystems in the 
world.

Background & Summary
High quality ground-based hydrometeorological observations contribute to the development of high quality poli-
cies and management of natural resources1. Conversely, unrepresentative, poorly collected, or incorrectly archived 
data introduce uncertainty into the magnitude, rate, and direction of environmental change, undermining confi-
dence in decision-making processes2. The use of hydrometeorological variables is critical in a wide range of envi-
ronmental, ecological, and hydrological applications. Therefore, there is a need for accurate datasets that include 
quality-controlled measurements that help address key challenges related to climate change and the impacts of 
hydrometeorological extremes3–5. In addition, hydrometeorological data must be findable, accessible, interop-
erable and reusable6 (FAIR data), requirements that are often not fulfilled in operational datasets7,8. Therefore, 
data obtained from measurements do not always represent the real behaviour of the observed processes9, and 
need to be corrected by homogenisation schemes10,11. Furthermore, the generation of large datasets may cross 
jurisdictions or institutions, lack of common standards or data formats (e.g., quality codes), require manual data 
collection (e.g., one time series at a time) and are more likely to suffer from spatial and temporal gaps12.
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The difficulty in accessing ground-based time series has led users to rely on global hydrometeorological 
datasets, such as reanalyses or satellite products13–15. Gridded datasets are very important for deriving regional 
atmospheric processes for a variety of scientific applications16. However, in poorly instrumented areas, gridded 
datasets can have important biases that need to be corrected17 to avoid, for example, systematic underestima-
tion of precipitation in mountainous catchments18,19. To address these limitations, different models have used 
vertical precipitation gradients20, precipitation (bias correction) factors21,22, or snow correction factors23,24. At 
the global scale, Beck et al.19 concluded that global products tend to underestimate precipitation (precipitation 
factors >1.5) over regions characterised by pronounced elevation gradients, low station density, and significant 
solid precipitation.

The recent development of the Catchment Attributes and Meteorology for Large-sample Studies25 (CAMELS) 
initiative has facilitated the access to hydrometeorological time series and catchment attribute data in the con-
tiguous United States. Since then, similar country-specific datasets have been developed for Chile18, Brazil26, 
Australia27, Great Britain28, China29, among others, enabling important advances in large-sample hydrol-
ogy12. These datasets have allowed, among other applications, the estimation of streamflow over ungauged 

Fig. 1  Study area. (a) Main basins of western Patagonia (area >5,000 km2). AR indicates basins draining to the 
east. Elevation was obtained from NASADEM66. (b) Köppen-Geiger climate classification125. (c) Land cover 
in the year 2019126. NPI: Northern Patagonian Icefield. SPI: Southern Patagonian Icefield. GCN: Gran Campo 
Nevado. CDI: Cordillera Darwin Icefield.

Country Acronym/Institution PP Tmax -Tmin Ep Q LL

Chile

DGA Dirección General de Aguas X X — X X

DMC Dirección Meteorológica de Chile X X — — —

ENDESA Empresa Nacional de Electricidad Sociedad Anónima — — — X —

INIA* Instituto de Investigaciones Agropecuarias X X X — —

DIRECTEMAR Dirección General del Territorio Marítimo y de Marina 
Mercante — X — — —

Argentina

RHN Red Hidrológica Nacional X X — X X

SMN Servicio Meteorológico Nacional X X — — —

INTA Red Agrometeorológica X X — — —

Table 1.  Data collected by variable, institution and country. PP: Precipitation. Tmax and Tmin: Daily maximum 
and minimum temperature. Q: Streamflow. LL: Lake and reservoir levels. *INIA estimates potential evaporation 
(Ep) from ground-based observations of wind, relative humidity, solar radiation and air temperature using the 
Penman-Monteith equation.
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catchments30,31, the classification of catchments by hydrological and geomorphological similarities32, the impacts 
related to anthropogenic activities18,33, and the analysis of hydrological model structures34,35. Despite the exist-
ence of the CAMELS initiative for Chile (CAMELS-CL), Western Patagonia is a clear example of how the sys-
tematic lack of hydrometeorological data (or open accessibility), poor quality control protocols and multiple 
formats between institutions36 have hindered further studies.

Western Patagonia is a vast (~400,000 km2), narrow (~200–300 km) and transboundary (Chile and 
Argentina) area extending from about 40°S down to the southern tip of the continent (40–56°S; Fig. 1). It is one 
of the largest and best preserved freshwater ecosystems in the world, encompassing numerous mountainous 
catchments of the southern Andes (Fig. 1a), and is surrounded by one of the most complex and extensive fjord 
systems in the world37. Precipitation in this region is mostly generated by disturbances embedded in the westerly 
flow, with strong orographic gradients38. Windward uplift leads to hyper-humid conditions along the western 
slope of the Andes (>5,000 mm), while downslope subsidence dries the eastern plains, leading to arid condi-
tions39,40. The climatic gradients have determined an important climatic spatial variability (Fig. 1b), allowing the 
development of glaciers, different hydrological regimes41 and vegetation types (Fig. 1c).

Climate projections for most of Western Patagonia indicate a prolongation of the dry and warm condi-
tions that have affected it in recent decades42. Overall, the climate impacts recorded in Western Patagonia have 
been attributed to the Southern Annular Mode (SAM), which has shown a significant trend towards its posi-
tive phase43. Given the heterogeneous and incomplete monitoring network of hydro-meteorological stations, 
most studies performed in this region have used only a very small subset of meteorological stations38,44, satellite 
imagery45 or climate proxies46 to study environmental changes. Despite the low use of ground-based informa-
tion, the region has shown evidence of a decrease in snow cover extent47,48, an increase in forest fires49, unusual 
tree growth patterns50, a decrease in water availability51 and significant trends in major lakes52, rivers41,53 and 
glaciers54,55.

Fig. 2  Conceptual methodological framework PMET. (a) Quality control of PMET-obs. (b) Development of 
PMET-sim. (c) Validation of PMET-sim.

Product Variable Stage Resolution Time period Reference

ERA5

Precipitation and temperature

Development

0.25° 1959 - present Hersbach et al.67

MERRA2 0.5° 1980 - present Gelaro et al.68

CFSR 0.5° 1979 - present Saha et al.69

CR2REG 0.09° 1979 - 2015 Bozkurt et al.70

CR2MET v2.5

Validation

0.05° 1960 - 2021 Boisier117

W5E5 v2.0 0.5° 1979 - 2019 Lange et al.118

MSWEP v2.8 Precipitation 0.1° 1979 - 2020 Beck et al.14

MSWX Temperature 0.1° 1979 - 2022 Beck et al.119

Table 2.  Gridded products used during the development (Fig. 2b) or validation of PMET-sim (Fig. 2c). 
Temperature includes daily maximum and minimum values.
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The low availability of local hydrometeorological data has hindered the development, calibration, and robust 
validation of regional models for western Patagonia. Krogh et al.56 implemented the physically-based Cold 
Regions Hydrological Model (CRHM) in the Baker River Basin (46°S; Fig. 1a) and concluded that the model 
forced with reanalysis data achieved better performance than the model based on scarce ground-based obser-
vations. Recent hydrological modelling efforts have benefited from the integration of local hydrometeorological 
data with gridded products to achieve better performance48,53,57. However, the performance metrics reported by 
the National Water Balance of Chile using the Variable Infiltration Capacity (VIC) model were not satisfactory 
in most of western Patagonia58,59. Furthermore, the variability of snow accumulation under different atmos-
pheric forcings39 has led to divergent surface mass balances in the Patagonian Ice Fields40,60–62.

In this study, we present PatagoniaMet (hereafter PMET), a new dataset for Western Patagonia consisting 
of two datasets: i) PMET-obs, a compilation of quality-controlled ground-based hydrometeorological data, and 
ii) PMET-sim, a daily gridded product of precipitation, and maximum and minimum temperature. PMET-obs 
was developed using a 4-step quality control process applied to 523 hydro-meteorological time series (precip-
itation, air temperature, potential evaporation, streamflow and lake level stations) obtained from eight institu-
tions in Chile and Argentina. In addition, the upstream area corresponding to each stream gauge in PMET-obs 
was delimited, and climatic and geographic attributes were derived for each catchment. Based on this dataset 
and currently available uncorrected gridded products, PMET-sim was developed using statistical bias correc-
tion procedures, spatial regression models (machine learning) and hydrological methods (Budyko framework). 
Finally, as part of the validation process, PMET-sim was compared with bias-corrected products using hydro-
logical modelling.

Methods
PMET-obs development.  The ground-based measurements used to develop PMET-obs were obtained 
from eight Chilean and Argentinian institutions (see Table 1) for the period 1950−2020, and consist of daily 
precipitation data (PP), maximum and minimum temperature (Tmax and Tmin, respectively), potential evapo-
ration (Ep), lake/reservoir levels (LL), and streamflow (Q). From the retrieved time series, we selected only those 
with daily resolution (e.g., the Agrarian Council of the Province of Santa Cruz in Argentina only reports monthly 
accumulated precipitation), with at least four years of continuous record, and that continue to operate between 
2000 and 2020. Regarding the 24-hour period, the data collected correspond to the period from 12:00 to 11:59 

Abbreviation Unit Details Reference

total_area km2 Total catchment area calculated using NASADEM NASA JPL66

total_area_camels km2 Total catchment area obtained from CAMELS-CL Alvarez-Garreton et al.18

int_area km2 “Interstation” area (area of the station excluding, if needed, the 
catchment areas of nested upstream catchments) NASA JPL66

elev_mean m.a.s.l Mean catchment elevation from NASADEM NASA JPL66

elev_median m.a.s.l Median catchment elevation from NASADEM NASA JPL66

slope_mean deg Mean catchment slope from NASADEM NASA JPL66

lake_cover % Percentage of lake cover Messager et al120.

forest_cover % Percentage of forest cover Hansen et al121.

lai_max — Maximum monthly mean of leaf area index (LAI). Mao and Yan122

lai_diff — Difference between the maximum and minimim monthly LAI Mao and Yan122

glacier_cover % Glacier cover based on Randolph Glacier Inventory Version 6 RGI Consortium123

glacier_dhdt mm Storage change expressed as the average glacier mass balance Hugonnet et al.55

Q_m3_s m3 s−1 Mean annual streamflow (only calculated for stream gauges with 
more than 10 years of data) PMET-obs

Qint_m3_s m3 s−1 Mean “interstation” streamflow calculated from Q_m3_s PMET-obs

Qint_mm_y mm yr−1 Mean “interstation” specific streamflow calculated from “Q_m3_s” 
and “int_area” PMET-obs

dam [0,1] Presence (dam = 1) or absence (dam = 0) of large dams. PMET-obs

p_mean_PMET mm yr−1 Mean annual precipitation calculated from PMET-sim (1980–2020) PMET-sim

pet_mean_PMET mm yr−1 Mean annual potential evaporation calculated from PMET-sim 
(1980–2020) PMET-sim

aridity_PMET — Aridity index calculated using p_mean_PMET and pet_mean_
PMET PMET-sim

high_prec_freq_PMET days Frequency of high precipitation days, where precipitation ≥5 times 
mean daily precipitation PMET-sim

high_prec_dur_PMET days Average duration of high precipitation events PMET-sim

low_prec_freq_PMET days Frequency of low precipitation days, where precipitation <1 mm d−1 PMET-sim

low_prec_dur_PMET days Average duration of low precipitation events PMET-sim

frac_snow_PMET % Fraction of precipitation falling as snow (threshold: 0 °C) PMET-sim

Table 3.  Climatic, hydrological, and geographic attributes calculated for each catchment as part of PMET-obs. 
The abbreviation corresponds to the attribute name in PMET-obs.
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UTC, which corresponds to 8:00 to 7:59 (UTC-4) and 9:00 to 8:59 (UTC-3) local time in Chile and Argentina 
(winter time zone), respectively.

Valuable information on atmospheric and hydrological processes is provided by the eight institutions listed 
in Table 1. However, these sources of information are subject to various types of disturbance2. Although some 
institutions control the quality of their records, the variety of data management protocols, recording types (auto-
matic vs. manual) and instruments requires a standard quality control to identify and remove anomalous values. 
We propose a quality control system consisting of four stages, each one associated with a specific objective and 
time scale (Fig. 2a).

	 a)	 The first step implemented the recommendations of Wilby et al.2, who identified several common errors in 
the information provided by hydrometeorological datasets, such as artificial influences at monitoring sites, 
changes in reference level, systematic observational biases (e.g., number bias and weekend under-report-
ing), mislocations, among others. These common errors can skew the observed frequency distribution in 
ways that may affect the estimation of extreme values and the correct representation of hydrological pro-
cesses. If the systematic errors were not limited to a specific period, the complete time series was discarded 
from PMET-obs.

	 b)	 The second step identified and removed daily outliers from the PMET-obs dataset. These outliers can be at-
tributed to truncation and rounding errors, inconsistent use of missing data flags, suspicious or erroneous 
data recoded as zero, and data entry for records that were manually digitized. Precipitation outliers were 
detected using the method proposed by Sarricolea et al.63 which involves generating reference values from 
the 10 closest stations within a 125 km radius. We then detected inconsistent temperature measurements 
(Tmax < Tmin) or values outside the range of natural variability, i.e., above or below ± 3 standard deviations 
from the monthly mean. Finally, we detected and removed suspected repeated values in the daily stream-
flow and lake level time series if the coefficient of variation was less than 0.01 over a one-month window.

	 c)	 The third step detected and removed monthly residual outliers of the PP, Tmax and Tmin time series using 
a reanalysis model as a reference. In this step, we selected the ERA5 dataset (Table 2) since it performed 
better than the other products (see PMET-sim methods) and does not assimilate ground-based data from 
the study area, as ERA5 only assimilates NCEP Stage IV, which combines NEXRAD data with ground-
based precipitation over the conterminous United States. As in the previous step, we eliminated monthly 
residuals outside the range of natural variability (± 3 standard deviations). In this step, we only considered 
months with more than 20 days of records.

	 d)	 The fourth step analysed the existence of (multiple) changepoints in the monthly residuals of PP, Tmax 
and Tmin, considering ERA5 as a reference. This was done in order to identify potential station relocations 
or instrumental changes, as this information was not publicly available as part of the metadata for each 
station. This analysis verified that the mean and variance of the residuals are constant over time, assuming 
that the equations/parameters that dominate the physics of the reanalysis model are constant over time. 
The multiple changepoints were identified using the Pruned Exact Linear Time (PELT) algorithm64 with a 
non-parametric cost function based on the empirical distribution of the data. Compared to the tradition-
al parametric approach, non-parametric methods do not assume a particular distribution and are more 
robust to outliers, which is particularly important considering the probability distribution of precipitation. 
This algorithm is integrated in the changepoint.np R package v1.065, which extends the original changepoint 
package. Once the changepoints were identified, only a subset of the time series was selected based on its 
extent and consistency.

Time series with less than four years of daily records after quality control were discarded from PMET-obs. 
Due to large data gaps in the raw time series, lake level time series were only reconstructed when more than 
one station recorded a single lake, which was common in binational lakes. Given the growing demand for 
large-sample datasets, the upstream area corresponding to each stream gauge was delimited using NASADEM66 
and several climatic and geographic attributes were derived following current guidelines for hydrological data-
sets12. The list of all catchment attributes and dataset sources can be found in Table 3.

Predictor Product Details Reference

Elevation NASADEM Surface elevation (90 m) NASA JPL66

Distance to coast NASADEM Logarithmic distance to the coast using NASADEM NASA JPL66

Aspect NASADEM Calculated from NASADEM NASA JPL66

West gradient NASADEM West component of the elevation gradient NASA JPL66

Mean precipitation ERA5 Mean raw annual precipitation (1980–2020) Hersbach et al.67

Mean air 
temperature ERA5 Mean raw annual temperature (1980–2020) Hersbach et al.67

Aridity index ERA5 Ratio between long-term annual precipitation and potential evaporation (Ep). 
Ep was derived from ERA5 using the Hargreaves equation (1980–2020) Hersbach et al.67

Cloud cover CLDCOV Cloud cover frequency (2000–2014) Wilson and Jetz124

Table 4.  Predictors used in random forest regression models. All predictors were resampled to 0.05°.
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PMET-sim development.  The development of PMET-sim consisted of three steps: i) the selection of the 
reference gridded product, ii) the downscaling of the selected product, and iii) the bias correction procedure 
(Fig. 2b). The reference gridded product provides a baseline for the correction in the following steps. The down-
scaling increases the spatial resolution (~0.5°) to a higher resolution of 0.05°, and the bias correction process 
addresses potential biases found in the selected reference gridded product.

Selection of the reference gridded product.  Four gridded reanalysis datasets, which do not use in situ measure-
ments from the study area, were evaluated to select the reference gridded product: ECMWF Reanalysis v567 
(ERA5), Modern-Era Retrospective analysis for Research and Applications Version 268 (MERRA-2), Climate 
Forecast System Reanalysis69 (CFSR), and the RegCM4-CR270 (CR2REG) (Table 2). The four datasets cover the 
entire latitudinal gradient of Western Patagonia (40–56°S), have a minimum resolution of 0.5°, and span a mini-
mum period of 30 years. Previous validations have shown that reanalysis products outperform satellite estimates 
in mid and high latitudes due to their ability to represent large-scale frontal systems14.

The selection consisted of a point-to-pixel comparison between each gridded dataset and PMET-obs. In this 
method, monthly precipitation and air temperature values were compared against their corresponding grid cell 
values71,72. Precipitation performance was measured using the modified Kling-Gupta efficiency73, which disag-
gregates the overall performance into three components: linear correlation (r), bias ratio (β), and variability ratio 
(γ). On the other hand, the temperature performance was measured using the mean bias (β’), and the standard 
deviation ratio (γ’). As weather stations are typically located at low elevations (i.e., valleys), each gridded alter-
native was compared with a pseudo-corrected version of the PMET-obs temperature time series, which was 
modified based on the mean elevation of the corresponding grid-cell and the lapse rate used in the downscaling 
procedure (see next section). All indicators were calculated using the hydroGOF R package v0.474. Considering 
that ERA5 achieved the best correlation for precipitation and a good representation of the annual temperature 
cycle (Supplementary Figure S1), we selected this alternative as the best gridded product for the next stages of 
development of PMET-sim.

Downscaling.  To increase the spatial resolution to 0.05°, the downscaling procedure is applied to the selected 
gridded product (ERA5) and varied according to the variable. The temperature downscaling was based on the 
NASADEM66 digital elevation model, and a spatially and temporally constant environmental lapse rate of 6.5 °C 
km−1, a value commonly used in Western Patagonia61. Although recent studies in Patagonia have demonstrated 
the variability of this value75, preliminary results have shown that seasonal variation of this value does not sig-
nificantly improves performance. Due to the lack of precipitation stations at high altitudes, precipitation down-
scaling was limited to a bilinear filter.

Fig. 3  Spatial distribution of hydrometeorological stations in the PMET-obs dataset. (a) Stream gauges and 
lake level stations. (b) Precipitation. (c) Air temperature. The size of the circles is proportional to the number of 
years with records of each time series. The coloured areas in (a) indicate the catchments delimited by the stream 
gauges.
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Bias correction.  Once ERA5 was downscaled (hereafter ERA5d; Fig. 2b), the statistical bias correction pro-
cess was performed. The bias correction of the maximum and minimum temperatures followed the mean and 
variance scaling method76,77 (Fig. 2b). This approach guarantees that the bias-corrected temperature time series 
of PMET-sim have the same mean and standard deviation (i.e., variance) as the ground-based time series of 
PMET-obs. Following the point-to-pixel comparison of the temperature, the simulated temperature obtained 
from ERA5d was compared with the pseudo-corrected version of PMET-obs, which takes into account the mean 
elevation of the grid-cell and the previously used lapse rate (6.5 °C km−1).

The approach is based on two parameters (βT and αT), which scale the mean and variance of the temperature, 
respectively. In a first step, βT is calculated as the difference between the mean (µ) of the simulated time series 
from ERA5d (TS) and the mean of the pseudo-corrected version of PMET-obs (To) (Eq. 1).

β = µ − µ .(T ) (T ) (1)T S O

Thereafter, the mean-corrected simulated time series (TS - βT) is shifted to a zero mean (TS1, Eq. 2).

T (T ) (T ) (2)S1 S T S T= − β − µ − β .

The variance scaling parameter (αT) was then calculated from the ratio between the standard deviations (σ) 
of To and TS1 (Eq. 3).

(T )
(T ) (3)

T
O

S1
α =

σ
σ

.

In a final step, the corrected temperature (TS2; Eq. 4) was obtained using the parameters βT and αT and TS1 of 
Eq. 2. To account for seasonal biases, the parameters βT (Eq. 1) and αT (Eq. 3) are calculated independently for 
each month.

= ⋅ α + µ − β .T T (T ) (4)S2 S1 T S T

The bias correction of PMET-sim precipitation followed a quantile mapping approach (Fig. 2b), which has 
been used in several meteorological datasets78–80. This method attempts to find a “transfer function” between 
the simulated (PPs) and observed (PPo; PMET-obs) cumulative distribution functions. In this case, the transfer 
function was based on a linear parametric transformation81,82 (Eq. 5).

PP PP (5)o PP s PP= α + ⋅ β .∗

In Eq. 5, PPo* indicates the best estimate of PPo, and αPP and βPP are the monthly parameters subjected to 
calibration. Following Piani et al.81, the linear parametric transformation was fitted to the fraction of the cumu-
lative distribution function (CDF) corresponding to observed wet days (PPo > 0 mm d−1) by minimising the 
residual sum of squares. Other transformation functions, such as power and exponential, showed similar per-
formance despite having more parameters. The bias correction was performed in the qmap R package v1.082,83.

For the three variables (PP, Tmax and Tmin), two parameters (α and β) were obtained for each time series and 
month (36 parameters in total). We used random forest (RF) regression models to derive regional gap-free maps 
for each parameter (Fig. 2b). RF regression models generate predictions using an adaptation of Leo Breiman’s 
RF algorithm, a supervised machine learning method84,85. These models have been successfully applied in sev-
eral water resources studies using numerous climatic and geographic predictors19,86,87. In each RF model, 500 
regression trees were used as an ensemble, with each tree having a minimum leaf size of five. At each split, two 
variables were randomly selected as candidates. From the full list of predictors (Table 4), we used backward 
selection (i.e., recursive feature elimination) with external validation to select the best predictors for each param-
eter and month. For external validation, we used leave-one-group-out cross-validation (LOGTCV) with 100 
samples distributed across groups, with each group containing 90% of the data. Leaving out one group at a time 
and repeating the process for all groups provides a robust assessment of the model’s ability to generalise across 
groups. This procedure was performed using the R packages randomForest v4.788 and caret v6.089. Overall, the 
climate predictors, such as mean precipitation or temperature, were more important than geographic predictors 
(Supplementary Figure S2). To avoid abrupt discontinuities in the gridded precipitation, the resulting maps for 
αPP and βPP were subsequently smoothed with a Gaussian filter with a sigma size equal to the spatial resolution 
of PMET-sim (0.05°).

Once the gridded parameters were derived from the RF procedure, we used the proposed bias correc-
tion methods to obtain the corrected values of precipitation, and maximum and minimum temperature for 
PMET-sim over 1980–2020. In addition, to correct precipitation undercatch, we followed the methodology 
proposed by Beck et al.19 (Fig. 2b), where the true long-term precipitation is inferred using the Budyko frame-
work90–92. The Budyko framework93 is a parsimonious first-order empirical equation relating long-term precip-
itation (PP), potential evaporation (Ep), and actual evaporation (E) that assumes: long-term PP is the sum of 
long-term E and long-term runoff (R); long-term changes in water storage (ΔW) can be neglected; and PP is the 
only water input, and R and E are the only outputs19. To address these assumptions, we discarded catchments 
with dams (n = 5) and used the modified curve proposed by Liu et al.94 that includes glacier mass balance in the 
water balance:
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where w is an empirical parameter representing catchment characteristics (unitless), and ΔW is the change in 
storage expressed as the average glacier mass balance in equivalent water column height (mm). We estimated 
the mass change for each catchment from geodetic mass balances for 2000–201955. Note that Western Patagonia 
has a large native forest cover, low population density and many protected areas, so other implicit assumptions, 
such as the natural flow regime, can be reasonably assumed in the study area.

We first estimated long-term PP for each interstation catchment from long-term runoff (R) and potential 
evaporation (Ep). We then calculated interstation R for all catchments without dams in the PMET-obs data-
set (n = 104). Long-term Ep was obtained directly from GLEAM v3.6a95, a process-based but semi-empirical 
model that calculates total evaporation and its individual components from satellite and reanalysis data (MSWX 
net radiation and air temperature). In preliminary stages, GLEAM 3.6a showed an adequate performance with 
respect to the ground-based data from the INIA institution (Table 1; Supplementary Figure S3). In both cases, 
long-term averages of R and Ep were calculated for the period 1980–2020. The empirical parameter w was esti-
mated from previous results of the Chilean Water Balance for 1985–201558,59. To date, this water balance is the 
largest hydrological modelling effort performed in Chile, including the binational catchments with Argentina. 
Specifically, we use the median w estimated for the selected catchments (w = 1.2), assuming that there are no 
significant differences between the two periods.

Once the true long-term precipitation was calculated, we calculated bias correction factors (BCFs) for each 
interstation catchment. Approximately 40% of the catchments had a BCF greater than 1.3, suggesting a signifi-
cant underestimation of the precipitation necessary to generate the observed streamflows over the last decades 
(Supplementary Figure S4). The mean BCF obtained from the full dataset was 1.04 ± 0.45 ( ± 1 standard devi-
ation). We then used RF regression models to derive regional gap-free BCF maps. Interstation regions with 
BCF > 2.5 (n = 2) were considered erroneous and were discarded from the training set (n = 102). Predictors 
were selected using backward selection and LOGTCV as external validation (Table 4). Based on this approach, 
the most important predictors of the RF regression were mean annual precipitation, elevation and aridity 
index (Supplementary Figure S2). The areas characterised by high BCFs were located on the western side of the 
Andes and were described by pronounced elevation gradients, high altitude and precipitation above 3,000 mm 
(Supplementary Figure S4). Following Beck et al.19, the BCFs were truncated at a lower bound of 1 because 

Fig. 4  Long-term annual mean climate obtained from PMET-sim (1990–2020). (a) Precipitation (PP). (b) Air 
temperature (T2M). (c) Potential evaporation (Ep). Ep was calculated using the Hargreaves equation. Dotted 
areas in (a) show the glacier areas from RGI v6.0123. The white outlines indicate the main basins.
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precipitation is more likely to be under than overestimated due to gauge undercatch96,97 and the low-elevation 
bias in gauge placement98,99. Finally, the BCFs were applied to the previously bias-corrected precipitation to 
obtain the final gridded PMET-sim precipitation.

Data Records
The complete PatagoniaMet dataset (v1.1) can be found at: https://doi.org/10.5281/zenodo.7992760100.

PMET-obs dataset.  The quality-controlled data of each variable of PMET-obs are stored in separate.csv 
files with the following naming convention: variable_PMETobs_timeperiod_version.csv. Each variable has an 
additional.csv file with the metadata for each station (variable_PMETobs_version_metadata.csv). The metadata 
file contains the station name (gauge_name), the institution, the station location (gauge_lat and gauge_lon), the 
NASADEM elevation (gauge_alt) and the total number of daily records (length). In addition, the precipitation 
and temperature metadata include the number of monthly outliers (third step in the methods) and the number 
of changepoints (fourth step in the methods). In order to make transparent the possible erroneous data dis-
carded from the quality-controlled version, a.zip file with the raw data of all variables is included in the dataset 
(raw_data_PMETobs_version.zip). Regarding the catchment dataset, the set of catchment boundaries is stored in 
shapefiles (each with a gauge_id), which are compiled into a.zip file (basins_PMETobs_version.zip). The attributes 
calculated for each catchment can be found in the corresponding metadata file (Q_PMETobs_version_metadata.
csv; Table 3). In addition, the file Q_PMETobs_version_water_balance.csv contains the water balance for the catch-
ments that were part of the hydrological modeling validation (next section).

Fig. 5  Performance metrics of precipitation (a–d) and air temperature (e,f) for ERA5d (downscaled version of 
ERA5), W5E5 v2.0, MSWEP v2.8 (WSWX for air temperature), CR2MET v2.5 and PMET-sim. The PMET-sim 
(CV) corresponds to the summarized results (“unseen” stations) from the 10-fold cross-validation. The different 
performance metrics were obtained using a point-to-pixel analysis using PMET-obs as the reference (period 
1990–2020). The dotted line in each box plot represents the mean value. The horizontal dotted line in each panel 
represents the optimal value.
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In summary, the PMET-obs dataset consists of 231, 129, 31, 109 and 23 time series of precipitation, air 
temperature, potential evaporation, stream gauges and lake levels, respectively (Fig. 3). Considering the area 
of Western Patagonia (~400,000 km2), the spatial density of precipitation, temperature and streamflow stations 
is one station per 1,700 km2, 3,100 km2 and 3,600 km2, respectively. The catchment area covered by all stream 
gauges is only one third of the total area of Western Patagonia (Fig. 3a). At the temporal scale, the median num-
ber of years (≥11 months of data) with precipitation, temperature and streamflow data is 18, 10 and 28 years, 
respectively. Only 17% of all time series have more than 30 years of data. Most stations with long-term records 
are located near major human settlements (e.g., Bariloche, Coyhaique and Punta Arenas; Fig. 1c) and near some 
rivers of hydroelectric interest (e.g., Puelo, Pascua and Baker; Fig. 1a).

PMET-sim dataset.  The gridded data of PMET-sim are stored in netcdf files with the following naming 
convention: variable_PMETsim_timeperiod_version.nc. All variables (precipitation and maximum and minimum 
temperature) have a spatial resolution of 0.05°, and cover the period 1980–2020.

The PMET-sim spatial patterns of precipitation show a clear distinction between the western 
(>4,000 mm yr−1) and the eastern (<1,000 mm yr−1) side of the Andes (Fig. 4a). The maximum annual values 
were located in the Northern and Southern Patagonian Icefields (NPI and SPI) with mean values of 6,090 mm 
and 6,080 mm, respectively. These values are in agreement with Sauter39, who found that the icefield-wide pre-
cipitation averages (period 2010–2016) are likely to be within 5.38 ± 0.59 and 6.09 ± 0.64 m w.e. yr−1 on the 
NPI and 5.06 ± 0.51 and 5.99 ± 0.59 m w.e. yr−1 on the SPI according to the regional moisture flux. The catch-
ments located in the northern area (Puelo to Cisnes) had a mean annual precipitation of 2100 mm, while the 
catchments located in the southeastern area had a mean annual precipitation lower than 500 mm (Gallegos and 
Río Grande). Most of the main catchments had mean annual temperatures between 3.0 °C and 7.0 °C (Fig. 4b). 
Considering the daily variation of air temperature and a melting threshold of 0 °C, the Pascua and Santa Cruz 
Rivers catchments had the highest annual snow accumulation amounts, with mean values of 500 mm and 
285 mm, respectively (~25% of the total precipitation in both cases). The comparison between mean annual pre-
cipitation and potential evaporation (Fig. 4c) suggests that all major catchments are limited by available energy.

Fig. 6  Hydrological model performance (on a monthly basis) under different atmospheric alternatives (ERA5d, 
MSWEP v2.8/MSWX, CR2MET v2.5, W5E5 v2.0 and PMET-sim). The PMET-sim (CV) corresponds to the 
summarized results (“unseen” stations) from the 10-fold cross-validation. The calibration (dark colours) and 
validation (light colours) periods were 1990–2005 and 2006–2020, respectively. The horizontal dotted line in 
each panel represents the optimal value.
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Technical Validation
Validation approach.  The validation of PMET-sim consisted of a comparison with four gridded datasets 
using two approaches: a point-to-pixel comparison with PMET-obs (monthly precipitation and temperature), and 
a performance assessment by hydrological modelling (Fig. 2c). In the first case, the performance was measured 
using the metrics previously used in the selection of the reference gridded product (KGE, β’ and γ’), while the 
second approach used the performance obtained from the calibration of the TUWmodel23. For both approaches, a 
10-fold cross-validation was added to avoid overestimating the performance achieved by PMET-sim. Each group 
(i.e., PMET-sim version) was developed using only 90% of all the stations, and the performance was measured in 
the remaining 10% of the stations.

The four benchmarks selected for the validation of PMET-sim were the Center for Climate and Resilience 
Research Meteorological dataset version 2.5 (CR2MET v2.5), Multi-Source Weighted-Ensemble Precipitation 
v2.8 (MSWEP) and W5E5 v2.0 (Table 2). These products have shown a good performance over the study area 
due to the use of local and/or regional data in their development (e.g., data from DGA, DMC and SMN, Table 1). 
CR2MET is currently a widely used reference dataset for PP and T2M in Chile18,31,57,70, including the National 
Water Balance in southern Chile58,59. MSWEP v2.8 is a multi-source precipitation-only product that merges 
gauge, satellite and reanalysis data to reduce temporal mismatches between satellite reanalysis estimates and 
gauge observations. Previous versions of MSWEP have recently outperformed other state-of-the-art precipi-
tation products over Chile101. Precipitation data from MSWEP v2.8 were complemented with air temperature 
from Multi-Source Weather (MSWX), a bias-corrected compatible meteorological product. The W5E5 v2.0 
dataset is part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b) and merges local data 
with bias-corrected reanalysis data102 (WFDE5). The downscaled version of ERA5 (ERA5d) was also included in 
the comparison to measure the performance before the inclusion of PMET-obs in the bias correction procedure.

The hydrological modelling validation used the TUWmodel23, which is a daily conceptual rainfall-runoff 
model that follows the structure of the Hydrologiska Byråns Vattenbalansavdelning (HBV) model103. The 
model consists of three routines: a snow routine, a soil moisture routine, and a flow routing routine, which 
use precipitation, temperature and potential evaporation as input variables. The snow routine incorporates a 
temperature-index model to capture the accumulation and melting of snow104, assuming an empirical relation-
ship between air temperatures and melt rates. In this approach, the melting is based on a degree-day factor (mm 
d−1 C−1) and a specific temperature threshold, while the calculation of snowfall and snow accumulation consid-
ers the temperatures at which snow and rain occur. The soil moisture routine accounts for changes in root zone 
moisture content caused by evapotranspiration and runoff generation. Estimation of actual evapotranspiration 
is based on potential evaporation. In addition, a model parameter is used to determine the soil moisture level at 
which actual evapotranspiration equals potential evaporation. Finally, the runoff routing module handles the 
movement of water across hillslopes and streams. It uses a runoff response function consisting of two reservoirs 
representing upper and lower storage zones. Runoff from the reservoirs in each elevation zone is aggregated and 
directed through a triangular transfer function for routing purposes. We selected the TUWmodel because of its 
extensive use in hydrological applications in snow-dominated catchments105–108.For example, Baez-Villanueva 
et al.31 used this model to calibrate a set of 100 near-natural catchments with a diverse hydroclimatic and geo-
morphological characteristics from the CAMELS-CL dataset, achieving a good overall performance (median 
KGE > 0.77).

The spin-up, calibration and validation periods of the hydrological modelling were 1987–1989 (3 years), 
1990–2005 (16 years) and 2006–2020 (15 years), respectively. In contrast to central Chile, western Patagonia 
has not experienced consecutive dry years, and therefore both periods (calibration and validation) include dry 
and wet years. Based on the PMET-obs dataset, we selected 71 catchments with more than two-thirds of the 
records during the calibration period and no dams. Following the CemaNeige model106, each selected catchment 
was divided into equal-area elevation zones. The number of elevation zones (EZ) was defined as EZ = (Hmax − 
Hmin)/300, where H is the elevation obtained from NASADEM (Table 4). If EZ > 5, EZ was set to 5 to be consist-
ent with the spatial resolution of the different atmospheric forcings (≥0.05°) in mountainous areas. Based on the 
maximum and minimum daily temperature of each dataset, Ep was calculated using the Hargreaves equation 
and the PyEt package109. To maximise the KGE between observed and simulated streamflow, the automatic 
calibration was performed for each combination of atmospheric forcing (n = 6) and each independent catch-
ment using the hydroPSO R package v0.574,110. HydroPSO is a global optimization R package that implements a 
state-of-the-art version of the Particle Swarm Optimization (PSO). This algorithm has been successfully used 
in several hydrological modelling applications31,111,112. The parameter ranges of the TUWmodel were based on 
Parajka et al.106 (Supplementary Table S1).

Validation results.  The development of PMET-sim improved several metrics with respect to ground-based 
observations (Fig. 5). For precipitation, PMET-sim achieved correlation values similar to ERA5d (Fig. 5a). 
MSWEP v2.8 reached the best correlation (median value = 0.87), while W5E5 showed the worst. PMET-sim 
reduced the median precipitation bias (β) from 2.1 in ERA5d to 1.3 (Fig. 5b), which represents an overesti-
mation of 30% with respect to observations from meteorological stations (usually unshielded tipping bucket 
rain gauges). All models underestimate precipitation variability (Fig. 5c). CR2MET and W5E5 showed better 
median values (γ), but W5E5 presented a higher spread. CR2MET showed the best overall precipitation perfor-
mance expressed by the KGE (Fig. 5d). Compared to ERA5d and PMET-sim, CR2MET showed a better KGE 
due to lower biases and a better reproduction of the precipitation variability. The temperature bias correction 
reduced the bias spread (standard deviation of β’) from 1.0 °C in ERA5d to 0.4 °C in PMET-sim (Fig. 5e). W5E5, 
CR2MET and MSWEP showed a warm bias lower than 1 °C. All models were able to reproduce the variability of 
the annual cycle expressed by γ’, with median values close to 1.0 in all cases (Fig. 5e). The results of the 10-fold 
cross-validation achieved similar values to the PMET-sim version developed with all available data (Fig. 5), which 
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could be attributed to the fact that the predictors in the RF spatial regression were previously selected using 
LOGTCV as an external validation.

Good performance obtained from the comparison with meteorological stations did not always translate 
into a good hydrological performance (Fig. 6). All forcing datasets showed median correlations values greater 
than 0.7 during the calibration and validation stages (Fig. 6a), with PMET-sim, ERA5d and CR2MET being the 
best forcing datasets (r > 0.8 during calibration). The bias (β) was the metric that showed the most variability 
among the forcing datasets. Despite the high biases of ERA5d and PMET-sim in Fig. 5b,both models achieved 
biases close to the optimum with a small spread (Fig. 6b). In terms of variability (γ), most datasets slightly 
underestimated the ground-based observations (Fig. 6c). Considering the performance during the calibration 
phase, PMET-sim achieved KGEs greater than 0.7 in 72% of the catchments compared to CR2MET, MSWEP 
and W5E5, which achieved 53%, 29% and 38% in the calibration period, respectively (Fig. 6d). In all metrics, the 
performance achieved in the “unseen” catchments of the 10-fold cross-validation was similar to that achieved 
with all available data.

Usage Notes
This regional dataset contributes to the hydrological and atmospheric sciences by providing a novel dataset for 
Western Patagonia, which will improve data availability113 and research reproducibility114, and can be used to 
advance our understanding of the effects of climate change in this unique water reservoir for South America. 
Although the time series available in PMET-obs represent a clear advance for a variety of scientific applications, 
it is important to note that the density of precipitation stations (Fig. 3b) is still seven times lower than the one 
recommended by the WMO115 for mountainous areas (1 per 250 km2). On the other hand, the density of stream 
gauges is almost four times lower than recommended (1 per 1,000 km2). The best spatial density of gauging 
stations is found in the vicinity of the main human settlements (where different institutions measure the same 
meteorological variable), while in the western fjord zone there are large regions with few or no observations 
(Fig. 3). Taking this into account, it is important to note that there are large areas in PMET-sim without local 
validation. Nevertheless, PMET currently performs better hydrologically than any other regional and global 
gridded product available to date.

PatagoniaMet is envisioned as an open collaborative dataset that will be regularly updated with new records, 
incorporating additional meteorological variables, institutions and time-steps as they become available. This will 
provide a foundation for future hydrometeorological studies in Western Patagonia, which can be accessed and 
reviewed by anyone in the community.

Code availability
The complete repository can be found at: https://github.com/rodaguayo/PatagoniaMet116.
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