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a large-scale dataset of patient 
summaries for retrieval-based 
clinical decision support systems
Zhengyun Zhao  1,4, Qiao Jin2,4, Fangyuan Chen2, Tuorui Peng3 & Sheng Yu1 ✉

Retrieval-based Clinical Decision Support (ReCDS) can aid clinical workflow by providing relevant 
literature and similar patients for a given patient. However, the development of ReCDS systems has 
been severely obstructed by the lack of diverse patient collections and publicly available large-scale 
patient-level annotation datasets. In this paper, we collect a novel dataset of patient summaries and 
relations called PMC-Patients to benchmark two ReCDS tasks: Patient-to-article Retrieval (ReCDS-PaR) 
and Patient-to-Patient Retrieval (ReCDS-PPR). Specifically, we extract patient summaries from PubMed 
Central articles using simple heuristics and utilize the PubMed citation graph to define patient-article 
relevance and patient-patient similarity. PMC-Patients contains 167k patient summaries with 3.1 M 
patient-article relevance annotations and 293k patient-patient similarity annotations, which is the 
largest-scale resource for ReCDS and also one of the largest patient collections. Human evaluation and 
analysis show that PMC-Patients is a diverse dataset with high-quality annotations. We also implement 
and evaluate several ReCDS systems on the PMC-Patients benchmarks to show its challenges and 
conduct several case studies to show the clinical utility of PMC-Patients.

Background & Summary
Clinicians often rely on Evidence-Based Medicine (EBM) to combine clinical experience with high-quality 
scientific research to make decisions for patients1. However, finding relevant research can be challenging2.  
To address this issue, there has been increasing research interest in utilizing Natural Language Processing (NLP) 
and Information Retrieval (IR) techniques to retrieve relevant articles or similar patients for assisting patient 
management3–7. In this article, we introduce the term “Retrieval-based Clinical Decision Support” (ReCDS) 
to describe these tasks. ReCDS can provide clinical assistance for a given patient by retrieving and analyzing 
relevant articles or similar patients to determine the most likely diagnosis and the most effective treatment plan.

ReCDS with relevant articles is grounded in EBM. Therefore, the majority of ReCDS studies have focused on 
retrieving relevant research articles8–10, which are primarily facilitated by the Clinical Decision Support (CDS) 
Track3,11,12 held annually from 2014 to 2016 at the Text REtrieval Conference (TREC). Each year, the TREC CDS 
Track releases 30 “medical case narratives” and participants are asked to return relevant PubMed Central (PMC) 
articles for each patient. Although sufficient patient-article relevance can be annotated under the TREC pooling 
evaluation setting13, the size and diversity of the test patient set in TREC CDS are limited. Consequently, the 
generalizability of system performance to uncovered medical conditions may be constrained.

ReCDS with similar patients, on the other hand, is still under-explored. Retrieving the medical records 
of similar patients can provide valuable guidance, especially for patients with uncommon conditions such as 
rare diseases that lack clinical consensus. Nevertheless, there are various challenges in conducting this type of 
research. Unlike scientific articles, there is currently no publicly available collection of “reference patients” to 
retrieve from. Moreover, defining “patient similarity” is non-trivial14 and large-scale annotation is prohibitively 
expensive. As a result, there are only a few studies on similar patient retrieval15,16, all of which use private data-
sets and annotations.

The aforementioned issues make it clear that a standardized benchmark for evaluating ReCDS systems is 
greatly needed. Ideally, such a benchmark should contain: (1) a diverse set of patient summaries, which serve 
as both the query patient set and the reference patient collection; (2) abundant annotations of relevant articles 
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and similar patients. Due to privacy concerns, only a few clinical note datasets from Electronic Health Records 
(EHRs) are publicly available. One notable large-scale public EHR dataset is MIMIC17–20. However, it only con-
tains ICU patients without any relational annotations, making it unsuitable for evaluating ReCDS systems.

In this article, we aim to benchmark the ReCDS task with PMC-Patients, a novel dataset collected from the 
case reports in PMC and the citation graph of PubMed. Case reports denote a class of medical publication that 
typically consists of: (1) a case summary that describes the patient’s whole admission; (2) a literature review that 
discusses similar cases and relevant articles, which are recorded in the citation graph. To build PMC-Patients, 
we first extract patient summaries from case reports published in PMC using simple heuristics. For these patient 
summaries, we then annotate relevant articles and similar patients using the PubMed citation graph. Figure 1 
demonstrates the dataset collection via an example. PMC-Patients is one of the largest patient summary collec-
tions, with the largest scale of relation annotations. Besides, the patients in our dataset show a higher level of 
diversity in terms of patient characteristics than existing patient collections. Our manual evaluation shows that 
both patient summaries and relation annotations in PMC-Patients are of high quality.

Based on PMC-Patients, we formally define two ReCDS tasks: Patient-to-Article Retrieval (ReCDS-PAR) 
and Patient-to-Patient Retrieval (ReCDS-PPR), which are illustrated by an example in Fig. 2. We systemati-
cally evaluate the performance of various baseline ReCDS systems, and the experimental results show that both 
ReCDS-PAR and ReCDS-PPR are challenging tasks. We also present relevant case studies to demonstrate the 
potential application and significance of our retrieval tasks in three typical clinical scenarios.

In summary, we introduce PMC-Patients, a first-of-its-kind dataset consisting of 167k patient summaries 
annotated with 3.1 M relevant patient-article pairs and 293k similar patient-patient pairs, serving as both a 
large-scale, high-quality, and diverse patient collection, and the largest-scale resources to benchmark ReCDS 
systems.

Methods
In this section, we first describe the dataset collection process in detail. Then, based on PMC-Patients, we 
formally define two ReCDS benchmarks: Patient-to-Article Retrieval (ReCDS-PAR) and Patient-to-Patient 
Retrieval (ReCDS-PPR), and introduce the baseline ReCDS systems that we evaluate in this article.

PMC-Patients

Primary hepatic neuroendocrine carcinoma:
report of two cases and literature review
Abstract

Background

Case Presentation
Case one
A 61-year-old retired Chinese male was admitted into our
hospital in Feburary 2016, presenting with upper abdominal pain
for over
Case two
A 69-year-old retired Chinese male was admitted into our
hospital in September 2015, presenting with upper abdominal pain
for the previous month and dark urine for the previous 2 days

Discussion

Conclusions
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Fig. 1 Overview of the PMC-Patients dataset architecture. Patient summaries are extracted by identifying 
certain sections in PMC articles. The cited articles and patients are considered relevant and similar, respectively. 
Patients from the same report are also considered similar.
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PMC-Patients dataset. To collect the PMC-Patients dataset, we utilize the full-text literature resources in 
PubMed Central (PMC, https://www.ncbi.nlm.nih.gov/pmc/) and the citation relationships in PubMed (https://
pubmed.ncbi.nlm.nih.gov/). We use the PMC and PubMed resources updated until Jan 7, 2022 via official FTP 
service (https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/). We only use PMC articles with at least CC BY-NC-SA 
license (about 3.2 M) to build the redistributable PMC-Patients dataset. We do not exclusively use articles tagged 
as “case report” since we spotted numerous high-quality case reports in other types of articles in our pilot study. 
The collection pipeline can be summarized in three steps, as shown in Fig. 3:

•	 We identify potential patient summaries in each article section using extraction triggers.
•	 For sections identified above, we extract patient summary candidates using several extractors. Besides, we 

also extract the candidates’ demographics (ages and genders) using regular expressions.
•	 We apply various filters to rule out noises.

We then elaborate the technical details of the above steps.

Extraction triggers. Extraction triggers are a set of regular expressions to identify whether there are no, one, or 
multiple potential patient summaries in a given section, basically consisting of two successive triggers:

section_title_trigger: Searches in the section title for certain phrases that indicate the presence of 
patient summaries, such as “Case Report” and “Patient Representation”.

multi_patients_trigger: Searches for certain patterns in the first sentence of each paragraph and 
the titles of the subsections to identify whether multiple patients are presented, such as “The second patient” 
and “Case 1”.

Only articles with one or more potential patient summaries enter the following steps.

Extractors. Extractors perform at the paragraph level, i.e. an extracted patient summary always consists of one 
or several complete paragraphs and no split within a paragraph is performed. Depending on whether multi_
patients_trigger is triggered, different extractors are used:

Query Patient (5831736-1):
A 61-year-old retired Chinese male was admitted into our hospital in February 2016,
presenting with upper abdominal pain for over 1 month. Liver lesions were found via
ultrasound in another hospital 2 weeks after symptoms appeared. The patient had a
history of chronic hepatitis B ...

PubMed
(n = 11.7M)

Relevant Article 1 (18727836, score 2):
Title: Primary carcinoid tumors of the liver.
Abstract: ... We present a case of a 62-year-old
female with a primary hepatic carcinoid tumor
successfully resected, now with three years of
disease-free follow-up. We present a review ...

Patient-to-Article Retrieval

Similar Patient 1 (5831736-2, score 2):
A 69-year-old retired Chinese male was admitted into
our hospital in September 2015, presenting with
upper abdominal pain for the previous month and
dark urine for the previous 2 days. The patient had
hypertension for more than 10 years and diabetes for
more than 20 years ...

PMC-Patients
(n = 155k)

Patient-to-Patient Retrieval

Relevant Article 2 (22414232, score 1):
Title: Clinical features and outcomes of primary
hepatic neuroendocrine carcinomas.
Abstract: Primary hepatic neuroendocrine carcinomas
(PHNECs) are extremely rare, with only about 150
cases having been reported in the English-language
literature. Because of the rarity of PHNECs, its clinical
features and treatment ...

Relevant Article 3:
...

Similar Patient 2 (2542373-1, score 1):
EG is a 62-year-old female who presented with right
upper quadrant abdominal pain, intermittent in timing
and dull in nature, not related to oral intake and not
associated with nausea or vomiting. Her past medical
history included hypertension, irritable bowel
syndrome, osteoarthritis ...

Similar Patient 3:
...

Fig. 2 Overview of the PMC-Patients ReCDS benchmark. Given a query patient, there are two tasks: 1. Patient-
to-article retrieval requires returning relevant articles from PubMed; 2. Patient-to-patient retrieval requires 
returning similar patients from PMC-Patients.
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single_patient_extractor: Extracts all paragraphs in the section as one patient summary, if multi_
patients_trigger is not triggered.

multi_patients_extractor: Extracts paragraphs between successive triggering parts (the last one is 
taken till the end of the section) as multiple patient summaries, if multi_patients_trigger is triggered.

Filters. We remove noisy candidates with three filters:
length_filter: Excludes candidates with less than 10 words.
language_filter: Excludes candidates with more than 3% non-English characters.
demographic_filter: Identifies the age and gender of a patient using regular expressions and excludes 

candidates missing either demographic characteristic.
In addition to the three filters described above, we incorporate an optional Humans_MeSH_filter. This 

filter is designed to eliminate candidates lacking the “Humans” MeSH term, primarily to exclude a minority of 
veterinary cases. However, this filter can only be applied to about one fourth of the candidates, as not all arti-
cles are tagged with MeSH terms. Considering the significance of both the dataset’s scale and quality, we opt to 
omit the application of the Humans_MeSH_filter in this paper, and introduce the resulting dataset with the 
filter applied, denoted as PMC-Patients-Humans, in Supplementary File 1. Further discussion on the issue of 
non-human cases will be presented in the “Dataset quality evaluation” section.

The regular expression rules and parameters in the modules above are generated empirically by manually 
reading and summarizing hundreds of case reports and then refined on a test set of 100 randomly selected 
articles.

Relational annotations. For each extracted patient summary in PMC-Patients, we use the citation graph of PubMed 
to automatically annotate (1) relevant articles in PubMed and (2) similar patients in PMC-Patients. Furthermore, we 
develop a 3-point grading system for both annotations, which may be more informative and reasonable.
Annotating relevant articlesWe assume that if a PubMed article cites or is cited by a patient-containing article, 
the article is relevant to the patient. Besides, if the relevant article contains patient notes itself, we assume a 
higher relevance. Formally, we denote a patient as p, the article that contains p as a(p), and the collection of all 
patient-containing articles as N. We define any PubMed article a′ moderately relevant to the patient p, denoted 
as ′ =Rel p a( , ) 1, if: ′ →a a pcites ( ), or → ′a p a( ) cites , under the condition that a′ ∉ ℕ. We define a′ highly relevant 

PMC OA Articles
(n = 3.2M)

e.g. “Case Report”, “Patient Representation”

e.g. “Case 1: a 7-year-old boy...”, “The second patient is ...”

Extraction not triggered

End

triggered

Patient Note Candidates
(n = 199k)

for each section

not triggered
Filters

PubMed Articles
(n = 33.4M)

(66 excluded)

(31,603 excluded)

citation

Relational Annotations
Patient-Article Relevance

Patient-Patient Similarity

Fig. 3 Collection pipeline of PMC-Patients. Patient summaries are identified by extraction triggers, extracted 
by extractors, and pass various filters. Patient-level relations are annotated using citation relationships in 
PubMed.
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to the patient p, denoted as Rel p a( , ) 2′ = , if: ′ →a a pcites ( ), or a p a( ) cites→ ′ , or = ′a p a( )  (to ensure label com-
pleteness), under the condition that a′∈ℕ.
Annotating similar patientsWe annotate similar patients based on relevant articles. For each patient in 
PMC-Patients, if its relevant articles contain other patients in the dataset, we will label them as similar patients, 
and patients extracted from the same article are given a higher similarity score. Formally, we define any two 
patients px and py in PMC-Patients moderately similar, denoted as Sim p p( , ) 1x y = , if: a p a p( ) cites ( )x y→ , or 

a p a p( ) cites ( )y x→ , and highly similar, denoted as =Sim p p( , ) 2x y
 if =a p a p( ) ( )x y

.

PMC-Patients ReCDS benchmarks. Based on the patient summaries and relational annotations in 
PMC-Patients, we define two benchmarking tasks for ReCDS: Patient-to-Article Retrieval (ReCDS-PAR) and 
Patient-to-Patient Retrieval (ReCDS-PPR). Both are modeled as information retrieval tasks where the input is 
a patient summary p ∈ ℙ, where ℙ denotes the PMC-Patients dataset. For ReCDS-PAR, the goal is to retrieve 
PubMed articles relevant to the input patient using their titles and abstracts from the corpus 𝔸. Instead of using 
the entire collection of articles in PubMed, we narrow down the retrieval corpus to only include articles meeting 
the following criteria: 1) having machine-readable title and abstract; 2) in English; 3) tagged with “Humans” 
MeSH term. The restriction allows for more efficient dense retrieval, as encoding the whole PubMed collection 
would be time-consuming. Meanwhile, it reflects a practical search scenario where researchers often use similar 
filters to refine their searches. The resulting corpus 𝔸 consists of 11.7 M articles, a satisfying balance between 
efficiency and fidelity. For ReCDS-PPR, the objective is to retrieve patients similar to the input patient from 
PMC-Patients.

We split the train/dev/test sets on the article level. Specifically, we randomly select two subsets of articles  
(5k in each) from all patient-containing articles, and include the corresponding patients in the dev and test set as 
query patients. Patient summaries extracted from other articles are included as the training query patients and 
also used as the retrieval corpus P for ReCDS-PPR. The benchmark statistics are shown in Table 1. It is worth 
noting that ReCDS-PPR dev and test sets do not contain highly similar patient annotations. This is because for 
each query patient in dev/test set, patients extracted from the same article, if any, will also be allocated to the 
dev/test split and thus not present in ReCDS-PPR corpus.

We evaluate retrieval models on both benchmarks using 3-point grades defined in the section above, 
with Mean Reciprocal Rank (MRR), Precision at 10 (P@10), normalized Discounted Cumulative Gain at 10 
(nDCG@10), and Recall at 1k (R@1k).

Baseline models. We implement three types of baseline retrieval models for both ReCDS-PAR and 
ReCDS-PPR: sparse retriever, dense retriever, and nearest neighbor retriever. Besides, in order to leverage both 
lexical and semantic match, which has been shown to further boost retrieval performance21,22, we use reciprocal 
rank fusion23 algorithm to combine sparse and dense retrievers.

Sparse retriever. We implement a BM25 retriever24 with Elasticsearch (https://www.elastic.co/elasticsearch). 
The parameters of the BM25 algorithm are set as default values in Elasticsearch (b = 0.75, k1 = 1.2). For 
ReCDS-PAR, we index the title and abstract of a PubMed article as separate fields and the weights given to the 
two fields when retrieving are empirically set as 3:1.

Dense retriever. Dense retrievers represent the patients and articles in a low dimensional space using 
BERT-based encoders and perform retrieval based on maximum inner-product search. Concretely, we denote 
the encoder as f, and ed = f(d) refers to the low-dimensional embedding generated by the encoder for a given 
passage d. In our implementation, we take the embedding of the “[CLS]” token from the last layer as ed. Then for 
a query patient q and an article a in our retrieval corpus 𝔸, the relevance score between them is defined as the 
inner product of their embeddings: = ⋅s q a e e( , ) q adense . The similarity score s q p( , )dense  between q and a patient 
p ∈ ℙ is defined similarly.

We first try direct transferring of bge-base-en-v1.525 and MedCPT26, the state-of-the-art embedding models 
in general and biomedical domain, respectively. They are evaluated under a zero-shot setting, without further 
fine-tuning on PMC-Patients. Then we train our own dense retrievers by fine-tuning pre-trained encoders on the 
PMC-Patients dataset. To be specific, for a given query patient qi, a similar patient/relevant article +pi

, and a set 

Split
Source 
Articles

ReCDS-PAR ReCDS-PPR

Query Rel. 1/2 Avg. 1/2 Query Sim. 1/2 Avg. 1/2

train 131k 154.5k 1.9 M/74.9k 12.3/0.5 94.6k 167.8k/89.5k 1.8/0.9

dev 5k 5.9k 70.6k/2.8k 12.0/0.5 2.9k 6.4k/0 2.2/0

test 5k 5.9k 74.1k/3.1k 12.5/0.5 2.8k 7.5k/0 2.7/0

Corpus 11.7 M candidate articles 155.2k candidate patients

Table 1. Statistics of the ReCDS-PAR and ReCDS-PPR benchmarks. Rel. 1/2: numbers of relevant articles with 
score 1 and 2. Sim. 1/2: numbers of similar patients with score 1 and 2. Avg. 1/2: average numbers of annotations 
per query with score 1 and 2.

https://doi.org/10.1038/s41597-023-02814-8
https://www.elastic.co/elasticsearch


6Scientific Data |          (2023) 10:909  | https://doi.org/10.1038/s41597-023-02814-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

of dissimilar patients/irrelevant articles p p p, , ,i i i n,1 ,2 ,…− − −  from the training data, we use the negative 
log-likelihood of the positive passage as the loss function:

… = −
+ ∑

+ − − −

=

+

+ −L q p p p p log e

e e
( , , , , , )

(1)
i i i i i n

s q p

s q p
j
n s q p,1 ,2 ,

( , )

( , )
1

( , )

i i

i i i i j

dense

dense dense ,

We train the dense retrievers with in-batch negatives27, where p p k i{ }i j k, ∈ ≠− + ∣ . Here we do not differenti-
ate between the two levels of relevance/similarity scores since it is non-trivial to fully utilize such listwise infor-
mation in dense retrievers28. We leave this for further work.

We train several different encoders, all of which are Transformer encoders29 initialized by domain-specific 
BERT30, including PubMedBERT31, BioLinkBERT32, and SPECTER33. For the ReCDS-PPR task, only one 
encoder is used, while for the ReCDS-PAR task, we train two independent encoders to encode patients and arti-
cles separately, due to their structural differences. In cases where the input text exceeds the maximum sequence 
length allowed by BERT models, we simply truncate it.

We implement all dense retrievers using PyTorch (https://pytorch.org/) and Hugging Face Transformers 
library (https://huggingface.co/docs/transformers/index). We train all dense retrievers for 50k steps on two 
NVIDIA GeForce RTX 3090 GPUs, with a batch size of 12 per device so that the GPUs are utilized to their full 
capacity. Our learning rate is set to 2e-5 with a 0.1 warmup ratio and a linear learning rate scheduler. We use the 
AdamW34 optimizer with weight decay of 0.05. Additionally, we apply gradient accumulation of 4 steps.

Nearest neighbor (NN) retriever. We assume that if two patients are similar, then their respective relevant article 
and similar patient sets should have a high overlap degree, based on which we implement the following NN 
retriever similar to35. For each patient in the training queries p ∈ P, we define its relevant article set as 

p a a Rel p a( ) { , ( , ) 0}R A= ∈ > . For each query patient q, we first retrieve top K similar training patients 
p p p, , , K1 2 … ∈  as its nearest neighbors using BM25. We also try using fine-tuned dense retrievers which give 

suboptimal performance. We take the union of their relevant articles as the candidate set:

�C R R Rq p p p( ) ( ) ( ) ( ) (2)KPAR 1 2∪ ∪ ∪=

Then the candidate articles ∈ c q( )i PAR  are ranked by relevance scores s q c( , )iNN,PAR  defined as:

∑= ∈
=

s q c s q p I c p( , ) ( , ) { ( )}
(3)

i
k

K

k i kNN,PAR
1

BM25

For ReCDS-PPR, we def ine the similar patient set  of  each training patient p ∈   as 
= ′ ′ ∈ ′ >p p p Sim p p( ) { , ( , ) 0}S P . The candidate set and similarity scores used for ranking are defined as:

q p p p( ) ( ) ( ) ( ) (4)KPPR 1 2∪ ∪ ∪= �C S S S

∑= ∈
=

q c s q p I c p( , ) ( , ) { ( )}
(5)

i
k

K

k i kNN,PPR
1

BM25S

In practice, we dynamically set K to include at least 10k candidates in each q( )  in order to ensure a moder-
ate size of candidate set for each query.

Reciprocal rank fusion (RRF). RRF is an algorithm to combine the results of several retrievers and has demon-
strated the potential to yield enhanced retrieval performances36. Concretely, given a set of D documents to be 
ranked and a set of ranking results R from different retrievers, each a permutation on … D1 , the RRF score for 
certain document d is computed as:

s d
k r d

( ) 1
( ) (6)r R

RRF ∑=
+∈

where r(d) is the rank of document d in ranking results r, and k is a hyperparameter. In practice, we try different 
combinations of sparse retriever and the best performing dense retrievers (we do not use the NN retrievers due 
to their poor performances), and tune the hyperparameter k on our dev set. A combination of sparse retriever, 
PubMedBERT-based, and BioLinkBERT-based dense retrievers achieves optimal performances when k = 100 
for ReCDS-PAR, and k = 5 for ReCDS-PPR.

Data Records
The PMC-Patients dataset and ReCDS benchmark is publicly available on both figshare37 (https://figshare.com/
collections/PMC-Patients/6723465) and huggingface (https://huggingface.co/zhengyun21). The detailed dataset 
formats are as follows.

PMC-Patients dataset. We use the articles in PMC Open Access (OA) subset with at least CC BY-NC-SA license, 
amounting to 3,180,413, to ensure the open access to PMC-Patients. Among them, 198,846 patient note candidates 
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are identified and extracted, and 167,034 patient summaries pass all three filters. Using the method described in the 
section above, we annotate 3,113,505 relevant patient-article pairs and 293,316 similar patient-patient pairs.

Patient summaries are presented as a json file, which is a list of dictionaries with the following keys:

•	 patient_id: string. A continuous id of patients, starting from 0.
•	 patient_uid: string. Unique ID for each patient, with format PMID-x, where PMID is the PubMed IDen-

tifier of the source article of the patient and x denotes index of the patient in source article.
•	 PMID: string. PMID for the source article.
•	 file_path: string. File path of the xml file of the source article.
•	 title: string. Title of the source article.
•	 patient: string. The patient summary text.
•	 age: list of tuples. Each entry is in format (value, unit) where value is a float number and unit indicates the 

age unit (“year”, “month”, “week”, “day” and “hour”). For example, [[1.0, “year”], [2.0, “month”]] indicates that 
the patient is a one-year- and two-month-old infant.

•	 gender: “M” or “F”. Male or female.
•	 relevant_articles: dict. The key is PMID of the relevant articles and the corresponding value is its 

relevance score (2 or 1 as defined in the “Methods” section).
•	 similar_patients: dict. The key is patient_uid of the similar patients and the corresponding value 

is its similarity score (2 or 1 as defined in the “Methods” section).

PMC-Patients ReCDS benchmark. The PMC-Patients ReCDS benchmark is presented as retrieval tasks 
and the data format is the same as BEIR benchmark38 (https://github.com/beir-cellar/beir). To be specific, there 
are queries, corpus, and qrels (annotations). Detailed statistics of the benchmark dataset is shown in Table 1.

ReCDS-PAR and ReCDS-PPR tasks share the same query patient set and dataset split. For each split (train, 
dev, and test), queries are stored a jsonl file that contains a list of dictionaries, each with two fields:

•	 _id: unique query identifier represented by patient_uid.
•	 text: query text represented by patient summary text.

Corpus is shared by different splits. For ReCDS-PAR, the corpus contains 11.7 M PubMed articles, and for 
ReCDS-PPR, the corpus contains 155.2k reference patients from PMC-Patients. The corpus is also presented by 
a jsonl file that contains a list of dictionaries with three fields:

•	 _id: unique document identifier represented by PMID of the PubMed article in ReCDS-PAR, and patient_
uid of the candidate patient in ReCDS-PPR.

•	 title:: title of the article in ReCDS-PAR, and empty string in ReCDS-PPR.
•	 text: abstract of the article in ReCDS-PAR, and patient summary text in ReCDS-PPR.

Qrels are TREC-style retrieval annotation files in tsv format. A qrels file contains three tab-separated col-
umns, i.e. the query identifier, corpus identifier, and score in this order. The scores (2 or 1) indicate the relevance 
level in ReCDS-PAR or similarity level in ReCDS-PPR.

technical Validation
In this section, we first analyze the characteristics of the PMC-Patients dataset, including basic statistics and 
patient diversity. We then show the dataset is of high quality in terms of the summary extraction and the relation 
annotation with human evaluation. We also present the performance of baseline methods on the ReCDS-PAR 
and ReCDS-PPR benchmarks, illustrating the challenges of our proposed benchmark. Finally, we carry out three 
case studies to show how clinicians can benefit from PMC-Patients in various ways.

Dataset characteristics. Scale. Table 2 shows the basic statistics of patient summaries in PMC-Patients, 
in comparison to MIMIC, the largest publicly available clinical notes dataset, and TREC CDS, a widely-used 
dataset for ReCDS. For MIMIC, we report the statistics of discharge summaries of both MIMIC-3 and MIMIC-4. 
For TREC CDS, we combine the data released in three years’ CDS tracks (2014–2016) and use the “description” 
fields. PMC-Patients contains 167k patient summaries extracted from 141k PMC articles, making it the largest 

Dataset

Count

Average Length (words)

Relations

Patients Notes Relevant Articles Similar Patients

PMC-Patients (ours) 167k 167k 410 3.1 M 293k

MIMIC-3 (d.s.) 41k 60k 1,282 — —

MIMIC-4 (d.s.) 146k 332k 1,480 — —

TREC CDS (all) 90 90 92 113k —

Table 2. Statistics of PMC-Patients, in comparison to MIMIC (d.s.: discharge summaries), and TREC CDS 
(2014–2016).
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patient summary dataset in terms of the number of patients, and the second largest in terms of the number of 
notes. Besides, PMC-Patients has 3.1 M patient-article relevance annotations, which is over 27× the size of TREC 
CDS (113k in total). PMC-Patients also provides the first large-scale patient-similarity annotations, consisting of 
293k similar patient pairs.

Length. In Fig. 4a, we display the length distributions of three datasets: PMC-Patients, TREC CDS descrip-
tions, and MIMIC-4 discharge summaries. On average, PMC-Patients summaries are much longer than TREC 
descriptions (410 v.s. 92 words), but shorter than MIMIC discharge summaries (410 v.s. over 1k words). The 
differences in length among the three datasets can be attributed to their varying level of summarization. MIMIC 
provides comprehensive patient information as required for discharge summaries, while notes in PMC-Patients 
tend to focus mainly on the disease of interest, excluding irrelevant details. TREC, on the other hand, only sum-
marizes core patient features for retrieval competition purposes.

Demographics. The age distributions of PMC-Patients and MIMIC-4 are presented in Fig. 4b. There are too 
few patients to observe the age distribution in TREC CDS, so we do not include it in the figure. On average, 
patients in PMC-Patients are younger than MIMIC-4 (43.4 v.s. 58.7 years old), and the quartiles indicate that 
PMC-Patients (Q1: 26; Q2: 45; Q3: 62) covers a wider range of patient ages while MIMIC-4 (Q1: 45; Q2: 60; Q3: 
74) mainly focuses on those over 50. Besides, it can be observed from Fig. 4b that PMC-Patients covers pediatric 
patients while MIMIC-4 does not. The patient ages in PMC-Patients are more evenly distributed than MIMIC-4 
(standard deviation: 22.7 v.s. 19.3 years; entropy: 6.39 v.s. 6.09 Shannon bits). The gender distribution in both 
datasets is balanced. PMC-Patients consists of 52.5% male and 47.5% female, while MIMIC-4 consists of 48.7% 
male and 51.3% female.

Medical conditions. We also analyze the medical conditions associated with the patients. For PMC-Patients, we 
use the MeSH Diseases terms of the articles, and for MIMIC, we use the ICD codes. The most frequent medical 
conditions are shown in Fig. 5. In PMC-Patients, the majority of frequent conditions are related to cancer, with 
the exception of COVID-19 as the second most frequent condition. In MIMIC-4, severe non-cancer diseases 
(e.g. hypertension) have the highest relative frequencies, and their absolute values are much higher than those 
of the most frequent conditions in PMC-Patients. For example, hypertension and lung neoplasms are the most 
frequent condition in MIMIC and PMC-Patients, respectively. Over 60% of MIMIC patients have hypertension, 
while less than 4% of patients in PMC-Patients have lung neoplasms. The significant difference between these 
two figures can be attributed to two factors. Firstly, PMC-Patients covers a broader range of diseases, including 
4,031/4,933 (81.7%) MeSH Diseases terms, relatively more than MIMIC-4, which only comprises ICU patients 
and covers 8,955/14,666 (61.1%) ICD-9 codes and 16,464/95,109 (17.3%) ICD-10 codes. The nuanced distribu-
tion of MeSH Diseases terms occurrences in PMC-Patients can be found in Supplementary File 1. Secondly, the 
fact that PMC-Patients notes only focus on the disease of interest also constrain the MeSH terms to the specific 
disease, limiting the appearance of common comorbidities such as hypertension, the most frequent condition 
in MIMIC.

Relational annotations. We further conduct statistical analysis to assess the degree of concentration of the 
annotated relations. Figure 6 displays the distributions of the number of relevance and similarity annotations per 
patient. As anticipated, the distributions exhibit significant skewness, especially for annotations with a score of 2.  
On average, each patient in PMC-Patients is associated with 2.0 highly relevant and 16.7 moderately relevant 
articles, along with 0.6 highly similar and 1.2 moderately similar patients.

Dataset quality evaluation. Patient summary extraction. In this section, we evaluate the quality of the 
automatically extracted patient summaries and demographics in PMC-Patients. The evaluation is performed on 

Fig. 4 (a) Length distributions of PMC-Patients compared to MIMIC-4 discharge summaries and TREC CDS 
descriptions (x-axis truncated). (b) Patient age distributions of PMC-Patients compared to MIMIC-4. *Exact 
ages of patients older than 89 years old are obscured in MIMIC and thus taken as 90 in the figure.
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a random sample of 500 articles from the benchmark test set. Two senior M.D. candidates are employed to label 
the patient note spans at the paragraph level and the patient demographics. Agreed annotations are directly con-
sidered as ground truth, while disagreed annotations are discussed until a final agreement is reached.

Table 3 shows the extraction quality of PMC-Patients and the two human experts against the ground truth. 
A total of 604 patients are extracted by human experts. The patient note spans extracted in PMC-Patients are 
of high quality with a larger than 90% strict F1 score. The extracted demographics are close to 100% correct. 

Fig. 5 Relative frequency of top 30 ICD codes in MIMIC-IV (left) and MeSH Diseases terms in PMC-Patients 
(right). The colors are associated with relative frequency, and the color bar attached to the figure illustrates this.

Fig. 6 Distributions of (a) the numbers of relevance annotations and (b) the numbers of similarity annotations 
per patient. X-axis is truncated for both figures.

Quality Note Span Age Gender

PMC-Patients 91.24 99.77 100.0

Expert A 97.34 100.0 100.0

Expert B 97.28 99.91 99.49

Table 3. Extraction quality of the PMC-Patients dataset and two experts against the ground truth. Note 
span recognition is evaluated by F1 score. Age recognition is evaluated by min(annotated_age, true_age)/
max(annotated_age, true_age). Gender recognition is evaluated by accuracy. All numbers are percentages.
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Besides, two annotators exhibit a high level of agreement, with most disagreements being minor differences 
regarding the boundary of a note span.

Veterinary cases. To ensure a large dataset scale, we opt to forego the utilization of the Humans_MeSH_fil-
ter, thereby permitting the inclusion of certain veterinary cases in our dataset. In this section, we undertake 
an evaluation of the prevalence of such noises within two partition subsets of PMC-Patients. Firstly, among the 
40,225 patient summaries possessing MeSH annotations, 39,764 are tagged with the “Humans” MeSH term, 
implying an approximate 1% incorporation of noise in this subset. The 39,764 patient summaries constitute 
PMC-Patients-Humans (the “purified” dataset with the Humans_MeSH_filter applied), whose detailed 
information can be found in Supplementary File 1. For those patient summaries lacking MeSH annotations, we 
manually inspect a sample of 100 patient notes and identify only one non-human case. Therefore, we posit that 
our dataset is reasonably compromised by a mere 1% of noise. This compromise is deemed acceptable, given the 
substantial augmentation in dataset scale, exceeding four times that of PMC-Patients-Humans.

Patient-level relation annotation. To evaluate the quality of patient-level relation annotations in PMC-Patients, 
we retrieve top 5 relevant articles and top 5 similar patients using BM25 for each patient extracted by the human 
experts in the previous section (604 patients from 500 articles), resulting in over 3k patient-article and 3k 
patient-patient pairs for human annotation. To annotate patient-article relevance, we follow the guidelines of the 
TREC CDS tracks3,11,12, where we annotate the type of clinical question that can be answered by an article about a 
patient, including diagnosis, test, and treatment. To annotate patient-patient similarity, we follow the recommen-
dations from14, where we annotate whether two patients are similar in multiple dimensions: features, outcomes, 
and exposure. To assess the relational annotations in PMC-Patients against the multi-dimensional human annota-
tions, we simply convert the latter into an integer score by counting the number of relevant or similar aspects. For 
example, if two patients are annotated as similar in terms of “features” and “outcomes”, we will give it a score of 2.

Figure 7 shows the distributions of the human scores (x-axis) grouped by the relation annotations in 
PMC-Patients (binarized, Irrelevant v.s. Relevant and Dissimilar v.s. Similar). T-test shows that patient-article 
and patient-patient pairs with PMC-Patients annotations have significantly higher human scores than those 
without (p < 0.01 for both cases). Besides, almost all positive pairs are considered relevant/similar by a human 
expert, indicating PMC-Patients automatic relational annotations achieve quite high precision.

Still, it is important to recognize the presence of a minimal number of false positives in automatic relational 
annotations, such as background or methodological references. Potential solutions could entail devising more 
nuanced annotation weights based on the citation’s context and selectively excluding references to methodology 
articles. We leave these improvements for further work.

ReCDS benchmark results. The performance of various baseline methods on the test set of two ReCDS 
tasks is presented in Table 4. Surprisingly, BM25 remains a strong baseline, yielding the best individual retriever 
performance in terms of MRR and nDCG@10 for the ReCDS-PPR task. Furthermore, it demonstrates compet-
itive performance when compared to fine-tuned dense retrievers for the ReCDS-PAR task in terms of shallow 
metrics. This underscores the critical significance of exact word matching within case reports for the purpose of 
retrieving relevant articles or similar patients.

Conversely, both bge-base-en-v1.5 and MedCPT, despite their record-setting performances in a multitude 
of embedding tasks, exhibit a notable lack of adaptability in the context of our ReCDS tasks. The shortcomings, 
particularly those of MedCPT, which is trained on PubMed search logs, highlight the distinctive and formidable 
nature of the ReCDS tasks, and further reveal the unique value of our dataset.

On the other hand, dense retrievers fine-tuned on PMC-Patients exhibit substantial improvements in per-
formance, signifying the pivotal role of task-specific fine-tuning. While BM25 performs better on ReCDS-PPR 
in terms of shallow metrics, fine-tuned retrievers achieve the most elevated performance levels on ReCDS-PAR. 
Furthermore, they achieve significantly higher recall rates when compared to BM25, which is hindered by 
vocabulary mismatch. This affirms that semantic matching is an indispensable element in the retrieval of 

Fig. 7 Distributions of (a) the human-annotated relevance scores and (b) the human-annotated similarity 
scores grouped by PMC-Patients automatic annotations.
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relevant articles and similar patients. Among the fine-tuned dense retrievers, PubMedBERT outperforms 
others on ReCDS-PAR, while BioLinkBERT achieves the best results on ReCDS-PPR. This superiority can be 
attributed to the distinctive pre-training corpus and tasks associated with these encoders: PubMedBERT and 
BioLinkBERT are both pre-trained on PubMed, with BioLinkBERT further incorporating citation graph data 
during its pre-training. SPECTER, despite also encompassing citation information, is pre-trained on general 
domain scientific literature, and thus performs less favorably on ReCDS tasks.

The NN retriever generally lags behind BM25 and dense retrievers on both tasks, suggesting that evaluating 
the relevance between patients and articles based on citation graph distance may not be a suitable approach for 
this task.

The RRF method, which combines the merits of both sparse and dense retrievers, delivers a substantial 
enhancement across all metrics for both tasks. Notably, the hybrid retriever elevates MRR and nDCG by nearly 
50% over the top-performing individual retriever on ReCDS-PAR, and also achieves about 30% improvement 
in MRR and nDCG on ReCDS-PPR. Nevertheless, the metrics, despite the improvements, remain relatively 
modest, highlighting the challenge of the PMC-Patients ReCDS benchmark.

In summary, both ReCDS-PAR and ReCDS-PPR represent challenging endeavors, calling for further 
advancements in research.

Case study. ReCDS provides valuable insights for healthcare providers in diagnosis, testing, and treatment of 
a queried patient, particularly in medically grey zones where high-level evidence is scarce, personalized manage-
ment for multiple active comorbidities, and off-label use of novel therapeutics. We here present three case studies 
in the following section to demonstrate how PMC-Patients can benefit clinicians in various ways. Specifically, 
we focus on retrieval of similar patients since this is much less explored than relevant article retrieval. The three 
cases are selected and adapted from publications and TREC CDS 2016 patient collection, corresponding to three 
typical scenarios employed in TREC CDS: diagnosis (determining the patient’s diagnosis), test (determining what 
tests should the patient receive), and treatment (determining how should the patient be treated). For each case, 
we retrieve top 5 similar patients from our dataset using the BM25 retriever. Table 5 shows in brief the three cases 
with input summaries, examples of similar patients retrieved from PMC-Patients, and demonstrations of the clin-
ical significance. The detailed inputs and outputs for performing case studies are shown in Supplementary File 2.

The first case involves a diagnostic dilemma of early-onset idiopathic thrombocytopenia, with co-occurred, 
seemingly unrelated conditions of renal disease, hearing loss, and suspicious family history. The top retrieved 
patient shows MYH9 mutation39, which is the exact etiology of this case. MYH9-related thrombocytopenia is 
extremely rare (1:20,000–25,000)40 and is thus challenging to diagnose for non-experts. Other retrieval results 
also show other possible diagnoses including Alport syndrome41 and anti-basement membrane disease42.  
Its capability to recognize associated features from multiple manifestations and proposing insightful diagnoses 
is therefore greatly useful, especially in rare diseases.

The second case presents a female patient with a history of atrial fibrillation and deep venous thrombo-
sis who shows acute hepatobiliary symptoms. ReCDS retrieves highly relevant cases, covering most common 
conditions including cholecystitis43, bile leak44, and Mirizzi syndrome45. Impressively, ReCDS is able to bring 
up potentially dangerous bleeding complications (hemobilia), via suspecting anticoagulation use from her car-
diac and thrombotic comorbidities46 This requires further monitoring and testing, thus standing as important 
reminder in busy clinics where non-major medical problems can be easily ignored.

The third case asks an open question for treatment of metastatic melanoma failing standard care, pursuing 
answers in precision medicine similarly as the TREC PM 2020 track47. The retrieved cases include attempts of 
ipilimumab/nivolumab rechallenge, BRAFi and MEKi rechallenge48, and single agent PD-1 inhibitor49, each 
of which providing sound evidence with detailed clinical course background for an oncologist’s reference. 
Additionally, the approach itself favors effective treatment combinations (paradoxically thanks to positive report 

Method

ReCDS-PAR ReCDS-PPR

MRR Prec nDCG Recall MRR Prec nDCG Recall

BM25 18.71 3.84 7.38 21.89 22.86 4.67 18.29 69.66

Dense retriever 
(zero-shot)

 bge-base-en-v1.5 15.88 4.27 6.44 30.43 16.20 3.78 13.02 68.85

 MedCPT 13.06 2.67 4.95 19.94 13.68 3.18 11.01 60.17

Dense retrisever 
(fine-tuned)

 PubMedBERT 19.83 6.51 8.87 46.23 19.37 5.05 16.30 79.35

 BioLinkBERT 19.06 6.11 8.26 45.79 21.20 5.59 18.06 80.49

 SPECTER 17.92 5.49 7.66 42.46 15.08 3.79 12.27 73.01

NN retriever 16.45 4.98 6.43 30.93 6.30 2.40 4.83 59.49

RRF 29.86 8.86 13.36 49.45 27.76 6.96 24.12 85.14

Table 4. PAR and PPR performances of baseline retrievers (in percentage). Numbers in bold and underlined 
indicate the best and the second best results in each column, respectively. Precision (Prec) and nDCG are 
calculated at 10, and recall is calculated at 1,000.
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bias), and thus dynamically encourages evidence accumulation towards more promising directions, facilitating 
future clinical trial designs.

In conclusion, ReCDS can benefit clinicians in various ways, by recognizing rare diseases, overcoming testing 
blind spots, and advancing treatment evidence. With its potential to improve quality of medical care, ReCDS is 
especially valuable for clinicians in this era of precision medicine and personalized health.

Code availability
The code for collection PMC-Patients dataset and benchmark, as well as the code for reproducing the baseline 
models implemented in this paper is available at https://github.com/zhao-zy15/PMC-Patients. There is also 
a leaderboard of PMC-Patients benchmarks available at https://pmc-patients.github.io/. For those who are 
interested in improving ReCDS performances, please refer to https://github.com/pmc-patients/pmc-patients for 
evaluation code and submission guidelines.
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