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RNAseq of diverse spring wheat 
cultivars released during last  
110 years
Saman Maqbool1,2, Samar Naseer2, Nageen Zahra3, Fatima Rasool3, Humaira Qayyum2, 
Khawar Majeed2, Muhammad Jahanzaib2,4, Muhammad Sajjad5, Muhammad Fayyaz6, 
Muhammad Kashif Naeem3, Muhammad Ramzan Khan3, Hao Zhang   1,7, Awais Rasheed   1,2 ✉ 
& Huihui Li1,7 ✉

Here, we performed RNA-seq based expression analysis of root and leaf tissues of a set of 24 historical 
spring wheat cultivars representing 110 years of temporal genetic variations. This huge 130 tissues 
RNAseq dataset was initially used to study expression pattern of 97 genes regulating root growth and 
development in wheat. Root system architecture (RSA) is an important target for breeding stress-
resilient and high-yielding wheat cultivars under climatic fluctuations. However, root transcriptome 
analysis is usually obscured due to challenges in root research due to their below ground presence.  
We also validated the dataset by performing correlation analysis between expression of RSA related 
genes in roots and leaves with 25 root traits analyzed under varying moisture conditions and 10 yield-
related traits. The Pearson’s correlation coefficients between root phenotypes and expression of root-
specific genes varied from −0.72 to 0.78, and strong correlations with genes such as DRO1, TaMOR, 
ARF4, PIN1 was observed. The presented datasets have multiple uses such as a) studying the change 
in expression pattern of genes during time, b) differential expression of genes in two very important 
tissues of wheat i.e., leaf and roots, and c) studying customized expression of genes associated with 
important phenotypes in diverse wheat cultivars. The initial findings presented here provided key 
insights into understanding the transcriptomic basis of phenotypic variability of RSA in wheat cultivars.

Background & Summary
Bread wheat (Triticum aestivum) is one of the most important staple food crops providing 55% of carbohydrates 
to the world population. The grain yield of wheat has to increase at an average annual rate of ~2% in a limited 
area of cultivated land to meet the world food demand1. A deeper understanding of wheat genetics is required 
to address the primary challenge of sustaining food security in the context of climate change to feed the growing 
population. It is critical to deepen the knowledge of the wheat genomics and its genetic composition as well 
as the broad range of sequencing and transcriptomics data to understand genetic basis of wheat adaptability 
to target environments2. Identification and functional characterization of genes that regulate developmental 
stages critical for withstanding climatic fluctuations is an important aspect of this area of research. Similarly, it is 
central to functional genetic studies to analyze dynamic expression patterns of each gene contributing to plant 
development in various tissues and response to various environmental stimuli3.

Roots are significant for the production of food grains such as wheat and rice4. A variety of morphologi-
cal and physiological traits expressed by root systems facilitate the uptake of water and nutrients. Similar to 
above-ground traits, there must be an understanding of unique root system architecture (RSA) for optimum 
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resource acquisition5. Since roots are important components of breeding programs, it is crucial to understand 
the molecular mechanisms involved in root formation especially under challenging conditions.

In order to pinpoint the genetic components influencing the root growth in maize, rice and other crops, a 
variety of forward and reverse genetics techniques including transcriptomics and functional genomics have 
been applied6. The transcriptome studies using next-generation sequencing (NGS) technologies have paved the 
way in linking genotype to phenotype and can detect the molecular mechanisms underlying plant responses 
to abiotic stress7. Presently, several population-wide transcriptome analyses have been conducted in cereal 
crops including rice8, wheat9, and barley10. These studies unravelled the associations between gene expression 
and traits; however, field studies have generally been restricted to transcriptomics of above-ground shoots due 
to the challenge of sampling root tissues in field conditions. RNA-seq previously known as whole transcrip-
tome shotgun sequencing has excitingly shaped whole transcriptome profiling7. It can identify transcript lev-
els, expressed polymorphisms, and splicing isoforms. The development of high-throughput next-generation 
RNA-seq technologies provides new insights into transcriptome analysis such as a detailed expression profile, 
higher sensitivity to genes expressing at both high and low extremes, and no limitation by the lack of prior 
genome knowledge11. RNA-seq studies in wheat are increasing rapidly owing to the reconstruction of the entire 
transcriptome using the short paired-end (PE) assembly of de novo reads12 and provide a precise measurement 
of transcript levels. In wheat, some large-scale RNAseq studies available where transcriptome of multiple tis-
sues from a single cultivar are reported like in Chinese Spring and Azhurnaya13. In this study, we conducted 
transcriptome profiling using RNA-seq on a set of 24 bread wheat varieties with diverse phenotypes supported 
by their large-scale phenotypic variation in agronomic and RSA traits14,15. We initially analyzed the dataset to 
identify expression variation of potential transcripts or genes involved in RSA and validated by correlation 
analysis with RSA phenotypes.

Methods
Plant material.  A panel of 24 historical spring wheat cultivars released in Pakistan was selected for this study. 
The cultivar name, year of release, and pedigree are given in Table 1. These cultivars selected based on the year of 
release to represent the cultivated diversity over the course of 110 years.

Growth and RNA isolation.  The seeds of 24 wheat cultivars were surface sterilized using 3% NaOCl and 
were sown in triplicates in plastic trays containing peat moss. Two weeks after germination (at Zadoks stage 2), 
seedling leaf and root tissues were collected and subjected to total RNA extraction. RNA extraction was per-
formed using EasyPure Plant RNA Kit (ER301-01) following the instructions provided by manufacturer and 
quantified using Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, USA).

Name Year of Release Pedigree

T9 1911 Landrace

C518 1933 T9/8 A

C217 1944 C 516 X C 591

C271 1957 C230/IP165

Drik 1958 C-271/WILLET-DWARF//SONORA-64

Maxipak-65 1965 PJ/GB55 or PJ62/GB55

Photowar-70 1970 BURT/KENYA//QUETA(L)/3/NAD63

Pari-73 1973 CNO67//SN64/KLRE/3/8156

Pak-81 1981 KVZ/BUHO//KAL/BB

Barani-83 1983 BB/GLL/3/GTO/7 C//BB/CNO67

Chakwal 86 1986 FORLANI/ACC//ANA

Rawal 87 1987 MAYA/MON//KVZ/TRM

Pasban-90 1990 INIA F66/TH.DISTICHUM//INIAF66/3/GENARO T81

Inquilab-91 1991 LR64A/NAI60

Parwaz-94 1994 C271/WT(E)/SN64

Punjab-96 1996 URES/BOW’S

Chakwal-97 1998 BUC’S’/FCT’S’

G.A.2002 2002 DWL5023/SNB//SNB

Seher-2006 2006 CNO67//SN64/KLRE/3/8156

Chakwal-50 2008 ATTILA/3/HUI/CARC//CHEN/CHTO/4/ATTILA

NARC-2009 2009 INQALAB 91*2/TUKURU

Dharabi-2011 2011 HXL-7573/2*BAGULA//PASTOR

Pakistan-13 2013 MEX94.27.1.20/3/Sokoll//Attila/3*BCN

Ujala-2016 2016 KIRITATI/4/2*WEAVER/TSC//WEAVER/3/WEAVER

Table 1.  List of historical spring wheat cultivars with release year and pedigree.
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Fig. 1  Differential expression of RSA-related genes in (A) leaf and (B) root tissues of 24 bread wheat cultivars. 
The original gene names have been used while Traes IDs can be found in the associated excel file available at 
FigShare under https://doi.org/10.6084/m9.figshare.23292389.

Fig. 2  Volcano plot showing up- and down-regulation (leaf vs root) of root-related genes. Only top six genes are 
labelled.
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RNA Sequencing and identification of differentially expressed genes.  The RNA samples were 
sequenced from Beijing Genomics Institute (BGI), China. For cDNA synthesis, the oligo (dT) method was used. 
The 50-bp single-end sequencing libraries were constructed, and BGISEQ-500 platform was used for sequencing 
using standard protocols. ‘Clean data’ was produced as FastQ data files using SOAPnuke version 2.1.6. Mapping 
with reference genome of bread wheat16 was done using HISAT2 software v 2.2.117. Bowtie software was used for 
alignment of reference sequence with reads18. The reads were then quantified using featureCounts software and 
differentially expressed genes (DEGs) were identified using DeSEQ. 2 in R v 4.1.1. The threshold value for filtering 
of DEGs was set at 0.1. All the DEG files were then culminated into a single file used for further analysis19. The 
R codes were used to generate heatmaps directly from the normalized count file20, or phenotypic data from the 
diversity panel was used to calculate correlation values and plot correlation values as heatmaps20.
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Fig. 3  Heatmap showing significant correlations between expression of RSA-related genes in leaf, yield-related 
traits, and root traits under control and drought stress conditions. The size of the circle explains the extent of 
correlation. Traits are abbreviated as; Maximum weight (MaxW), Maximum diameter (MaxD), Lower root area 
(LRA), median number of roots (MNR), steep angle frequency (StAF), solidity (S), volume diameter (VD), 
surface area (SA), network area (NtA), projected area diameter (PAD), surface area diameter (SAD), median 
angle frequency (MAF), average root orientation (ARO), shallow angle frequency (SAF), depth (D), width to 
depth ratio (WDR), maximum number of roots (MaxNR), number of root tips (NRT), volume (V), perimeter 
(P), total root length (TRL), root length diameter (RLD), convex area (CA), average diameter (AD), median 
diameter (MD), spikes per spike (SpPS), plant height (PH), tillers per plant (TPP), grain yield (GY), grain length 
(GL), thousand kernel weight (TKW), grain density (GD), grains per spike (GPS), spike length (SL), and grain 
weight (GW).
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Phenotyping for agronomic traits and root system architecture.  The agronomic traits of the diver-
sity panel were taken from our previous experiment21. Briefly, the diversity panel was planted at five locations 
and important agronomic traits were recorded. The phenotyping for RSA architecture traits has been described 
in detail14. The imaging platform consisting of RhizoVision crown hardware22 controlled by RhizoVision Imager 
software was used for root image acquisition and details have been described previously14. The RSA traits included 
in the study were maximum weight (MaxW), maximum diameter (MaxD), lower root area (LRA), median num-
ber of roots (MNR), steep angle frequency (StAF), solidity (S), volume diameter (VD), surface area (SA), network 
area (NtA), projected area diameter (PAD), surface area diameter (SAD), median angle frequency (MAF), aver-
age root orientation (ARO), shallow angle frequency (SAF), depth (D), width to depth ratio (WDR), maximum 
number of roots (MaxNR), number of root tips (NRT), volume (V), perimeter (P), total root length (TRL), root 
length diameter (RLD), convex area (CA), average diameter (AD), and median diameter (MD). The correlation 
between gene expression and various traits including RSA traits, root hair length and density under low and high 
phosphorous treatments, and yield-related traits was determined using ‘psych’ package in R version 4.2.1.
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Fig. 4  Heatmap showing significant correlations between expression of RSA-related genes in roots, yield-
related traits, and root traits under control and drought stress conditions. The size of the circle explains the 
extent of correlation. Traits are abbreviated as; Maximum weight (MaxW), Maximum diameter (MaxD), Lower 
root area (LRA), median number of roots (MNR), steep angle frequency (StAF), solidity (S), volume diameter 
(VD), surface area (SA), network area (NtA), projected area diameter (PAD), surface area diameter (SAD), 
median angle frequency (MAF), average root orientation (ARO), shallow angle frequency (SAF), depth (D), 
width to depth ratio (WDR), maximum number of roots (MaxNR), number of root tips (NRT), volume (V), 
perimeter (P), total root length (TRL), root length diameter (RLD), convex area (CA), average diameter (AD), 
median diameter (MD), spikes per spike (SpPS), plant height (PH), tillers per plant (TPP), grain yield (GY), 
grain length (GL), thousand kernel weight (TKW), grain density (GD), grains per spike (GPS), spike length 
(SL), and grain weight (GW).
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Data Records
In total, 130 RNA-seq datasets were generated which are deposited to the SRA repository of NCBI under 
BioProject PRJNA86339823. The gene list of differentially expressed genes (DEGs) from each tissue is submitted 
to the Gene Expression Omnibus (GEO) repository under accession number GSE23584424. The raw count data 
table from RNAseq data of each tissue was generated and converted to normalized tpm values and deposited 
at FigShare20 under https://doi.org/10.6084/m9.figshare.23292389 and DryAd19 under https://doi.org/10.5061/
dryad.zs7h44jcs.

The summary statistics of raw reads from leaf and root tissues are given in Supplementary Table 1.

Technical Validation
RNA quality was initially determined using NanoDrop and samples <1.8 values of OD260/280 and OD260/230 
were further processed for RNA integrity. RNA integrity was assessed with Agilent 2100 Bioanalyzer RNA Nano 
assay (Agilent Technologies, USA). The average RIN values were 7.3 ± 0.5 for leaf samples and 6.9 ± 0.4 for root 
tissues. The qRT-PCR validation of selected genes was also performed.

Quality assessment.  The aligned FastQ data files were read using SAMTools software and basic statistics 
are presented in Supplementary Table 1. The average quality score which is ratio between the sum of base qualities 
and total length was >60 in all cases. The error rate which is mismatches per bases mapped was <0.001.

Initial analysis of differentially expressed genes.  The gene list of differentially expressed genes 
(DEGs) from each tissue is submitted to the Gene Expression Omnibus (GEO) repository under accession num-
ber GSE235844. A total of 38 RSA related genes were identified from various cereal species including wheat, 
rice, maize, and barley from the published literature. The blastn analysis was carried out to identify their A-, 
B- and D-sub-genome homeologues of those genes. This process identified 95 homeologues in wheat which 
were then used in the subsequent analyses. The gene IDs, names, description and GO ontology are given in 
Supplementary Table 2. The GO enrichment analysis was performed using Triticeae-Gene Tribe, a homology 
database25 (Supplementary Table 3). Initially, heatmaps were generated for 95 genes using gene IDs (TraesIDs) for 
tpm values in leaf (Fig. 1A) and root tissues (Fig. 1B). The expression profiles of the selected genes extracted from 
the main DEG file using the R code20. The heatmaps were generated using TBTools. In leaf tissues, all genes were 
expressed except TaMOR, PSTOL1, EXPA8, LBD16, EXPB1, COW1, and EXPB5. No expression of VP1 gene was 
observed in leaf tissues in all varieties except Seher-2006 which showed highest expression of VP1_3A (Fig. 1A). 
In contrast to leaf tissues, all genes exhibited differential expression patterns in roots except three homoeologues 
of Ppd gene and D homoeologue of EXPB5 (Fig. 1B). Volcano plot showing differentially expressed gene across 
24 cultivars is presented as Fig. 2. The expression of these genes was differential in across root tissues. Leaf gene 
expression was found significantly correlated with yield traits (Fig. 3). The differential expression of RSA concern-
ing genes in roots was significantly correlated to all 25 root traits under optimum conditions with some variations 
(Fig. 4). The dataset and initial analysis proved very effective in culminating the differential gene expression in 
root tissues and due to the large number of samples, it was possible to associate gene expression data with the phe-
notypes. In conclusion, the differential expression of these genes in the roots provided a validation of the dataset.

Code availability
FigShare R code used to generate Figs. 3, 4 is available at https://doi.org/10.6084/m9.figshare.23292389 along with 
the source file.

FigShare R code to generate heatmap of any given wheat gene IDs (using TraesIDs) using the normalized count 
data file is available at https://doi.org/10.6084/m9.figshare.23292389. The code is also available on GitHub repos-
itory as: https://github.com/plantbiologyqau/R-code-for-gene-expression-heatmap/tree/main
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