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A comprehensive dataset of 
photonic features on spectral 
converters for energy harvesting
Rute A. S. Ferreira1 ✉, Sandra F. H. Correia2, Petia Georgieva2,3, Lianshe Fu1, Mário Antunes   2,4 
& Paulo S. André   5 ✉

Building integrated photovoltaics is a promising strategy for solar technology, in which luminescent 
solar concentrators (LSCs) stand out. Challenges include the development of materials for sunlight 
harvesting and conversion, which is an iterative optimization process with several steps: synthesis, 
processing, and structural and optical characterizations before considering the energy generation 
figures of merit that requires a prototype fabrication. Thus, simulation models provide a valuable, 
cost-effective, and time-efficient alternative to experimental implementations, enabling researchers 
to gain valuable insights for informed decisions. We conducted a literature review on LSCs over the 
past 47 years from the Web of ScienceTM Core Collection, including published research conducted by 
our research group, to gather the optical features and identify the material classes that contribute to 
the performance. The dataset can be further expanded systematically offering a valuable resource for 
decision-making tools for device design without extensive experimental measurements.

Background & Summary
The luminescent solar concentrator (LSC) concept (Fig. 1a) dates from the late 70 s1,2, but major advances 
occurred over the last twenty years. Nowadays, LSCs are seen as an urban architecture strategy to inte-
grate solar-harvesting devices into buildings, Fig. 1a,b3. This was greatly fostered by the introduction of the 
Zero-Energy Building (ZEB) concept and related United Nations and European Union directives4–6. The imple-
mentation of ZEBs implies an optimized use of renewable energy sources which draws attention to solutions 
that may easily contribute to the energy efficiency of buildings, through existing infrastructures and, thus, LSCs 
gained renewed importance over the last decade, with real-life demonstrators being developed and imple-
mented (e.g. highway sound barriers7–10 and agrivoltaic applications11,12) and companies being founded (e.g. 
Glass to Power13, UbiQD14 and ClearVuePV)15. A step further on LSC development was the recently reported 
approach including additional sensing abilities to LSCs to behave as sunlight-powered optical temperature sen-
sors16,17, which would make possible the optimization of heating/cooling systems without the need for additional 
energy-consuming sensors or systems, enabling substantial long-term benefits for society concerning energy 
consumption habits. Moreover, material science has evolved hugely over the last years in terms of achieving 
optically active materials with high absorption and conversion ability and small overlap between the absorption 
and emission spectra to prevent re-absorption losses (e.g. large Stokes-shift18,19 defined for organic molecules), 
which enabled the fabrication of large-area devices18,20–29. An LSC consists of planar waveguides that are either 
doped or coated with emissive materials. These materials absorb sunlight and re-emit it at distinct wavelengths 
that match the operating spectral region of the photovoltaic (PV) cells. The emitted light is then guided through 
total internal reflection towards photovoltaic cells coupled to the edges of the waveguides, where it is converted 
into electricity.
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The optical conversion efficiency (ηopt) is widely recognized as the primary figure of merit to evaluate the 
performance of LSCs. It quantifies the ratio of the generated output optical power (Pout) to the incident optical 
power (Pin), providing a measure of how effectively the materials convert incoming light into usable optical 
signal19. This figure of merit serves as a crucial benchmark for evaluating the efficacy of various approaches and 
optimizing LSC configurations to enhance overall efficiency.

Another parameter commonly used to quantify performance in terms of light harvesting and energy conver-
sion is the power conversion efficiency (PCE). The PCE measures the ratio of the generated electrical power 
(Pout

el ) to Pin, taking into account the specific characteristics of the coupled photovoltaic cell. The PCE provides a 
more comprehensive assessment of the LSC’s performance by considering the electrical power and the 
photovoltaic cell’s efficiency.

Despite enormous efforts, the improvement in these figures of merit is somewhat limited. Unless the intrinsic 
limitations, such as low absorption efficiency coefficient translated into weak radiation-harvesting capability, 
large self-absorption quantified by the spectral overlap between the emission and the absorption spectrum, 
and poor conversion efficiency quantified by a low emission quantum yield ηyield can be solved, it seems unre-
alistic to use these materials for solar energy conversion and to be active in climate change-related actions and 
substantial long-term benefits for society. In addition, self-absorption quantified by the overlap integral OI30 
between the absorption and emission spectra (in some cases presented as the modified overlap integral OI*31,32 
if normalized to the emission spectra) has been pointed out as one of the most critical aspects for the device 
performance3,19,30–34, although its quantification is available in very few works30–32. Nevertheless, bearing in mind 
the final goal of large-scale implementation in real applications, transparency and visible light transmittance 
are also key factors when thinking of replacing windows with such devices. Thus, a balance between the visual 
comfort of the building occupants and electrical output should be achieved.

In 1988, John Maddox wrote, “One of the continuing scandals of physical science is that it remains, in gen-
eral, impossible to predict the structure of even the simplest crystalline solids from a knowledge of their chemi-
cal composition”35. While facing some evolution nowadays, predicting the crystal structure based solely on the 
composition remains challenging and entails high computational costs. An even more glaring example is the a 
priori prediction of materials compositions from the massive amount of produced and published experimental 
data, for a given set of target applications, as the rationalization of materials is exceptionally difficult.

Although several reviews on LSCs have been published over the years3,19,33,36–47, mostly concerning the type 
of luminescent materials in use and LSC configurations and applications, this dataset intends to go further and 
be a starting point to achieve a massive compilation of relevant features concerning optically active materials 
used to fabricate LSCs, which can be helpful for researchers working in the field. Also, this dataset has the 
potential to promote much-needed standardization in the reporting of figures of merit and characterization 
procedures for LSC devices, which is a concern48,49. By establishing consistent reporting practices, researchers 
and industry professionals can ensure comparability, reproducibility, and effective collaboration in the field.

Methods
The dataset was collated from the community of researchers or research groups working in the development of 
LSC and all data sources are cited1,11,16–18,20–30,32,50–231. The first paper reporting the concept of LSC dates from 
19761,2, setting the starting point for the literature review behind the dataset. This literature review starting over 
the past 47 years on the field of spectral energy conversion was made using CitNetExplorer and VOSViewer 
tools. The sample data consisting of the information from 1474 published articles, letters, reviews, and books 
from the Web of ScienceTM Core Collection containing the following citation indexes: SCI-EXPANDED, SSCI, 
A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, and IC, using the search terms in all fields: luminescent 
solar concentrator or fluorescent collector or greenhouse collector in the period from 1976 to 2023, accessed 
on November 16, 2023. This approach has been successfully used in the field of optical sensing232,233. From 
each article, information was extracted such as authors’ names, affiliation and funding entity, the document 
title, keywords, abstract, and reference list, the publication citations and date, and the journal information, 
allowing for analyzing these fields in a multitude of parameters. We explored these fields by creating a map 
based on text categorical data (Fig. 2), which means that the abstracts, keywords, and titles were scanned for 
terms or verified whether a term is present or not (binary counting) and if it has a link with some other terms 

Fig. 1  Luminescent solar concentrator concept. Scheme of (a) planar and (b) fiber-based LSC with dimensions: 
(l – length, w – width, t – thickness, din – inner diameter, dout – outer diameter) in the hollow-core configuration. 
In this case, the doped layer is in the core (din). The 4 edges of the planar LSCs may be coupled to PV cells or 
mirrors (or reflective tapes).
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(both appearing in the same document). If the term appeared in a document, it is counted as one occurrence 
and if two terms appear together in the same document (co-occurrence), a link is created between them. The 
number of occurrences of a term was represented by the relative size of its circle. The categories, features and 
terms included in the dataset were chosen considering the more recurrent terms which is directly related to 
their relevance in the field. Also, the proximity of terms in the map was representative of how closely related 
they were, despite having a co-occurrence or not. Nevertheless, in some cases, a term linked with many other 
terms that were not related, can appear at a longer distance, being placed in the middle of all its connections. 
There was also the aggregation of terms that were homonyms but had different designations amongst the pub-
lished papers. Based on these connections and the terms found in the research, it is possible to define two main 
clusters containing terms that are representative of different fields of study: one related to LSC devices and 
the other one related to photoluminescence spectroscopy (Fig. 2). The most relevant terms which are directly 
connected with the ‘luminescent solar concentrator’ term are highlighted in Fig. 2 and those are the ones 
addressed in the dataset here reported. The optical features and the materials classes are the links between the 
clusters as the indexing terms such as, for instance, emission, absorption, quantum yield, lanthanide, carbon 
dot, dimension, or film are shared234,235.

The dataset is composed of a description of the materials used to fabricate the LSC device, in what con-
cerns the optically active centres type and concentration, the host material, and the processing methods. Only 
downshifting examples were considered as they are the vast majority of reported cases, although LSCs based on 
other energy conversion mechanisms such as upconversion236,237 or downconversion238 are already available. 
Numerical data (when available) were also manually extracted from each of the published papers to compose the 
table dataset. The numerical values considered for the optical characterization parameters include: i) wavelength 
of peak absorption or excitation (Ap), ii) minimum wavelength of the absorption or excitation spectral band 
(Amin), iii) maximum wavelength of the absorption or excitation spectral band (Amax), iv) wavelength of peak 
emission (Ep), v) minimum wavelength of the emission spectral band (Emin), vi) maximum wavelength of the 
emission spectral range (Emax), and vii) emission quantum yield (ηyield)239. The general optical features are based 
on photoluminescence data and absorption spectra. Figure 3 illustrates the excitation and emission spectra of 
one reported LSC based on lanthanide ions110 in which the relevant parameters were assigned as follows:

	 (i)	 Ap: wavelength at which the intensity reaches a peak value in the excitation (or absorption) spectrum 
measured in nanometres (nm).

	(ii)	 Ep: wavelength at which the emission spectrum has a maximum intensity value, measured in nm.

Fig. 2  Network visualization of term occurrences extracted from abstracts and titles in 1322 publications from 
Web of ScienceTM principal collection in the period 1976–2023, using ‘luminescent solar concentrator’ as the 
search keyword. A threshold cutoff of 10 as a number of term co-occurrence was used. The diameter of the 
circles is directly proportional to the number of occurrences of an indexing term, and the distance is directly 
proportional to the relation between them on the map (the closer two indexing terms are the more related they 
are). The highlighted lines represent the direct connections with the ‘luminescent solar concentrator’ term.
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	(iii)	 Amin: low-wavelength value of the excitation (or absorption) spectrum, measured in nm. In most cases, the 
value of 300 nm is considered as a threshold because below this the solar irradiance is very low (∼10−4% of 
the total solar irradiance on Earth).

	(iv)	 Amax: high-wavelength value of the excitation (or absorption) spectrum, where the intensity exhibits significant 
deviation from the noise level (>5%), measured in nm.

	(v)	 Emin: low-wavelength value of the emission spectrum, where the intensity exhibits significant deviation 
from the noise level (>5%), measured in nm.

	(vi)	 Emax: high-wavelength value of the emission spectrum, where the intensity exhibits significant deviation 
from the noise level (>5%), measured in nm.

Hence, the compiled dataset is highly representative of the field, capturing a comprehensive range of optical 
properties and characteristics about LSCs and related materials.

The dataset is also composed of the so-called performance features like ηopt and PCE, which are intrinsically 
dependent on the dimensions of the LSC device (Fig. 1a,b), and thus this information is also provided in the 
dataset. By definition, ηopt is a measure of the ratio between the output optical power and the incident one:

η =
P
P (1)opt
out

in

Experimental optical measures of Pout and Pin are performed using integrating spheres or power meters to 
calculate ηopt using Eq. 1 (from this point onwards, it will be referred to as the definition equation). These param-
eters can also be estimated when the LSCs are coupled to a photovoltaic cell. In this scenario, the literature 
provides various models (expressions) that can be employed to establish a correlation between the measured 
electrical parameter in the photovoltaic cell and the optical power. These models offer different levels of accu-
racy, allowing for a more comprehensive analysis of the relationship between the two variables. Among these, 
Eqs. 2, 3 are frequently employed to quantify ηopt. While Eq. 2 (higher accuracy equation) provides high accuracy 
by precisely incorporating the efficiency of the PV cell to correct the spectral response, Eq. 3 (lower accuracy 
equation) is a rougher approximation. Equation 2 is defined as follows50:
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where ISC
L  and V0

L represent the short-circuit current and the open voltage of the photovoltaic cell coupled to the 
LSC, respectively (Isc and V0 are the corresponding values of the photovoltaic cell exposed directly to solar radi-
ation), ηsolar is the efficiency of the photovoltaic cell relative to the total solar spectrum, ηPV is the efficiency of the 
photovoltaic cell at the LSC emission wavelengths, Ae is the LSC edge area, and As is the top surface area of the 
LSC50. An alternative definition, Eq. 3, is given by170:
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There is also more theoretical approach (theoretical equation), which considers that ηopt can be described by 
weighting all the main optical losses found in the LSC (most of them can be assessed experimentally), given by 
the product of the several terms in Eq. 4240:

Fig. 3  Optical features description. Excitation spectrum monitored at 612 nm and emission spectrum excited 
at 370 nm for a selected Eu3+-based organic-inorganic hybrid110. The shadowed area represents the Air Mass 1.5 
Global solar spectrum (AM1.5 G, the spectrum generally used in terrestrial solar cell research, right y axis).
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η η η η η η η= − R(1 ) (4)opt abs SA yield Stokes trap mat

in which R is the Fresnel reflection coefficient for perpendicular incidence, ηabs is the ratio of photons absorbed 
by the emitting layer to the number of photons falling on it, ηSA is the self-absorption efficiency241, ηStokes is the 
Stokes efficiency, ηtrap is the trapping efficiency and ηmat takes into account the transport losses due to matrix 
absorption and scattering. This suggests that different equations yield comparable results in terms of optical 
conversion efficiency. However, it is worth noting that Eq. 3 is more commonly utilized.

The PCE figure of merit is obtained from experimental data using the following Eq. 5:
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where FF is the fill factor of the photovoltaic cell. The PCE figure of merit correlates the output electrical power 
(which is directly dependent of the PV cell in use) to the incident optical one.

We note that the number of entries in the dataset is somewhat limited because, although the number of pub-
lications is increasing over the last 15 years (total publications ∼1500), there is a significant amount (∼80%) of 
published works on luminescent solar concentrators which lack performance quantification related either to ηopt 
or to PCE. This results in ∼300 published works with LSC performance quantification, matching the number of 
entries in the dataset.

Data Records
The complete dataset is available at figshare242. The data is contained in an Excel file (.xlsx file, composed of 27 
columns and 305 entries, which provides the data and the details of the dataset. The here presented dataset has 
the key to columns and units presented in the following tables, divided in two types: i) materials and the manu-
facturing processing categories (Table 1) and ii) numerical values considered for the optical features and electri-
cal characterization parameters (Table 2). Table 3 describes the columns which were included in the dataset to 
facilitate identification and tracking of the reported LSC, such as designation, publication year and DOI of the 
source published work.

Technical Validation
To ensure data integrity and quality, only data extracted from published works in SCI-indexed journals were 
considered. The data related with spectroscopic features (emission and absorption/excitation) were either taken 
directly from the text when the figures were fully described or extracted from presented graphs (spectra), which 
may cause some value misreading, inducing an estimated deviation of ±10 nm. For numerical data (OI, OI*, 
ηyield, ηopt and PCE), the values were extracted from the main text as reported by the authors. In what concerns 
the experimental data, the spectroscopic data presents the deviation associated with the measuring equipment, 
which is typically around 2 nm. For the ηyield, it is important to note that the values are typically within a 10% 
error range, as typically stated by the manufacturer of the integrating spheres apparatus, probably related with 
detector sensitivity limitations and software calculations.

The error associated with the calculated values of ηopt and PCE was estimated using the error propagation 
method, which generally induces a relative error of Δηopt/ηopt and ΔPCE/PCE below 5%. The ηopt associated 
error is given by:
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Header Explanation Unit Classes

type_OC the optically active centre type —

• dye - organic dye
• Ln - lanthanide ions
• QD - quantum dot
• CD - carbon dot
• NP - nanoparticle
• polymer
• a combination of the above

chemical_OC the chemical designation of the optically active centre — —

concentration the optically active centre concentration • M
• wt% —

type_h the material host —

• hybrid
• polymer
• solvent
• resin
• glass

chemical_h the chemical designation of the host material — —

processing the host material processing method —
• film
• bulk
• solution
• fiber

method the LSC fabrication method —

• drop cast
• spin-coating
• dip-coating
• spray-coating
• doctor blade
• liquid in container
• 3D printing
• scrap-coating

conditions_ηopt
experimental measurement conditions used in the 
determination of the optical conversion efficiency ηopt

— —

conditions_PCE experimental measurement conditions used in the 
determination of the power conversion efficiency PCE — —

PV cell photovoltaic cell used in the LSC performance quantification —

• a-Si - amorphous Silicon
• c-Si - crystalline Silicon
• GaAs
• Perovskite
• CIGS - Copper Indium Gallium Selenide
• Organic
• CuInSe2
• DSSC – dye-sensitized solar cell

Table 1.  Parameters included in the dataset related to the materials and the manufacturing processing.

Header Explanation Unit

dimension LSC dimension: l × w × t for bulk/film or l × dout × din (when applicable) for fibers. See Fig. 1a,b for clarification. cm

Ap wavelength value for the peak absorption nm

Amin minimum wavelength value for the absorption spectral band nm

Amax maximum wavelength value for the absorption spectral band nm

Ep wavelength value for the peak emission nm

Emin minimum wavelength value for the emission spectral band nm

Emax maximum wavelength value for the emission spectral band nm

OI overlap integral between absorption and emission bands a

OI* overlap integral between absorption and emission bands normalized to the emission one a

ηyield emission quantum yield %

ηopt optical conversion efficiency %

PCE power conversion efficiency %

Table 2.  Parameters included in the dataset related to numerical values considered for the optical and electrical 
performance quantification. aAbsolute values.

Header Explanation

designation designation used to describe the LSC: optical centre – host

year the publication year of the source paper from which the data is obtained

DOI the source paper DOI, allowing for easy identification and citation

Table 3.  Other information provided in the dataset related to the listed devices.
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measuring the LSC dimensions, which can be done using a measuring tape/ruler or a caliper with a 5 × 10−4 or 
5 × 10−5 m error, respectively.

The PCE associated error is given by:
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Usage Notes
The dataset presented in this work intends to be a pivotal resource for researchers and engineers working on the 
field of optical materials for down-shifting conversion for building-integrated photovoltaics. This comprehen-
sive dataset is suitable for data driven analysis and models that may predict the efficiency of new LSCs without 
extensive experimental measurements. It can be continuously expanded and augmented in the future, offering 
the opportunity for data mining and may serve as training data for ML models.
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