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Deep learning downscaled high-
resolution daily near surface 
meteorological datasets over  
East asia
Hai Lin1,2, Jianping tang  1,2,3 ✉, Shuyu Wang2, Shuguang Wang1,2 & Guangtao Dong3

U-Net, a deep-learning convolutional neural network, is used to downscale coarse meteorological 
data. Based on 19 models from the Coupled Model Intercomparison Project Phase 6 and the Multi-
Source Weather (MSWX) dataset, bias correction and UNet downscaling approaches are used to 
develop high resolution dataset over the East Asian region, referred to as Climate Change for East 
Asia with Bias corrected UNet Dataset (CLIMEA-BCUD). CLIMEA-BCUD provides nine meteorological 
variables including 2-m air temperature, 2-m daily maximum air temperature, 2-m daily minimum air 
temperature, precipitation, 10-m wind speed, 2-m relative humidity, 2-m specific humidity, downward 
shortwave radiation and downward longwave radiation with 0.1° horizontal resolution at daily intervals 
over the historical period of 1950–2014 and three future scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) 
of 2015–2100. Validation against MSWX indicates that CLIMEA-BCUD shows reasonable performance 
in terms of climatology, and it is capable of simulating seasonal cycles and future changes well. It is 
suggested that CLIMEA-BCUD can promote the application of deep learning in climate research in the 
areas of climate change, hydrology, etc.

Background & Summary
Climate change exerts tremendous influence on water resources1,2, agriculture3, and renewable energy4, par-
ticularly in densely populated regions like East Asia. In the context of global warming, water availability and 
agriculture are affected by increasing extreme events including floods5. Extreme temperature and precipitation 
not only pose risks to people’s safety but also inflict damage on agriculture crops throughout East Asia. On the 
other hand, climate change significantly affects the reliability and performance of the energy system, notably 
solar energy and wind energy6. Consequently, there is a growing emphasis on the assessment of climate change 
in East Asia within the broader context of global warming.

Global Climate Model (GCM) is a crucial tool for understanding climate change, as it can produce long-term 
and gridded climate information. However, due to the coarse resolution, GCMs are unable to represent the 
physical processes at fine resolution7. Moreover, due to limited knowledge of the earth system and simpli-
fied parameterisation, significant biases exist in GCM outputs in comparison to observations8–10. One way to 
remedy this is bias correction (BC) and downscaling, which are often considered as an essential step for the 
assessment of climate change. Bias correction is a statistic approach to reducing the discrepancy between GCM 
simulations and observations11. Downscaling technology aims to obtain data at finer resolution to character-
ize local-scale features. Usually, downscaling can be classified by dynamical downscaling (DD) and statistic 
downscaling (SD). Based on BC, SD approach can reduce the bias in GCM12, especially in CMIP613. There are 
many downscaled datasets such as NEX-DCP3014 (0.5°), MACAv2-METDATA15 (2.5°), MACAv2-LIVNEH16 
(3.75°), NEX-GDDP-CMIP617 (0.25°) and Bias-corrected CMIP6 global dataset for dynamical downscaling of 
the Earth’s historical and future climate18 (1.25°). However, few downscaling datasets cover large-scale regions 
with a high resolution of 0.1° from CMIP6 under global warming.
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SD establishes statistical relationships between large-scale GCM outputs at coarse resolution and local-scale 
observations at fine resolution during the training period, and applies the relationships to obtain fine informa-
tion during the projected period. It is computationally inexpensive and easy to implement19. There are different 
SD approaches, for example, regression, weather classifications, and weather generators. Regression approaches 
are very popular, such as multi linear regression (MLR)20, generalized linear model (GLM)21, and machine learn-
ing (ML) method including support vector machine (SVM)22, random forests (RF)23, and artificial neural net-
works (ANN)24,25. Many studies have compared the performance among different regression approaches26–29.

Deep learning (DL) has been proved to be good at capturing complex and abstract features from numer-
ous data30. Many studies have applied the DL based super-resolution (SR) approaches for downscaling31–33. 
Among the DL approaches, UNet shows superior performance in the field of SR and has been used in statistical 
downscaling. Sha et al.34,35 developed new UNet archives, named UNet-AE and Nest-UNet for temperature and 
precipitation downscaling respectively, and found that the UNet-based models show better performance than 
spatial disaggregation. Adewoyin et al.36 applied Temporal Recurrent UNet (TRU-NET) to downscale precipi-
tation, and showed TRU-NET had better performance than a DL model prevalent in precipitation downscaling 
and dynamical downscaling method.

In this study, we develop a new bias correction and downscaling approach, named BC-UNet, to construct 
a Climate Change for East Asia with Bias Corrected UNet Dataset (CLIMEA-BCUD) based on CMIP6. The 
BC-UNet downscaling approach firstly applied Quantile Delta Mapping (QDM) to correct CMIP6 models 
biases based on the MSWX37 dataset at 1.0° × 1.0° spacing resolution38, then the UNet is trained for downscaling 
the biased corrected GCM dataset. The BC-UNet archive is applied to the historical simulations (1950–2014) 
and three future (2015–2100) scenarios of SSP1-2.6, SSP2-4.5 and SSP5-8.5. There are nine near-surface mete-
orological variables including 2-m air temperature (tas), 2-m daily maximum air temperature (tasmax), 2-m 
daily minimum air temperature (tasmin), precipitation (pr), 10-m wind speed (sfcWind), downward longwave 
radiation (rlds), downward shortwave radiation (rsds), 2-m relative humidity (hurs) and 2-m specific humidity 
(huss) (Table 1). CLIMEA-BCUD provides high-resolution large-scale DL downscaling in East Asia, which we 
suggest will be helpful for assessing climate change under global warming.

Methods
Data acquisition. The MSWX gridded high-resolution bias-corrected meteorological dataset is used as 
observations. Based on ERA5, MSWX produces 10 widely used near-surface meteorological variables with 0.1° 
horizontal resolution and 3-hour temporal resolution. The study area covers the whole of East Asia from 4.95°N 
to 60.05°N and 64.75°E to 150.25°E (Fig. 1). In order to construct the bias correction and a UNet downscaling 
model, the high-resolution MSWX datasets are averaged to coarse resolution at 1.0° × 1.0° as MSWX_LR using 
the area average method.

For climate change downscaling, we use the CMIP6 data, which provides the latest GCM simulations 
including voluminous global gridded model data over the historical period of 1950–2014 and four Shared 
Socioeconomic Pathways (SSPs) scenarios with 2015–2100 period. There are 19 GCM outputs for historical 
simulations and three representative future scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) (Table 2). As shown in 
Table 2, the original CMIP6 GCMs outputs have coarse spacing resolution. All CMIP6 data can be downloaded 
at https://esgf-node.llnl.gov/projects/cmip6/.

BC-UNet. The framework to construct the CLIMEA-BCUD, called BC-UNet is demonstrated in Fig. 2. 
BC-UNet takes GCM simulation datasets and observation as input. It has two main steps: (1) bias correction and 
(2) UNet downscaling. The details of the two steps are as below.

In the first step, the bias correction method using QDM is applied, which can reduce the bias between obser-
vations and GCMs outputs and preserves the change of model projection in quantile39,40. When applying bias 
correction, the GCMs outputs are interpolated to 1° × 1° coarse horizontal resolution to match the MSWX_LR 
with bi-linear interpolation algorithm. Then QDM is used to correct the biases between GCMs and MSWX_LR 
at coarse resolution, and to calculate the bias corrected GCM results (GCM_BC).

In the second step, UNet with 3 layers neural network, known for its exceptional performance in 
super-resolution and downscaling tasks, is used for climate downscaling41. Every convolution and downsam-
pling operation lead to a feature map, which captures the spatial features. The UNet with 3 layers represent 3 

Variable Description Units

tas Near-surface air temperature °C

tasmax Maximum near-surface air temperature °C

tasmin Minimum near-surface air temperature °C

pr Precipitation mm/day

sfcWind Surface wind speed m/s

rlds Surface downwelling longwave radiation W/m2

rsds Surface downwelling shortwave radiation W/m2

hurs Near-surface relative humidity percentage

huss Near-surface specific humidity Kg/kg

Table 1. Variables included in the CLIMEA-BCUD.
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downsampling and 3 upsampling. A convolution operation of each layer will generate a feature map, and the 
number of convolution channels represents the number of feature maps extracted by this layer. The down-
sampling component of UNet captures crucial spatial features, while the upsampling counterpart generates 
high-resolution data, effectively facilitating the downscaling process. The convolution channel numbers to cap-
ture the spatial features in UNet are {64, 96, 128, 160} for precipitation and {56, 112, 224, 448} for the other 
variables (Fig. 3).

As the goal of training stage, the loss function42 plays an important role in directing the neural network 
parameter update. The neural network minimizes the loss function value by continuously updating its parame-
ters during the training stage. Training of the UNet model is completed when the loss function converges to the 
minimum. This study proposes a new loss function based on the mean absolute error (MAE). The loss function 
effectively augments the UNet’s capacity to regenerate extreme precipitation events and mitigating the bias of 
variable underestimation. The loss function is as follows:
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Fig. 1 Study area in CLIMEA-BCUD.

Model Variant Resolution tas tasmax tasmin pr sfcWind rlds rsds hurs huss

ACCESS-ESM1-557,58 r1i1p1f1 1.875° × 1.25° O O O O O O O X X

BCC-CSM2-MR59 r1i1p1f1 1.125° × 1.125° O O O O O O O X O

CanESM560 r1i1p1f1 2.81° × 2.81° O O O O O O O O O

CESM261 r1i1p1f1 1.25° × 0.94° O X X O X O O X O

CMCC-ESM262 r1i1p1f1 1.25° × 0.94° X X X X O O O O O

CNRM-CM6-163 r1i1p1f2 1.41° × 1.41° O O O O X O O O O

CNRM-ESM2-164 r1i1p1f2 1.41° × 1.41° O O O X X O O O X

EC-Earth365 r1i1p1f1 0.70° × 0.70° O O O O O O O O O

FGOALS-g366 r1i1p1f1 2° × 2.25° O O O O O O O O O

GFDL-ESM467 r1i1p1f1 1.25° × 1.0° O O O O O O O O O

INM-CM5-068,69 r1i1p1f1 2° × 1.5° O O O O O O O O O

IPSL-CM6A-LR70 r1i1p1f1 2.5° × 1.26° O O O O O O O O X

MIROC671 r1i1p1f1 1.41° × 1.41° O O O O O O O X X

MIROC-ES2L72 r1i1p1f2 2.81° × 2.81° O O O O X X X X O

MPI-ESM1-2-HR73,74 r1i1p1f1 0.94° × 0.94° O O O O O O O O O

MPI-ESM1-2-LR73 r1i1p1f1 1.875° × 1.875° O O O X O O O O O

MRI-ESM-2.075 r1i1p1f1 1.125° × 1.125° O O O O O O O O O

NorESM2-LM76 r1i1p1f1 2.5° × 1.875° O O O O O O O O O

NorESM2-MM76 r1i1p1f1 1.25° × 0.94° O O O O O O O O O

Table 2. CMIP6 modes included in downscaled archive. O means all experiments available (historical, SSP1-
2.6, SSP2-4.5, SSP5-8.5); X means no data available.
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Where i is the grid point which are less than mean, and j indicates grid point which are greater than mean. 
Weight w is 5 to decrease the underestimation of downscaling model.

In order to effectively capture the fine features of the MSWX dataset in different seasons, four UNets are 
trained for each variable, with each UNet being responsible for a different season (MAM, JJA, SON and DJF for 
spring, summer, autumn and winter respectively). To achieve this, inputs for each season are constructed from 
data (0.1° × 0.1°) which is downscaled from MSWX_LR by a factor of 10 using bi-linear interpolation algorithm 
and static elevation (z; coarse to 0.1° spacing resolution) from Global 30 Arc-Second Elevation43 (GTOPO30), 
and original MSWX serves as label for each season. This study feed the univariate image and terrain data to 
the UNet, and the outcome is a single image. The UNet uses max-pooling for downsampling, deconvolution 
for upsampling, and long-hop connections to concatenate feature maps of the same resolution. All inputs and 

Fig. 2 BC-UNet framework flow chart.

Fig. 3 UNet framework in this study. Blue block indicates the convolution, batch normalization and ReLu 
operation. Yellow block corresponds to the max pooling operation to downsampling. Red block means the 
transparent convolution operation to upsampling. Grey arrow and grey block means the skip connection to 
merge the feature maps.
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labels are spatially normalized before being fed into the UNet. Adaptive moment estimation (Adam) are used as 
the optimizer in optimization process during the training stage. The GCM_BC are normalized and fed into the 
trained UNet to generate the downscaling results. Finally, the downscaling results are denormalized to generate 
CLIMEA-BCUD.

Data records
CLIMEA-BCUD contains nine meteorological variables (Table 1) of about 19 downscaled CMIP6 outputs.  
It has the spatial coverage of 4.95°N–60.05°N and 64.75°E–150.25°E at 0.1° × 0.1° horizontal resolution. The 
time period of historical climate ranges from January 1, 1950 to December 31, 2014. The future period of three 
climate change scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) is from January 1, 2015 to December 31, 2100 at daily 
intervals. All data are archived in the NetCDF format in CLIMEA-BCUD, named as “/{variables}/{scenarios}/
{year}.nc”, where {variables} is the name of the variables, {scenarios} refers to the historical and three future 
scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5), and {year} is the year, respectively. The size of multi-model ensemble 
mean data is about 2.0 TB. Due to the large size of the dataset, the Science Data Bank (https://www.scidb.cn/en) 
is chosen for the dissemination of the multi-model ensemble mean CLIMEA-BCUD (https://doi.org/10.57760/
sciencedb.07718)44.

technical Validation
In order to comprehensively assess the accuracy of the CLIMEA-BCUD, the spatial distribution of climate mean, 
the variation of annual mean and root mean square error (RMSE) are calculated against the MSWX dataset from 
1979 to 2014 (Table 3). The RMSEs between the raw GCM and MSWX are listed to assess the accuracy of the 
CLIMEA-BCUD. Notably, INM-CM5-0, MPI-ESM1-2-HR, and MPI-ESM1-2-LR in CLIMEA-BCUD exhibit 
better skills with relatively low RMSEs for surface air temperature. Tasmax in CLIMEA-BCUD shows the best 
performance with the RMSEs below 0.58 °C and MBs between −0.52 °C and −0.27 °C, which is better than the 
raw GCM with the RMSEs above 2.31 °C and MBs between −1.27 °C and 1.13 °C. Tasmin in CLIMEA-BCUD 
shows a lower RMSE (0.78 °C) than the raw GCM whose lowest RMSE is 2.32 °C. For precipitation, most CMIP6 
models in CLIMEA-BCUD are able to reproduce the distribution of mean precipitation with the RMSEs below 
0.37 mm/day, showing better performance than the raw GCM with the RMSEs of around 1.00 mm/day. The sur-
face wind speed in CLIMEA-BCUD has RMSEs ranging from 0.13 m/s to 0.15 m/s and surface relative humidity 
has a degree of RMSEs between 0.97% and 1.60%. Compared with CLIMEA-BCUD, the surface wind speed in 
raw GCM has RMSEs ranging from 0.92 m/s to 1.41 m/s and surface relative humidity has a degree of RMSEs 
between 6.50% and 11.87%. CLIMEA-BCUD also has RMSEs larger than 3.0 W/m2 for surface downward radi-
ative fluxes, especially for surface downward longwave radiation.

Figure 4 illustrates the distribution of multi-model ensemble mean bias between the raw GCM and MSWX, 
CLIMEA-BCUD and MSWX. Evidently, tas in CLIMEA-BCUD is comparable to that in MSWX over regions 
with flat terrain, showing much better performance than the raw GCM which has much larger bias. Even in the 
high-altitude regions such as the Qinghai-Tibet Plateau, the multi-model ensemble mean of CLIMEA-BCUD 
is able to capture the key features including the variation of annual mean tas and spatial patterns of the tas 
climate mean. Compared with CLIMEA-BCUD, tas in the raw GCM is significantly underestimated over the 
Qinghai-Tibet Plateau. For precipitation, the bias of multi-model ensemble mean ranges from −0.6 mm/day to 
0.6 mm/day over most regions in East Asia. While precipitation in the raw GCM is significantly overestimated 
over East Asia by around 1.0 mm/day. A relatively large bias for CLIMEA-BCUD above 1.0 mm/day can be 
found over the south eastern side of the Qinghai-Tibet Plateau, and the west coast of Africa, which is smaller 
than the raw GCM with a bias above 1.4 mm/day. Compared with the raw GCM, CLIMEA-BCUD for all varia-
bles can effectively and generally reproduce the spatial distribution of climatological average from 1979 to 2014 
with higher SCCs and lower MBs and variation of annual mean with much lower RMSEs.

Seasonality. Figure 5 illustrates the seasonal cycle of all variables from the raw GCM output. Figure 6 shows 
that CLIMEA-BCUD can well reproduce the seasonal cycle of surface air temperature with a correlation of 1.0, 
but shows large uncertainties and warm biases in summer. Compared with raw GCM, the multi-model ensemble 
mean of CLIMEA-BCUD can well reproduce the seasonal cycle of surface air temperature with a correlation 
of 1.0 and lower uncertainties; yet significant cold biases are found in spring and winter. Because of the nor-
malization, surface air temperature in CLIMEA-BCUD maintains the advantage of QDM outputs, which can 
represent time series with higher CC and lower uncertainties than the raw GCM. For the seasonal cycle of precip-
itation, the multi-model ensemble mean of CLIMEA-BCUD exhibits a good correlation (0.99) and a low RMSE 
of 0.2 mm/day, but has relatively large uncertainties, particularly in summer when precipitation shows strong 
spatio-temporal variability.

Surface wind speed in the multi-model ensemble mean of the raw GCM shows good correspondence with 
MSWX with a high correlation of 0.98 and RMSE of 0.33 m/s, but it clearly overestimates wind speed and exhib-
its a large uncertainty. While surface wind speed in the multi-model ensemble mean of CLIMEA-BCUD shows 
good coherence with MSWX with a high correlation of 0.98 and a lower RMSE of 0.15 m/s and significantly 
reduces the uncertainty, it clearly overestimates wind speed in winter and underestimates it in summer. The 
surface relative humidity displays a lower degree of seasonal variation than that of MSWX, leading to a rather 
low correlation of 0.63, which is still higher than the raw GCM (correlation 0.43). Multi-model ensemble mean 
of CLIMEA-BCUD can well generate downward longwave radiation, downward shortwave radiation, and sur-
face specific humidity. In general, the multi-model ensemble mean of CLIMEA-BCUD, compared with the raw 
GCM, reduces the uncertainties and achieves higher correlation and lower RMSE.
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Extreme events. Regarding the precipitation events, 4 distinctive classes of precipitation events are cate-
gorized: light rain (1 ≤ pr < 10 mm/day), moderate rain (10 ≤ pr < 25 mm/day), heavy rain (25 ≤ pr < 50 mm/
day) and rainstorm (pr ≥ 50 mm/day) according to the China Meteorological Administration45 (CMA).  
By counting the frequency of precipitation events at each grid and comparing it with the raw GCM, the per-
formance of the CLIMEA-BCUD in generating the precipitation events can be assessed (Fig. 7). For the light 
rain events, CLIMEA-BCUD is capable of capturing the overall pattern of MSWX, and shows more detail 
than the raw GCM. QDM can preserve daily precipitation extreme events well, which are also preserved by 
CLIMEA-BCUD. CLIMEA-BCUD has a higher frequency between 60% and 70% than MSWX which is below 
60% over the eastern Pacific. For moderate rain events, the over shift of rain belt for the raw GCM is found in 
the eastern Pacific and the Qinghai-Tibet Plateau. Moreover, the raw GCM overestimates the frequency over 
southern China. CLIMEA-BCUD performs better in producing the distribution of frequency, with two main rain 
belts over the Pacific. But it slightly underestimates the frequency over land areas, especially over southeastern 
China. For the heavy rain events, GCMs overestimate the frequency over the southeastern Pacific and southern 
China. CLIMEA-BCUD can capture the spatial distribution of frequency with slight underestimation over most 
regions in East Asia and perform more details than the raw GCM. For the rainstorm events, the raw GCM cannot 
regenerate the distribution over East Asia. CLIMEA-BCUD can reproduce the distribution over oceanic areas. 
Notably, CLIMEA-BCUD narrows down areas with rainstorm events frequency between 1% and 2%, especially 
over the Kyushu region of Japan. In general, CLIMEA-BCUD can capture different rank precipitation events well, 
especially moderate rain, but there are some obvious biases in the eastern Pacific.

tas tasmax tasmin pr sfcWind rlds rsds hurs huss

ACCESS-ESM1-5
GCM 2.69 2.77 3.03 0.38 1.07 15.66 18.32

BCUD 0.56 0.5 0.62 0.29 0.15 4.21 2.69

BCC-CSM2-MR
GCM 2.83 2.83 3.35 1.18 1.41 11.77 18.43 0.00137

BCUD 0.47 0.4 0.55 0.27 0.15 3.51 2.7 0.0003

CanESM5
GCM 3.09 2.79 4.10 1.26 1.13 14.87 18.79 11.87 0.00288

BCUD 0.66 0.58 0.78 0.29 0.14 4.59 3.05 1.14 0.0004

CESM2
GCM 2.44 1.19 13.90 17.11 0.00117

BCUD 0.59 0.29 4.17 2.71 0.00036

CMCC-ESM2
GCM 1.20 13.79 16.98 9.37 0.00112

BCUD 0.15 3.73 2.71 1.14 0.00035

CNRM-CM6-1
GCM 2.95 2.64 3.49 1.10 13.01 23.15 7.25 0.00163

BCUD 0.42 0.36 0.5 0.27 3.06 2.7 0.97 0.00025

CNRM-ESM2-1
GCM 2.68 2.49 3.11 11.36 23.47 7.41

BCUD 0.46 0.4 0.53 3.35 2.98 1.08

EC-Earth3
GCM 2.19 2.31 2.73 0.89 1.08 10.89 18.02 6.50 0.00145

BCUD 0.62 0.52 0.73 0.29 0.14 4.98 3.3 1.60 0.00043

FGOALS-g3
GCM 3.20 3.49 3.50 1.81 1.39 14.36 25.16 10.52 0.00148

BCUD 0.59 0.5 0.68 0.28 0.14 4.19 2.83 1.01 0.00032

GFDL-ESM4
GCM 2.23 2.35 2.57 1.15 1.15 10.16 14.84 8.07 0.00113

BCUD 0.49 0.43 0.56 0.25 0.14 3.51 2.8 1.15 0.00031

INM-CM5-0
GCM 2.61 2.82 2.97 1.47 1.20 13.75 27.14 8.10 0.00143

BCUD 0.42 0.36 0.51 0.27 0.15 3.18 3.12 1.10 0.00027

IPSL-CM6A-LR
GCM 3.72 3.58 4.42 1.31 1.00 16.65 24.21 11.20

BCUD 0.56 0.46 0.66 0.27 0.15 3.77 2.74 0.99

MIROC6
GCM 2.88 3.92 2.59 1.15 1.34 11.95 19.53

BCUD 0.47 0.40 0.55 0.27 0.14 3.84 3.18

MIROC-ES2L
GCM 2.93 3.20 2.59 1.21 0.00122

BCUD 0.55 0.51 0.59 0.26 0.00025

MPI-ESM1-2-HR
GCM 2.23 2.37 2.24 1.32 0.92 12.85 20.62 10.47 0.00124

BCUD 0.43 0.36 0.52 0.29 0.15 3.25 3.09 1.15 0.00028

MPI-ESM1-2-LR
GCM 2.61 2.75 2.65 1.13 16.31 19.45 11.81 0.00145

BCUD 0.4 0.33 0.49 0.14 3.15 2.94 1.12 0.00028

MRI-ESM2-0
GCM 2.21 2.32 2.32 1.21 1.50 11.01 21.99 8.93 0.00131

BCUD 0.44 0.36 0.53 0.25 0.14 3.27 3.2 1.07 0.00027

NorESM2-LM
GCM 2.87 2.90 3.05 1.08 1.04 16.03 19.50 8.94 0.00131

BCUD 0.55 0.49 0.61 0.30 0.13 3.91 2.98 1.05 0.00034

NorESM2-MM
GCM 2.22 2.34 2.32 0.96 0.94 11.06 19.52 7.68 0.00107

BCUD 0.44 0.38 0.51 0.37 0.15 3.38 3.75 1.03 0.0003

Table 3. RMSEs between MSWX and GCM and CLIMEA-BCUD.
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Projected changes. Based on the evaluation of downscaled daily precipitation and surface air tempera-
ture, projections in surface air temperature and precipitation at the end of the 21st century (2070–2100) from 
CLIMEA-BCUD for all the scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) can be estimated. Figure 8 (the raw 
GCM) and Figure 9 (CLIMEA-BCUD) shows the changes in multi-model ensemble mean surface air temperature 
and precipitation at the end 21st century for all the scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5). It is found that 
the surface air temperature will rise in East Asia, with a greater warming range in the northern part of China espe-
cially under the SSP5-8.5 scenario, which shows a similar distribution with the raw GCM. The ensemble mean 
median change in tas from CLIMEA-BCUD is projected to increase by 1.57 °C in SSP1-2.6, 2.53 °C in SSP2-4.5, 
and 4.52 °C in SSP5-8.5, which is similar to the raw GCM with 1.63 °C in SSP1-2.6, 2.59 °C in SSP2-4.5 and 4.58 °C 
in SSP5-8.5. The projection of ensemble mean tasmax and tasmin from CLIMEA-BCUD is similar to that of tas, 
with the temperature increasing from south to north across East Asia, indicating that the CLIMEA-BCUD pre-
serves the climatic trend from the raw GCM. In terms of precipitation, the projected change in CLIMEA-BCUD 
generally shows an increase over most areas in East Asia, and the ensemble mean median change is projected to 
increase by 0.19 mm/day in SSP1-2.6, 0.22 mm/day in SSP2-4.5 and 0.34 mm/day in SSP5-8.5. While the projected 
change in the raw GCM has the same changes and the ensemble mean median change is projected to increase by 
0.20 mm/day in SSP1-2.6, 0.24 mm/day in SSP2-4.5 and 0.37 mm/day in SSP5-8.5. A significant increase of pre-
cipitation in the raw GCM is found over the Indian Ocean and the western Pacific Ocean. For CLIMEA-BCUD, 
precipitation will significantly increase in eastern China, and slightly decrease in the northwestern regions. It will 
also increase in India, especially under the SSP5-8.5 scenario. The increase of precipitation over the ocean is more 
notable, mainly in the Indian Ocean and the western Pacific Ocean.

Fig. 4 MB distribution of tas and precipitation in CLIMEA-BCUD.
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Usage Notes
In this study, we describe the CLIMEA-BCUD dataset for East Asia, which provides daily time series of nine 
meteorological variables at 0.1 spacing resolution based on 19 CMIP6 GCMs. CLIMEA-BCUD is provided 
for both the historical period (1950–2014) and the future period (2015–2100), and it incorporates three dif-
ferent emission scenarios for the future: SSP1-2.6, SSP2-4.5 and SSP5-8.5. By delivering such high-resolution  

Fig. 5 Seasonal cycles of the nine variables during 1979–2014. Red line is the MSWX seasonal cycle. Blue line is 
the multi-model ensemble mean seasonal cycle of GCMs, the shaded area represents uncertainties of all models 
with one standard deviation.

Fig. 6 Seasonal cycles of the nine variables during 1979–2014. Red line is the MSWX seasonal cycle. Blue line is 
the multi-model ensemble mean seasonal cycle of CLIMEA-BCUD, the shaded area represents uncertainties of 
all models with one standard deviation.
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information, CLIMEA-BCUD can be very useful for various hydroclimatic research. Furthermore, 
CLIMEA-BCUD may also prove useful for users not only in the hydrometeorological field but also in others, 
such as climate change, agriculture, energy, etc. Given East Asia’s continental proportions and its role in global 

Fig. 7 Frequency of different rank (a for light rain, b for moderate rain, c for heavy rain and d for rainstorm) of 
precipitation in GCMs, CLIMEA-BCUD and MSWX.

Fig. 8 Future change of surface air temperature and precipitation in the end 21st century (2070–2100) from GCMs.
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climate, the high resolution (0.1°) of gridded data is critical for developing regional and global assessments 
and aiding decision- and policy-making. CLIMEA-BCUD is presented in netCDF format (.nc), and it is freely 
available at the Science Data Bank (https://doi.org/10.57760/sciencedb.07718)44. While CLIMEA-BCUD has a 
wonderful performance in producing the overall patterns of climate mean, seasonal cycle, frequency, and future 
changes, some limitations must be acknowledged. Firstly, data users should be aware of underestimation when 
using CLIMEA-BCUD due to its underestimation in representing observations. Secondly, despite displaying 
good performance in reproducing seasonal variability and extreme events, the bias-corrected products may 
contain inherent uncertainties, and obscure some fundamental deficiencies presented by the climate models.

Numerous studies have extensively researched methods to enhance model performance in the field of 
super-resolution, and these advancements are expected to be applicable to downscaling tasks as well. Among 
them, image enhancement techniques including adaptive gamma correction with weighting distribu-
tion46 (AGCWD), adaptive gamma correction with color preserving framework47 (AGCCPF), range limited 
Bi-histogram equalization48,49 (RLBHE), and region adaptive contrast limited adapted histogram equaliza-
tion50 (RACLAHE) are common and powerful tools for improving the performance of DL model. It is valuable 
to explore its effectiveness in the context of climate downscaling. Furthermore, several studies have explored 
improved models based on UNet such as UNet++51, UNet3+52, ResUNet53 and USE-NET54, which have demon-
strated significant potential in various applications. Additionally, models that combine technologies such as gen-
erative adversarial network55 (GAN) and Transformer56 have also shown great potential for further improvement.

Code availability
QDM approach in this study is carried out using the R-packages of the Multivariate Bias Correction of Climate 
Model Outputs (MBC) project and it is available through the following Github link: https://github.com/cran/MBC.  
The UNet downscaling approach is carried out using the python-packages of the tensorflow2 and it is available 
through the following Github link: https://github.com/tensorflow/tensorflow.

All code used in this study can be available through the following Github link: https://github.com/
LinHai-debug/CLIMEA-BCUD-code.
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