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The heart of the fruit fly, Drosophila melanogaster, is a particularly suitable model for cardiac studies. 
Optical coherence microscopy (OCM) captures in vivo cross-sectional videos of the beating Drosophila 
heart for cardiac function quantification. To analyze those large-size multi-frame OCM recordings, 
human labelling has been employed, leading to low efficiency and poor reproducibility. Here, we 
introduce a robust and accurate automated Drosophila heart segmentation algorithm, called FlyNet 
2.0+, which utilizes a long short-term memory (LSTM) convolutional neural network to leverage 
time series information in the videos, ensuring consistent, high-quality segmentation. We present a 
dataset of 213 Drosophila heart videos, equivalent to 604,000 cross-sectional images, containing all 
developmental stages and a wide range of beating patterns, including faster and slower than normal 
beating, arrhythmic beating, and periods of heart stop to capture these heart dynamics. Each video 
contains a corresponding ground truth mask. We expect this unique large dataset of the beating 
Drosophila heart in vivo will enable new deep learning approaches to efficiently characterize heart 
function to advance cardiac research.

Background & Summary
Drosophila melanogaster (a fruit fly) is a powerful model organism for investigating biological mechanisms of 
human diseases. The fully sequenced D. melanogaster genome contains functional homologs for about 75% of 
human disease-causing genes1,2. The fruit fly’s short life cycle, ~ 11 days from embryo to adult, makes it a good 
candidate for studying age- and disease-related physiological changes. The heart, located ~100 μm below the 
dorsal surface, is easily accessed by optical imaging. Oxygen transport in Drosophila is independent of the tubu-
lar heart3, enabling the creation of severe cardiac defects without causing death. This independence also enables 
pacing experiments that can completely stop the heartbeat or accelerate the heart rate. In building an innovative 
research platform for cardiovascular studies, our research group has developed an integrated apparatus that can 
simultaneously perform optical imaging and optogenetic pacing to control and characterize the fly heartbeat 
rhythm at all developmental stages4,5. The technique employs genetically modified flies and a custom-built opti-
cal coherence microscopy (OCM) imaging system.

Optical coherence tomography (OCT) noninvasively provides micron-scale cross-sectional and 3D images 
of biological tissues in a wide variety of clinical applications, including ophthalmology6,7, cardiology8–10, endos-
copy11–13, dermatology14–16, and dentistry17–19. OCM20, which integrates OCT and confocal detection, offers 
high resolution at an image penetration depth of around 500 µm, deep enough to image the larval, pupal, and 
adult Drosophila heart. For functional analysis, M-mode images are acquired with repeated frames showing 
cross-sectional views of the heart at a fixed location over time. In our study, each ~32-second recording captures 
4000 2D images at a frame rate of ~125 frames per second. This 2D+ time OCM video acquisition is less sensi-
tive to sample motion and supports higher frame rates, enabling more accurate measurements, especially of fast 
beating hearts.

To quantify the cardiac function, the heart region in the OCM videos must be segmented accurately. The 
heart mask that stores the segmentation over time can be used to calculate dynamic cardiac parameters, such 
as the heart rate (HR), end-diastolic diameter (EDD), end-systolic diameter (ESD), and fraction shortening 

1Washington University in St. Louis, Department of Computer Science and Engineering, St. Louis, MO, 63130, USA. 
2Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA. 3these 
authors contributed equally: Matthew Fishman, Abigail Matt. ✉e-mail: chaozhou@wustl.edu

DATA DESCripTOr

OpEN

https://doi.org/10.1038/s41597-023-02802-y
http://orcid.org/0000-0002-9663-191X
http://orcid.org/0000-0002-0890-4595
http://orcid.org/0000-0002-8679-3413
mailto:chaozhou@wustl.edu
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-02802-y&domain=pdf


2Scientific Data |          (2023) 10:886  | https://doi.org/10.1038/s41597-023-02802-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

(FS), all of which characterize the heart function. For cardiovascular research involving small organisms such 
as Drosophila, there are several challenges to quantify the heart function: adequate spatiotemporal resolution 
with minimum invasiveness, and reliable automatic algorithm for batch processing. Previous techniques using 
a digital camera or electrophysiological recordings are able to resolve the heart function for quantification, but 
require invasive dissection procedures to expose the heart21. Ocorr et al. developed a technique for measur-
ing characteristics of heart rhythmicity22. These flies must have ventricle cuticle and organs below the dorsally 
located heart to be removed to create an unobscured recording, and a camera is used to record heart movement 
from a top-down approach. This algorithm relies on differences in pixel intensity and overall frame brightness to 
detect changes in heart wall movement. It has been useful in defining the heart rate, systolic and diastolic index, 
arrhythmicity, and fractional shortening. The heart recordings usually have big data size and repeated measure-
ments from different individuals, which raises a pressing need for generalized computational methods to auton-
omous processing. Originally, heart beats were counted manually23, which was an incredibly time consuming 
and less precise technique. Semiautomatic optical heartbeat analysis (SOHA) has been developed by Fink et al.22 
and Ocorr et al.21 and upgraded by Monck et al.24 to retrieve the fly heart coherent movement. This method has 
low implementation cost and can well characterize heart beating, but did not achieve full automaticity and the 
animals were not intact. Additionally, heart edge-tracing of top-viewing videos has provided pupal heartbeat 
analysis, as shown by Wessels and Bodmer25.

OCM has then emerged as an important optical method with noninvasiveness and high spatiotemporal 
resolution. With this imaging method, all developmental stages can be imaged, and larvae and pupae can be 
returned undamaged for further studies. An algorithmic method has also been employed to analyze OCM 
M-Mode recordings of heart function26. In this method, heart segmentation is generated based on edge detec-
tion and principal component analysis. The authors used this technique to quantify heart rate but did not char-
acterize any other parameters. By labeling the full 2D heart cross section in each OCM frame, our noninvasive 
technique can extract additional information, such as the heart wall velocity and heart area, enabling automatic 
heart function quantification based on noninvasive techniques like OCM.

Our group employs deep learning methods to segment Drosophila heart OCM videos27,28. To measure the 
quality of the segmentation, we use the intersection over union (IOU) between the predicted mask and the 
ground truth provided by human labels. The neural networks described below were all trained on a cropped 
region of the OCM video that contains the Drosophila heart and has been resized to 128 × 128 pixels. The first 
iteration of FlyNet, developed in 2018, consisted of a fully convolutional UNet architecture that achieved 85% 
testing accuracy27. We further developed this model to use convolutional LSTM layers to capture both spatial 
and temporal information28. FlyNet 2.0 processes whole video sequences, rather than individual frames, improv-
ing the segmentation accuracy to 92%. Since the publication of FlyNet 2.0 in 2020, our group has continued to 
optimize the model: the current version, called FlyNet 2.0+, achieves up to 97% accuracy on high quality videos. 
This optimized model uses advanced hardware to expand the network size while simultaneously decreasing 
the training and prediction times. Using an Nvidia RTX 3090 GPU, all 4000 OCM video frames of a beating 
Drosophila heart can be segmented in 5 seconds, fast enough for real time processing. The unique dataset we 
present here will enable other cardiac researchers using Drosophila models to increase image analysis accuracy 
and efficiency while reducing dependence on manual labeling and processing.

Directly, the development of FlyNet2.0+ can benefit rapid screening, disease modelling and heart distur-
bance monitoring in Drosophila cardiovascular research29–33. The capability of real-time processing will remove 
previous technical limitations and shorten the waiting interval between batches of experiments. This, along 
with improved accuracy, will enable new high throughput analysis that does not require human dissection of 
flies or manual labeling, eliminating the two most time-consuming data analysis steps, reducing human bias in 
segmentation. Researchers can take advantage of this low latency processing to increase sample sizes which will 
facilitate new experiments not possible previously.

Fig. 1 Schematic overview of the imaging and processing procedure. The left side depicts the configuration of 
the OCM system with a LED light illuminating the sample. The right side shows the order in which the output 
files are produced after the imaging is finished.
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Methods
Sample preparation. The dataset presented here contains videos of the beating Drosophila hearts we col-
lected over the last few years across multiple experiments4,5,20,34. To train a generalized model that can be used 
for image segmentation and analysis of various physiological conditions we included imaging data of Drosophila 
at different developmental stages (larvae, pupae, and adult flies) and with different genetic backgrounds, and, 
therefore, with different heartbeat dynamics.

For optogenetic experiments, we obtained progeny w*; P{y+t7.7 w+mC = UAS-ReaChR}su(Hw)attP5/+; 
P{y+t7.7 w+mC = GMR88D05-GAL4}attP2/+ from the cross between stocks #48396 and #53748 (Bloomington 
Drosophila Stock Center) expressing ReaChR opsin in the heart. Progeny w*; P{y+t7.7 w+mC = UAS-eNpHR-YFP}
attP2/ P{y[ + t7.7] w+mC = GMR88D05-GAL4}attP2 from the cross between BDSC stocks #48396 and #41752 
expresses NpHR opsin in Drosophila heart. The animals were used in the experiment to mimic cardiac arrhyth-
mias. Here, ReaChR35 and NpHR36 are light-sensitive microbial opsins that can regulate cardiac activities during 

Fig. 2 FlyNet 2.0+ model architecture, with block diagrams for the two encoders and the decoder. Each layer 
feeds forward to the next layer and the skip connections are shown on top.

Fig. 3 File structure for fly dataset. Each individual dataset is contained in a single folder with 5 files.
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optical stimulations at specific wavelengths. ReaChR, the red-activatable channelrhodopsin, allows selective 
depolarization to induce cardiac contraction when expressed heart-specifically, while NpHR, the halorhodopsin 

Fig. 4 Comparison of the ground truth mask (red) and the FlyNet 2.0+ mask (blue). Each of the five panels 
shows a preview of Supplementary File 1–5. Within each panel, the top left quadrant shows the ground truth 
overlayed on the resized image, while the bottom right shows the two masks overlayed on each other to 
highlight differences in the segmentation. On the right is the IOU, the area of heart, and the heart rate for each 
frame plotted over time. (a–c) show a larva, an early pupa and an adult fly respectively with no light stimulation. 
(d,e) show optogenetics pacing experiments on an early pupa with an excitatory opsin, ReaChR and an 
inhibitory opsin, NpHR, respectively. The vertical red lines correspond to when the light pulses were executed. 
The heart rate increased or decreased to the designed frequency respectively.
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from Natronomonas, enables neuronal inhibitions in targeted heart tissue, achieving heartbeat freezing34. 
y*w67c23 flies were cultured on regular cornmeal fly food; opsin expressing flies were reared on semi-defined fly 
media containing 1 mM of all-trans Retinal (ATR) to allow the opsins to function properly5.

We performed RNAi mediated ubiquitous CG3165 knock down. w1118; P{GD10318}v25784 males (v25784, 
Vienna Drosophila Resource Center) were crossed to y1 w*; P{Act5C-GAL4-w}E1/CyO (#25374, Bloomington 
Drosophila Stock Center) females. Progeny P{Act5C-GAL4-w}E1/+; P{GD10318}v25784/+ (adult flies) were 
selected for the heart functional characterization using OCM. Flies were reared on regular cornmeal fly food.

The OCM imaging quality is better at larvae and early pupae which have translucent white body cuticle com-
pared to darker late pupae and adult flies, however the higher light absorption in late pupae and adult flies does 
not hinder segmentation. To mount the larval and pupal stages, the body surface was first brushed clean, then 
the animals were attached, dorsal side up, to double-sided tape on a glass microscope slide. Adult flies, on the 
other hand, were first anesthetized with CO2 or FlyNap and mounted, dorsal side up, on a thin layer of rubber 
cement on a glass slide. Then their wings were spread and stuck down to the glue, using tweezers. The mount-
ing procedure minimized unwanted movement, and the dorsal uppermost positioning allowed unobstructed 
viewing.

OCM imaging. Prior to imaging, all mounted Drosophila specimens were placed on an adjustable sample 
stage, with the slide and attached fly specimen oriented longitudinally along the y-transverse direction of the 
OCM scanning laser, as shown in Fig. 1. For larvae and early pupae, the sample stage was adjusted to align the 
cross section with the A7 segment of the heart. This segment, one of the larger segments of the tubular heart 
in early development, has very distinguishable heart walls. As the fly gets older, the A7 segment narrows and a 
conical shape develops, with the A1 segment becoming the largest. Therefore, we imaged the A1 segment for late 
pupae and adult flies. The scanning range was set to cover ~0.3 mm in the transverse direction. In tissue with a 
10x lens we can achieve an axial resolution of ~3.3 μm and a lateral resolution of ~2.3 μm. The system parame-
ters were set to 4000 B-scans, with 128 A-scans per B-scan, and the imaging lasted for ~32 seconds. For datasets 
from the optogenetic pacing experiments, red (617 nm) LEDs illuminated the heart, synchronized with the OCM 
acquisition.

processing. OCM recordings of the beating fly hearts are 32 seconds in duration for each measurement. Each 
recording comprises 4000 frames, with each frame measuring 701 by 128 pixels. These OCM videos are stored in 
the stacked TIFF file format. Although this full-sized video can be used directly, cropping to closely contain just 
the heart region can reduce the input size to the FlyNet. No information about the heart is lost, and the reduced 
data size helps stay within the memory constraints of GPUs. A user can use any cropping software to create a 

Fig. 5 Performance Comparison of FlyNet 2.0+ with previous version FlyNet 2.0. (a) A bar plot comparing the 
overall average IOU of FlyNet 2.0 and FlyNet 2.0+. The error bars indicate the range of standard deviation. (b) Area 
plotted over time, where the correct systolic indices are labeled with red dots and correct diastolic indices labeled with 
blue dots. (c) A bar plot comparing the end systolic IOU between the two models. The error bars indicate the range 
of standard deviation. (d) Differences in the end systolic state between the ground truth, FlyNet2.0, and FlyNet2.0+. 
The scale bar for each image is shown on the raw OCT image as 50 µm. (e) Comparison of the end diastolic IOU, with 
error bars indicating standard deviation, and (f) the differences in the end diastolic state between ground truth and 
the two models. Scale bar 50 µm. ****p < 0.0001.

https://doi.org/10.1038/s41597-023-02802-y


6Scientific Data |          (2023) 10:886  | https://doi.org/10.1038/s41597-023-02802-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

bounding box around the heart region of the video. Data from this smaller region of interest is then extracted and 
interpolated to a resized 4000 × 128 × 128 video using OpenCV in Python.

Next, the resized video is fed through our FlyNet software to predict the 4000 segmentations of the heart 
region. Each of these segmentations is manually reviewed, and incorrectly classified pixels are corrected man-
ually using segmentation code written in Python to remove areas outside the heart and fill in areas that are 
blank inside the heart. With this procedure, easily classified frames are processed automatically, and human 
labeling is required only for challenging scenarios. In this way, we have been able to grow our dataset and itera-
tively improve the model by correcting misclassified images. After the segmentation mask has been verified as 
accurate, a separate program converts and interpolates the mask for the resized image to a mask for the full-size 
image. Each sample has two mask files, a 4000 × 600 × 128 file for the full image and a 4000 × 128 × 128 file for 
the resized image.

With an accurate mask, we can finally extract heart parameters. Using the calibration generated for a spe-
cific OCM system, we convert pixel numbers to physical measurements. From this, we can calculate the area 
of one pixel in micrometers and then multiply by the number of pixels in the mask to get the heart area at one 
time point. When the area is plotted over time, it will fluctuate in a periodic manner, and the time points of the 
maximum or minimum areas can be analyzed to extract the heart rate. The maximum and minimum areas also 
identify the end systolic and diastolic phases. From this, fractional shortening is calculated as the percentage 
difference between the area at the end diastolic and systolic phases. Arrythmia index can be calculated from 
this as a measure of heart rhythmicity, defined as the standard deviation of the heart rate divided by the median 
heart rate22.

Training and predicting. OCM videos were collected from 112 samples in three developmental stages (26 
larvae, 39 early pupae, and 47 adults). To train the neural networks, these samples were split into 80% training, 
10% validation, and 10% testing. Further validation was performed on an additional 101 samples. To fully auto-
mate the segmentation process, two different neural networks were trained on this data, using TensorFlow. The 
first neural network, trained on the full-size images, produces a preliminary segmentation to find the heart region 
of the video. This prediction is used to automatically crop and resize the video to be 128 × 128 pixels centered on 
the heart. The resized video is fed into the second neural network, FlyNet 2.0+, that was trained on square videos 
focused on the heart region. This model segments the heart accurately to reliably perform the cardiac analysis 
described in the Background section.

FlyNet 2.0+ made multiple improvements to the model architecture but retains many components from past 
model iterations27,28. Additionally, the training and prediction code was upgraded to take advantage of modern 
hardware, reduce memory overhead, and speedup processing time. Some major changes to the programs include 
updating to TensorFlow 2 for newer layers and loss functions, using a generator to load the data in real time, 
batching the training and prediction code to achieve high utilization while staying within memory limits, and 
hyperparameter tuning to achieve real-time processing. The model still largely resembles the UNet architecture, 
with an encoder and decoder bridged together with skip connections, as shown in Fig. 2. However, the encoder 
block and decoder block have been improved. The encoder starts with the spatiotemporal encoder block which 

Videos Frames

Larva 57 192,000

Early Pupa 52 204,000

Adult 104 208,000

Total 213 604,000

Table 1. Fly heart OCM videos for different developmental stages.

Fig. 6 Segmentation performance on abnormal cardiac function. (a) Comparison of the mean IOU from 
yw and cg3165 KD flies, separated as male and female. (b) An M-mode image of a healthy yw 1 week old fly, 
with the segmented heart region shown in red. (c) An M-mode of a 1-week-old fly with cg3165 KD, whose 
heart function has low fractional shortening. The FlyNet 2.0+ segmentation of the heart region is in red. 
(d) An M-mode of a 1-week-old fly with cg3165 KD, whose heart function is arrhythmic. The FlyNet 2.0+ 
segmentation of the heart region is in red.
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processes the images sequentially. The first layer of the encoder block is the LSTM 2D convolution to capture 
the temporal information. The remaining layers in the encoder block are wrapped in a time distributed layer, so 
they are applied to the frames in parallel and have no time dependency. Reducing the number of LSTM layers 
improves performance by eliminating sequential calculations. After the LSTM layer, batch normalization is 
applied before a 2D convolution. A second layer of batch normalization is applied before the leaky ReLU activa-
tion and 2D max pooling. After the first two spatiotemporal encoder blocks, there are standard spatial encoder 
blocks that replace the LSTM layer with a normal 2D convolution. Again, this is to limit the number of sequen-
tial calculations, only placing the LSTM layers in critical locations where temporal information is prominent. 
The decoder block has no LSTM layers and therefore is applied in parallel to every time slice. The decoder block 
starts with a transpose 2D convolution followed by concatenating the skip connections. A LSTM convolution is 
replaced by a normal 2D convolution, but the remainder of the decoder block is the same as the encoder block, 
excluding the max pooling layer.

To train FlyNet 2.0+, the Adam optimizer was used, with a learning rate of 0.001. Log-Cosh Dice Loss was 
chosen because it is a convex function, and because it builds on the Dice Coefficient, a very similar measurement 
to IOU. To allow for a variety of augmentations during training, a generator was used to load full-size files and 
apply a unique crop and resize to each 32-frame video sequence. Using the mask for the full-size images, we 
could ensure that the whole heart was within the frame for each of these different cropping parameters. Before 
being used to train the neural network and make predictions, each of the videos was centered to have a mean 
intensity of 0 and a standard deviation of 1.

Statistical analysis. For comparisons of FlyNet 2.0 and FlyNet 2.0+, a two-tail, two-sample z-test for sam-
ple means was performed using alpha = 0.05. For CG3165 knockdown experiments, and a two-sided student’s 
t-test was performed. Results were deemed significant when p < 0.05.

Data records
Our dataset is publicly available at figshare and can be downloaded as a zip file37. The file structure of the dataset 
is shown in Fig. 3. After the dataset is unzipped, each of the samples will have a unique ID and its own folder. The 
folder name is <ID>_<age>, where LA is larva, EP is early pupa, and AD is adult. All the videos and masks are 
saved in 4000 frame TIFF files, except for adults which are only 2000 frames. Table 1 shows the breakdown of the 
complete dataset by age and number of fames. <ID>_full_img.tiff is the original 600 × 128 pixels image, and 
<ID>_full_mask.tiff is the segmentation of the heart in this image. Each of the pixels in the mask has a value of 
either 0, corresponding to background, or 255, corresponding to the heart region. Similarly, <ID>_resize_img.
tiff contains a 128 × 128 resized video, and <ID>_resize_mask.tiff is the corresponding mask. Cropping infor-
mation is stored in each folder under the name resize_parameters.txt. The text file contains 6 numbers corre-
sponding to delta y, delta x, min y, max y, min x, max x where the min and max define the starting and ending 
pixel on the full-size image.

technical Validation
Ground truth validation. To assess the quality of the labeling procedure, a randomly selected set of images 
was labeled by an expert with no prior predicted mask. Comparing these labels to the traditional procedure 
of correcting predicted masks allowed us to analyze the model’s influence on label quality. Additionally, these 
images were labeled on the full-size files, with no interpolation to validate the cropping and resizing procedure. 
Comparing the expert-labeled masks to the model-corrected masks yielded an IOU score of 88%, demonstrating 
that the labeling procedure accurately segments the heart. The minute differences in the masks can be attributed 
to poorly defined boundaries as well as small deviations introduced by the interpolation. As seen in Fig. 4 (videos 
are available as supplemental materials), the small differences in the mask have little effect on the measured area 
and therefore the cardiac parameters are still accurate despite these discrepancies. The IOU appears periodic, but 
this is due to the nature of IOU calculation, where pixel shifts in smaller areas will have a greater impact on the 
resultant score. Because human labelers need to manually segment the heart in each frame, it is nearly impossible 
to get an IOU of over 90% because humans are not capable of pixel level precision.

Segmentation quality analysis. Additionally, the quality of the segmentations produced by FlyNet 2.0+ 
further validates the label quality. FlyNet 2.0+ can achieve an average IOU of around 92% and as high as 96%, 
which is within the same range of variability seen between any two human labelers. In other words, the expert 
annotator mask, the predicted and corrected mask, and the FlyNet 2.0+ mask are labeling the same heart region. 
The differences between these masks, small deviations in the boundary of the heart wall, are not significant 
enough to impact cardiac analysis. Figure 4 demonstrates that FlyNet is able to segment the fly heart across dif-
ferent conditions, such as various developmental stages (Fig. 4a–c), and with enhanced or suppressed heart func-
tion manipulation using optogenetic methods (Fig. 4d,e). All subfigures correspond to the supplementary videos 
(Supplementary Video 1–5) that show the dynamic changes of heart rate and IOU fluctuation. We can conclude 
that the procedure of resizing OCM videos, predicting masks, and correcting masks produces a high-quality 
ground truth that can be used to train an accurate segmentation algorithm.

For additional comparison, the models were compared in a study of n = 217 image sets with high quality 
ground truth segmentations. Each image set was predicted on FlyNet 2.0 and FlyNet 2.0+, and the time/frame, 
overall IOU, and IOU at end systolic and end diastolic points was noted. The IOU comparison in Fig. 5a shows 
that overall, the IOU improves from FlyNet 2.0 significantly (p < 0.0001), from an average of about 83% to an 
average of about 90%. This improvement in segmentation quality will greatly reduce time spent correcting masks 
by hand. Figure 5b shows a time plot of an example recording of the ground truth mask, FlyNet2.0+ mask, and 
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FlyNet2.0 mask. Both the ground truth and FlyNet2.0+ areas show good agreement with the area at the correct 
systolic and diastolic indices, but the FlyNet2.0 area plot introduces a level of error.

End systolic (Fig. 5c,d) and end diastolic (Fig. 5e,f) IOUs were also calculated to show the improvement 
breakdown at the end of each phase. The end systolic IOU significantly (p < 0.0001) improved from an average 
of 70% in FlyNet 2.0 to 84% in FlyNet 2.0+. End systolic IOU has smaller area by definition, so an improvement 
in prediction accuracy in this case will drastically improve the IOU. The end diastolic IOU also significantly 
(p < 0.0001) improved from 87% in FlyNet 2.0 to 92% in FlyNet 2.0+.

performance on different beating patterns. To demonstrate the robustness of our model on a dataset 
that is outside normal cardiac function, we performed analysis of a set of data collected from adult flies where 
CG3165 protein was ubiquitously depleted by RNAi. OCM monitored heart function and FlyNet 2.0+ provided 
rapid segmentation for further analysis. We imaged the heart function of control and cg3165 RNAi 1 week old 
adult flies, separated as male and female. Figure 6a shows that FlyNet 2.0+ still performs with the same level of 
accuracy as with control flies of the same age. Figure 6b–d demonstrate the ability of FlyNet 2.0+ to accurately 
identify abnormal heart function, including cases of arrythmia (Fig. 6c) and lower fractional shortening (Fig. 6d). 
Thus, FlyNet2.0+ can perform accurately on a wide range of beating and contraction patterns.

Usage Notes
While this automated labeling technique is powerful, it has some limitations. First, the accuracy of the labels is 
dependent on high quality OCM recordings. OCM can be prone to visual artifacts and obstructions that can 
hurt the visibility of the heart. In all developmental stages, the largest area of the heart is used for recording, so 
the model may not perform as accurately in different regions. Additionally, in the larval stage, movement may 
occur which obscures the heart region. If the heart is obscured in the recording it can be impossible to produce 
accurate ground truth labels, making the neural network perform poorly in these situations. We suggest taking 
multiple repeats of each dataset and fine tuning the recording location to avoid these artifacts.

To open and view the TIFF files we recommend using ImageJ/Fiji (https://imagej.net/software/fiji/) which is 
an open source and free platform for viewing medical images. The images are saved without any color channels, 
making both the images and masks grayscale. To overlay the mask on the image, it must first be converted to a 
color image and then the mask can be added to the red channel. Additionally, saved pixel values are cast to be 
between 0 and 255 for optimal viewing. Upon loading the images into the Python processing code, masks are 
converted to be 0 or 1, and the videos are centered at 0 with a standard deviation of 1.

Supplementary videos can be found on figshare37.

Code availability
All the models were trained using Python 3.9 and Tensorflow 2.10. Models were trained locally on a 3090 GPU 
with 24 GB of memory. A GitHub repository which contains the Jupyter notebook for training is available at 
https://github.com/mattfishman/Drosophila-Heart-OCM. To run the code, first download the data and clone 
the repository. There is a requirements.txt file within the repository that contains all the dependencies. Next, use 
the utilities to generate a pickle file by changing the path inside create_pickle.py to point to the parent directory 
that contains all the flies. Insert the pickle file path into the training notebook and run all cells begin training. 
Our trained model has been provided as a starting place for training, but users may opt to train without this 
initialization. This notebook will output the model as a.h5 file. The path to the trained model can then be inserted 
into processing_utils.py to use this model to predict the segmentation on new images. Additional details can be 
found in the README file within the repository for how to run additional code to produce cardiac parameters.
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