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EarSet: a Multi-Modal Dataset for 
Studying the Impact of Head and 
Facial Movements on In-Ear PPG 
Signals
alessandro Montanari1,4 ✉, Andrea Ferlini  1,2,4 ✉, Ananta Narayanan Balaji3, Cecilia Mascolo2 
& Fahim Kawsar1

Photoplethysmography (PPG) is a simple, yet powerful technique to study blood volume changes by 
measuring light intensity variations. However, PPG is severely affected by motion artifacts, which 
hinder its trustworthiness. This problem is pressing in earables since head movements and facial 
expressions cause skin and tissue displacements around and inside the ear. Understanding such artifacts 
is fundamental to the success of earables for accurate cardiovascular health monitoring. However, the 
lack of in-ear PPG datasets prevents the research community from tackling this challenge. In this work, 
we report on the design of an ear tip featuring a 3-channels PPG and a co-located 6-axis motion sensor. 
This, enables sensing PPG data at multiple wavelengths and the corresponding motion signature 
from both ears. Leveraging our device, we collected a multi-modal dataset from 30 participants while 
performing 16 natural motions, including both head/face and full body movements. This unique dataset 
will greatly support research towards making in-ear vital signs sensing more accurate and robust, thus 
unlocking the full potential of the next-generation PPG-equipped earables.

Background & Summary
Monitoring vital signs, such as cardiovascular functions, heart rate, oxygen saturation, and blood pressure, 
through Photoplethysmography (PPG) is common across wearables like smartwatches1. Photoplethysmography, 
as suggested by its name, is an optical technique used to infer blood volumetric changes in the peripheral cir-
culation. PPG is indeed a remarkable signal, which not only carries a wealth of clinical information (such as 
heart rate, heart rate variability, blood oxygen saturation, respiration rate, blood pressure, and artery character-
istics2–4), but can also be used for non-medical applications such as authentication5 and drowsiness detection6.

At the same time, the past years have witnessed the widespread diffusion of a new family of wearables: smart 
earbuds (also known as earables). Earables are mostly known for their leisure applications (e.g., Apple AirPods), 
showing their capability in enhancing the user’s auditory experience with, for instance, noise cancellation and 
spatially aware audio. However, they are also gaining traction, across the research community, for personal 
health monitoring7–10, activity recognition11–14, authentication15, and navigation16. Earables are posed to revo-
lutionize the mobile health (mHealth) market17. Thanks to their proximity to the human sensorium (i.e., brain, 
ears, eyes, mouth, and nose), earables are in a unique position with respect to other, more traditional, wear-
ables like smartwatches18. Indeed, earables have allowed the research community to investigate a number of 
novel applications such as monitoring cerebral activity during sleep through electroencephalography (EEG)19, 
eye-movements20 and tracking eating episodes, dietary and swallowing activities21.

Notably, previous works have explored PPG sensing in or around the ear focusing on specific applications. 
However, PPG signal acquisition is particularly challenging in the presence of either ambient light or motion. 
While the former can be mitigated by ambient light rejection modules (often already implemented in hard-
ware), there still is no unanimously agreed technique to mitigate the latter without a considerable loss of infor-
mation. Earlier works considered only motion artifacts (MA) arising from body movements, like walking or 
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running22–25. However, the head and facial region consist of an intricate mesh of muscles and blood vessels that 
contract and relax with each of their movements. This induces unwanted noise and motion artifacts in the PPG 
signals recorded from the ear. The interaction between these motions and the signals recorded from in-ear PPG 
sensors remains entirely unexplored.

Very few openly available datasets feature PPG data from the ear26,27. However, there are no publicly available 
datasets that explore the effect of facial expressions and head movements on earables. Table 1 presents an over-
view of existing datasets in the literature that provide PPG signals collected at various body locations. Recently27, 
proposed a solution for how motion artifacts can be removed for accurate heart rate and blood pressure estima-
tion with PPG sensors placed on the ear lobes. However, they only study the effect of body motion artifacts on 

Datasets
PPG sensor 
location Motion being studied Additional sensor data

Number of 
participants

Activity monitoring44 Wrist Squat exercises, stepper 
exercises, and resting

3-channels PPG
7

3-axis accelerometer

PPG DaLiA45 Wrist
Daily life activities like 
sitting, walking, cycling, 
driving, working, etc.

3-channels PPG

15

Electrocardiogram (ECG)

Electrodermal activity (EDA)

3-axis accelerometer

Respiration rate

Body temperature

Effect of exercises on PPG signals46 Wrist Walking, running, and 
biking

3-channels PPG

23

Chest ECG

3-axis accelerometer

3-axis low noise accelerometer

3-axis gyroscope

Motion artifact removal in PPG 
signals (IEEE signal processing 
cup)47

Wrist Random physical 
exercises without labels

3-channels PPG 12 (training 
dataset) 10 
(test dataset)

Chest ECG

3-axis accelerometer

Motion artifact cancellation48 Wrist Walking and running

3-channels PPG

24
Chest ECG

3-axis accelerometer

3-axis gyroscope

WESAD (Stress detection)49 Wrist and 
Chest

Intense physical activity 
and mental exercises to 
induce stress

Wrist PPG

17

Wrist accelerometer

Wrist electrodermal activity (EDA)

Body temperarture

Chest ECG

Chest accelerometer

Chest EMG

Chest Respiration

BIDMC dataset50 Finger No exercise involved
Finger PPG

53
Pneumography (Respiration)

FatigueSet26 In-Ear Running on a treadmill to 
induce physical fatigue

In-Ear PPG

12

In-Ear IMU sensor

Chest ECG

Chest Respiration sensor

Wrist PPG

Wrist EDA

Wrist IMU

Body temperature sensor

Motion tolerant heart rate and 
Blood pressure monitoring27 Outside ear Exercising on a bike

Ear PPG

14Ear ECG

Ambulatory blood pressure monitor

EarSet Stereo In-ear 16 different facial and 
head motions

In-Ear PPG (Both Left and right)

30
In-Ear IMU (Both Left and right)

Chest band ECG

Chest band Respiration sensor

Table 1. PPG datasets publicly available for motion artifact studies.
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the acquired PPG signals. Hence, there is a strong need for an open-source dataset studying the effect of facial 
motions on in-ear PPG signals.

To this end, this work aims at providing the research community with a novel, multi-modal, dataset, which, 
for the first time, will allow studying of the impact of body and head/face movements on both the morphology of 
the PPG wave captured at the ear, as well as on the vital signs estimation. To accurately collect in-ear PPG data, 
coupled with a 6 degrees-of-freedom (DoF) motion signature, we prototyped and built a flexible research plat-
form for in-the-ear data collection. The platform is centered around a novel ear-tip design which includes a 
3-channels PPG (green, red, infrared) and a 6-axis (accelerometer, gyroscope) motion sensor (IMU) co-located 
on the same ear-tip. This allows the simultaneous collection of spatially distant (i.e., one tip in the left and 
one in the right ear) PPG data at multiple wavelengths and the corresponding motion signature, for a total of  
18 data streams. Inspired by the Facial Action Coding Systems (FACS)28, we consider a set of potential sources of 
motion artifact (MA) caused by natural facial and head movements. Specifically, we gather data on 16 different 
head and facial motions, including head movements (nodding, shaking, tilting), eyes movements (vertical eyes 
movements, horizontal eyes movements, brow raiser, brow lowerer, right eye wink, left eye wink), and mouth 
movements (lip puller, chin raiser, mouth stretch, speaking, chewing). We also collect motion and PPG data 
under activities of different intensities, which entail the movement of the entire body (walking and running). 
Together with in-ear PPG and IMU data, we collect several other vital signs such as heart rate, heart rate varia-
bility, and breathing rate from a medical-grade chest device.

With approximately 17 hours of data from 30 participants of mixed gender and ethnicity (mean age: 
28.7 years, standard deviation: 5.3 years), our dataset empowers the research community to analyze the mor-
phological characteristics of in-ear PPG signals with respect to motion, device positioning (left ear, right ear), 
as well as a set of configuration parameters and their corresponding data quality/power consumption trade-off. 
We envision such a dataset could open the door to innovative filtering techniques to mitigate, and eventually 
eliminate, the impact of MA on in-ear PPG. We ran a set of preliminary analyses on the data and observe statis-
tically significant morphological differences in the PPG signal across different types of motions when compared 
to a situation where there is no motion. These preliminary results represent the first step towards the detection of 
corrupted PPG segments and show the importance of studying how head/face movements impact PPG signals 
in the ear.

To the best of our knowledge, this is the first in-ear PPG dataset that covers a wide range of full-body 
and head/facial motion artifacts. Being able to study the signal quality and motion artifacts under such cir-
cumstances will serve as a reference for future research in the field, acting as a stepping stone to fully enable 
PPG-equipped earables.

Methods
To accurately analyze the in-ear PPG motion artifacts arising from head and facial motions, we design a con-
trolled experiment and ask participants to perform a set of pre-defined body, head, and facial motions. We opted 
for a controlled study since it enables running a detailed analysis of the phenomenon under investigation and it 
is suitable for the reproducibility of the data collection procedure. In this section, we provide details regarding 
the study population, data collection procedure, and the collected data.

Participants. Thirty individuals (18 males, 12 females, 20–49 years of age, mean age: 28.7 years, standard 
deviation: 5.3 years) were recruited and voluntarily took part in the study. None of the participants had any 
underlying heart or respiratory condition and were in good health at the time of the study. We used the standard 
Fitzpatrick skin tone scale29 to group our participants based on skin tone. The scale includes 6 types, 1 being the 
lightest and 6 being the darkest. Despite being dominated by type 2 skin tone (n = 18), our dataset includes type 
1 (n = 2), type 3 (n = 4), type 4 (n = 4), and type 5 (n = 2) skin tone groups.

Before taking part in the study, the investigators briefed all the participants who then gave their written 
consent (by completing an informed consent form) to release their data publicly. Every participant received 
a gift card as compensation upon completion of the study. The study was approved by the ethics board of the 
department of Computer Science and Technology at the University of Cambridge (application number 1873).

Devices and setup. Given the lack of existing open-source in-ear PPG platforms, we designed a custom 
head-worn prototype (see Fig. 1c) to collect in-ear PPG signals with established and affordable hardware compo-
nents. The prototype consists of an ESP32 microcontroller collecting sensor data from both the left and right ears. 
In order to facilitate the PPG signal acquisition from inside the ear (Fig. 2), we fabricated a flexible PCB board 
consisting of a MAXM86161 (https://www.maximintegrated.com/en/products/sensors/MAXM86161.html) PPG 
sensor and ST-LSM6DSRX (https://www.st.com/en/mems-and-sensors/lsm6dsrx.html) IMU as shown in Fig. 1a. 
The flexible PCB board is interfaced via the I2C protocol to the ESP32 microcontroller for data acquisition. 
MAXM86161 is a well-known 3-channels PPG sensor (green - 520 to 550 nm, red - 660 nm, infrared - 880 nm) 
catered for in-ear sensing applications. The IMU continuously records 3-axis accelerometer and 3-axis gyroscope 
data to provide motion signals for in-ear motions occurring while making facial expressions or head movements. 
Both sensors are sampled at a frequency of 100 Hz. As shown in Fig. 1b, the flexible PCB containing the PPG 
sensor and the IMU was coated with soft silicone to resemble a typical ear tip to provide comfort while wearing 
the device, as well as remain firm within the ear during various face/head motions. We used a transparent soft 
silicone gel to prevent any distortions in the acquired PPG signals. Figure 2 reports a drawing of the device when 
placed inside the ear canal.

PPG signal quality is not only affected by motion but also by the sensor’s configuration. Typically, sensors 
allow changing several parameters which affect the acquired signal and consequently the power consumed by 
the sensor. Given this trade-off, often, optimal parameters for signal quality are not the most efficient in terms 
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of power consumption. To explore this aspect of PPG sensing, we configured our device to change the sensor 
parameters every 30 seconds. This way, by collecting data for 2 minutes for each motion session we could cycle 
through 4 different sets of configurations (Table 2). In particular, the MAXM86161 allows changing of three 
parameters: LED current which determines the brightness of the three LEDs, pulse width which is the time each 
LED is kept on during measurement, and the integration time which is the period during which the photodiode 
is active and sampling the reflected light. Notice that pulse width and integration time cannot be controlled 
individually and only 4 combinations of the two parameters are available in the sensor. As shown in Table 2, we 
have chosen 4 configurations that offer distinct power consumption profiles and should result in diverse SNR 
characteristics.

On the other hand, as a ground truth to collect vital signs from a reliable source, not affected by motion 
artifacts, we rely on a Zephyr Bioharness 3.0 (https://www.zephyranywhere.com/), a portable, medical-grade 
(FDA approved30), ECG chest band. The participants wore the portable ground truth ECG band on their chests 
for the whole experiment.

Data collection protocol. After being briefed about the study, the participants wore our in-ear data col-
lection device on the head placing the ear-tips in the left and right ear canal (Fig. 1) and the Zephyr Bioharness 
3.0 ECG chest band. As in several prior works30,31, the Zephyr acts as ground truth device in our data collection. 
Starting from a resting pose (participants sitting still without any motion), we progressively asked the partic-
ipants to repetitively carry out individual movements. Notably, for the entire duration of each data collection 
session, one of the investigators stayed in the room with the participant (carefully observing social distancing and 

ST  LSM6DSRX
IMU

MAX86161 
PPG sensor

ESP32

I2C

I2C

Right  earbudLeft earbud

(a) (b) (c) (d)

Fig. 1 (a) Flexible PCB implementation of our earbud featuring MAX86161 PPG sensor and a co-located ST 
LSM6DSRX IMU. (b) An in-ear soft earbud was realized by embedding the in-ear flexible PCB board into 
a transparent silicone mold. (c) Head-worn data acquisition device consisting of an ESP32 microcontroller 
collecting data from in-ear PPG and IMU sensors in the left and right ear. (d) A participant wearing our earbud-
based prototype and taking part in the data collection protocol.

Fig. 2 Representation of the custom-built PPG ear tip inside the ear canal.

Conf. LED Current (mA) Pulse Width (us) Integration Time (us) Current Draw (mA)

1 16 21.3 14.8 1.62

2 32 21.3 14.8 1.81

3 16 123.8 117.3 2.66

4 32 123.8 117.3 3.78

Table 2. PPG parameters and relative sensor current draw.
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other COVID-19 precautions). We consider two main classes of motions: head/face movements and full-body 
movements. A summary of the data collection protocol (following the 2-minutes-long still baseline) is reported 
in Fig. 3. By looking at the inherent nature of the motions, head/face movements can be further categorized into 
one-shot and continuous movements.

 1. One-shot motions: One-shot motions are not normally performed continuously, and they are often 
performed in normal social interactions as well as in the form of psychosomatic tics. The selection process 
for the one-shot motion artifacts was informed by both anatomy principles28 and previous work32–34. In 
building our dataset, we look at Action Units (AUs) that entail the movement of the head, the eyes (and the 
adjacent muscles), and the mouth. Specifically, we selected: (1) nod; (2) shake; and (3) tilt as head move-
ments. The eye movements chosen were: (4) vertical eye movements; (5) horizontal eye movements; (6) brow 
raiser; (7) brow lowerer; (8) right eye wink; and (9) left eye wink. Finally, we investigated: (10) lip puller; (11) 
chin raiser; and (12) mouth stretch as mouth movements. We instructed the participants to repeat the one-
shot movements roughly every 5 seconds.

 2. Continuous motions: Besides, we also accounted for head/face continuous movements caused by com-
mon activities such as (13) chewing; and (14) speaking. Together with the one-shot movements, Continuous 
movements are quite unique to ear-worn devices. In fact, when performing these, the complex mesh of fa-
cial muscles moves substantially and, therefore, these activities are likely to cause significant deformations 
of the tissues in and around the ear.

Apart from head/face motions, we also considered full-body activities such as (15) walking and (16) run-
ning, which give rise to well-known sources of noise35 in the PPG signal. The list of all the considered motion 
artifacts is reported in Table 4 and pictured in Fig. 4. Notably, before performing each and every motion, the 
investigator demoed each and every gesture/activity to the participants. Ultimately, for all the conditions but the 
full-body movements (walking and running), we followed the wearable device validation guideline stipulated by 
the Consumer Technology Association36 and acquired PPG signals while seated in the upright position. During 
the resting condition, we instructed the participants to breathe normally without moving. The speaking condition 
consisted of a conversation with the investigator, where the participant described a recent event to the investi-
gator. The chewing condition was assessed by recording PPG data while the participant was chewing gum. For 
the full-body motion conditions, the participants were asked to walk and run at a set pace on a treadmill. We set 
the treadmill’s speed at 5kph and 8kph while walking and running, respectively. For each motion condition, we 
recorded 2 minutes of data, automatically changing the configuration of the PPG parameters every 30 seconds 
using the values described earlier. The length of the sessions was carefully chosen to be long enough to yield 
good-quality vital signs and yet not too tedious/harmful to the participants.

Collected data. We collected three types of data: (a) In-ear PPG signals from both left and right ear, (2) 
In-ear IMU signals from both left and right ear, and (3) Ground-truth heart rate data from Zephyr Bioharness 3.0 
ECG chest band. Table 3 reports an overview of the characteristics of devices used to collect EarSet dataset. The 
table presents the type of data that was collected for each device as well as the sampling rate at which the data was 
collected. The table shows that EarSet contains data from 2 different devices (including an ECG ground truth as 
ground-truth information) placed on 2 unique body locations(in-ear and chest). The data from the accelerometer 
was available in both the body locations (ear and chest). Here now follows more details on the collected raw data.

 1. In-ear PPG signals: The in-ear PPG signals (19-bit analog to digital converted PPG values from 
MAXM86161) were collected using our custom head worn prototype at a sampling frequency of 100 Hz. 
The timestamps (in milliseconds resolution) are available for each PPG signal sample from both the left 

Fig. 3 Summary of the data collection protocol following a 2 minutes long still baseline. Each activity was 
performed for 2 minutes.
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and the right ear. For each motion artifact, the PPG signals were collected for 2 minutes. Every 30 seconds, 
the PPG configuration was changed in the order reported in Table 2. As explained earlier, PPG signals were 
collected at three different wavelengths–green (530 nm), red (660 nm), and infrared (880 nm).

 2. In-ear IMU signals: The in-ear IMU signals (both 3-axis accelerometer and gyroscope) were collected si-
multaneously with PPG signals using our custom head worn prototype at a sampling frequency of 100 Hz. 
The timestamps (with a milliseconds resolution) are available for each IMU record from both the left and 
the right ear. The IMU signals were also recorded continuously for each motion artifact session.

 3. Zephyr ground-truth data: The Zephyr Bioharness 3.0 was worn by the participants on the chest and used 
to collect the ground-truth data. Specifically, the Zephyr provides heart rate (bpm), heart rate variability 
(ms) and ECG R-R interval (ms) at a sampling frequency of 1 Hz. In addition, the Zephyr provides raw 
3-axis accelerometer data collected at a sampling frequency of 100 Hz. We also collect posture information 
(in degrees) at a sampling frequency of 1 Hz. The chest band also has a breathing sensor from which raw 
breathing waveform (25 Hz) and breathing/respiration rate (1 Hz) were collected.

PPG Features. Before delving into the detailed description of the dataset we collected, we summarize the sig-
nal processing techniques used with PPG signals. This lays the required signal processing foundation for under-
standing our dataset validation.

The most common biomarkers that can be derived from PPG are:

 1. Heart rate: Peaks are detected from the AC component of the PPG signal to obtain the number of beats 
per minute. Typically the raw PPG signal is band-pass filtered between [0.4 Hz, 4 Hz] to obtain the AC 
component corresponding to the heart rate.

Class Muscle Group One-Shot Artifact Name Action Units

Still n/a n/a Still n/a

Head/Face

Head

✓ Nod AU 53, 54

✓ Shake AU 51, 52

✓ Tilt AU 55, 56

Eyes

✓ Vertical Eyes Movements AU 63, 64

✓ Horizontal Eyes Movements AU 61, 62

✓ Brow Raiser AU 1, 2

✓ Brow Lowerer AU 4

✓ Right Eye Wink AU 46

✓ Left Eye Wink AU 46

Mouth

✓ Lip Puller AU 12

✓ Chin Raiser AU 17

✓ Mouth Stretch AU 27

✗ Chewing AU 81

✗ Speaking AU 50

Full-Body n/a
✗ Walking n/a

✗ Running n/a

Table 4. List of the considered motion artifacts and corresponding action unit (AU).

Sensor Units/Range Sampling Rate

Earable prototype (one per ear)

Accelerometer g {−2:+2} 100 Hz

Gyroscope °/s {−500:+500} 100 Hz

PPG - green, infrared, and red channels — 100 Hz

Zephyr Bioharness 3.0 chest band

Heart Rate beats per minute {25:240} 1 Hz

Breathing Rate breaths per minute {3:70} 1 Hz

Core Temperature degrees {10:60} 1 Hz

Posture degrees from vertical {−180:180} 1 Hz

Activity vector magnitude units g {−16:16} 1 Hz

Breathing Rate Amplitude mV {0.25:15} 1 Hz

Heart Rate Variability ms {0:65534} 1 Hz

ECG Amplitude mV {0.25:15} 1 Hz

Table 3. Sensor data collected from each wearable device.

https://doi.org/10.1038/s41597-023-02762-3
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 2. Oxygen saturation (SpO2): Oxygenated hemoglobin absorbs less red light whereas deoxygenated hemo-
globin absorbs less infrared light. Thus, the ratio between red and infrared light intensities measured by the 
PPG sensor can be used to estimate SpO2 (R) as follows:

R
R

R
AC DC

AC DC
/
/ (1)

red

infrared

red red

infarared infrared
= =

 3. Heart rate variability (HRV): Heart rate variability is measured as the time difference between adjacent 
peaks in a PPG signal.

 4. Respiration rate (RR): A Synchrosqueezing transform (SST)37 is applied on the raw PPG signals to extract 
the respiration component (0.1–0.9 Hz). The number of peaks in the resulting respiration component of 
the PPG signals corresponds to the respiration rate (breaths per minute). Besides, there are other tech-
niques38 using time domain and frequency domain features extracted from the PPG signal along with 
machine learning to estimate respiration rate.

 5. Blood pressure (BP): Blood pressure is typically computed by placing PPG sensors at two locations on 
the same artery (say, finger and wrist) and then measuring the time taken by the pulse wave to travel from 
one PPG location to the other (pulse transit time). BP is inversely proportional to the pulse transit time 
obtained by calculating the peak time shifts between the two PPG sensors. In recent years, many machine 
learning and deep learning techniques39,40 have also been proposed to estimate blood pressure from the 
extracted PPG signal features.

As seen from the above biomarkers, the time domain signal features from the PPG signal are essential to 
estimate heart rate, heart rate variability as well as blood pressure. Some of the frequency domain features help 
in differentiating a normal sinus rhythm from an arterial fibrillation (AF) signal or an abnormal heart signal. In 
addition to the above-mentioned features, many techniques use features extracted from the first-order deriva-
tives and the second-order derivatives of the PPG signal to compute arterial stiffness41 and blood pressure40. The 
second-order derivative of a PPG signal provides useful information such as the location of the dicrotic notch, 
i.e., the time at which the diastolic peak occurs which provides information regarding the blood flow dynamics 
(systolic and diastolic phases).

Table 5 shows the main feature categories required for several critical health sensing applications. In addition 
to the PPG signal features mentioned earlier, useful physiological features marked in Fig. 5 can also be derived 
from the PPG signal42. The following list describes in more detail these main features which are also the ones we 
use in our technical validation of how various head and facial expressions affect in-ear PPG signals:

 1. Systolic phase: The Amplitude of the systolic peak and the time at which the systolic peak is located in the 
PPG signal.

Head Movements Eye Movements Mouth Movements

Nod (Heads up and down)

Tilt (Left or Right)

Shake  (Head left and right)

Brow Raiser

Brow Lowerer

Lip puller

Chin Raiser

Mouth Stretch

Vertical Eye Movements

Horizontal Eye Movements

Left and Right Eye Wink

Fig. 4 Summary of the Facial Action Units (subset of the FACS) considered in the dataset65. The individuals 
depicted provided consent for the open publication of the images.
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 2. Diastolic phase: The Amplitude of the diastolic peak and the time at which the diastolic peak is located in 
the PPG signal.

 3. Ratio between systolic and diastolic phase: It is an indicator of the abnormalities in blood pressure. It is 
also referred to as the Augmentation index or Reflection index.

 4. Pulse width: It is the time between the beginning and end of a PPG pulse wave. It correlates with our 
heart’s systemic vascular resistance.

 5. Rise time: The time between the foot of the PPG pulse and the systolic peak.
 6. Perfusion index (PI): PI is the ratio of the pulsatile blood flow (AC component) to the non-pulsatile or 

static blood in peripheral tissue (DC component).
 7. Dominant frequency: The dominant frequency of the PPG signal can be useful to give insights concerning 

the presence of artifacts at a different frequency outside the heart rate frequency band [0.4, 4 Hz].
 8. Spectral Kurtosis: Also known as Frequency Domain Kurtosis, describes the distribution of the observed 

PPG signal frequencies around the mean and is a very useful indicator of the PPG signal quality.
 9. Peak-to-peak magnitude variance: It is the variance of the difference between the pulse wave amplitude 

between two adjacent pulse waves.
 10. Peak-Time interval variance: It is the variance of the pulse width between peaks of two adjacent PPG 

waves.

During the validation of our dataset, we show how the various motions and activities performed by the 
participants affect the features above. This demonstrates how head and facial motions could degrade the per-
formance of health-related applications which rely on these features. We believe EarSet will help the research 
community in developing mitigation strategies for these motions and activities.

Applications
AC 
Component

DC 
Component

Time domain 
signal features

Frequency domain 
signal features

First order derivative 
features

Second order 
derivative features

Vital sign sensing (HR51, SpO2
52, BP40) ✓ ✓ ✓ ✓ ✓ ✓

Heart rate variability (HRV)53,54 ✓ ✗ ✓ ✗ ✗ ✗

Respiration rate (RR)55,56 ✓ ✗ ✗ ✓ ✗ ✗

Sleep apnea57,58 ✓ ✗ ✓ ✗ ✗ ✗

Atrial Fibrillation59,60 ✗ ✗ ✓ ✓ ✓ ✓

Arterial Stiffness41,61 ✗ ✗ ✓ ✓ ✓ ✓

Energy expenditure62 ✓ ✗ ✓ ✓ ✓ ✓

Dehydration63,64 ✗ ✓ ✗ ✗ ✗ ✗

Table 5. Summary of PPG signal features essential for biomarkers as well as other health sensing applications.

Fig. 5 Typical time domain signal features extracted from a PPG signal.
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Data records
The raw data can be found at Zenodo43. Data of each participant has been anonymized with the alphanumeric 
format: P#. We refer to this as a participant identifier. The dataset contains a folder for each participant and an 
additional file, Demographics.csv, containing the demographics (e.g., gender, age) and skin tone of each partic-
ipant in an anonymous format. Within each participant folder, there are two other folders, namely, EARBUDS 
and ZEPHYR, which contain the raw data obtained from each device during data collection. Table 6 provides an 
overview and description of the main files inside a participant folder.

earbuds data. The IMU and PPG data are split into different files for each activity considered. The IMU 
sensor used the same configuration for the entire recording, while the PPG cycled through the four configura-
tions described in Table 2. The transition before each configuration is marked by a line in the format #<times-
tamp>, current:<curr>, tint:<tint>, where <timestamp> is the UNIX time with milliseconds 
resolution, <curr> is the LED current in milli-Ampere and <tint> is the integration time in micro-seconds 
(this determines also the pulse width). All data points after this line have been collected with the new sensor con-
figuration. Notice that the first configuration does not have such a line at the beginning.

To use the data collected from earbuds, one should first convert the raw ACC data to milli-g by multiplying 
it by 0.061 and the raw GYRO data to milli-dps (degrees per second) by multiplying with 17.5. This is to convert 
the raw data coming from the sensor from an integer format to a more usable format (i.e., milli-g and milli-dps). 
The PPG data does not require any conversion.

Zephyr data. The data from the Zephyr Bioharness is directly pre-processed by the device and provided at a 
1 Hz granularity. Hence, data from this device can be used as is. Notably, in some instances, the first and last few 
data-points recorded by the Zephyr might present some artifacts due to the user wearing/removing the device.

Missing data. During the data collection, device malfunctions caused a minor loss of data. The PPG data 
relative to the mouth stretch activity for P0 and P27 is missing. Similarly, sensor configuration #4 is missing for P9 
for the nod activity. In addition, the BRAmplitude data field recorded by the Zephyr is not present for users P17, 
P26, P27, P28, and P29. Finally, users P3, P4, P7, P8, and P10 have corrupted Zephyr data (notably, their IMU and 
PPG data from our prototype are still perfectly usable).

technical Validation
In this section, we perform a preliminary analysis of the collected data to evaluate its technical validity. We 
independently processed the PPG signals from the 3 channels (green, red, infrared) recorded from the left and 
the right ears. The acquired PPG signals from the left and right ear were aligned in the time axis and stored in 
Pandas Data Frames. Each Data Frame is then re-sampled at 100 Hz to ensure a consistent sampling rate. The 
start and the end of each Data Frame were trimmed to ensure that each data frame has the same length. Note 

Device File Column(s) Description

EARBUDS

<ID>-<ACTIVITY>-imu-left.csv
<ID>-<ACTIVITY>-imu-right.csv

timestamp Timestamp in UNIX format with millisecond resolution.

ax/gx X-axis of accelerometer/gyroscope sensor.

ay/gy Y-axis of accelerometer/gyroscope sensor.

az/gz Z-axis of accelerometer/gyroscope sensor.

<ID>-<ACTIVITY>-ppg-left.csv
<ID>-<ACTIVITY>-ppg-right.csv

timestamp Timestamp in UNIX format.

green PPG sensor green wavelength.

ir PPG sensor infrared wavelength.

red PPG sensor red wavelength.

ZEPHYR <ID>_Summary.csv

Timestamp Timestamp in UNIX format with millisecond resolution.

HR Heart rate measured from the ECG sensor.

BR Breathing rate is measured from a pressure sensor in the strap.

CoreTemp Core temperature.

Posture Posture: 0° = subject vertical, 90° = subject prone, 
−90° = subject supine, ±180° = subject inverted.

Activity Vector magnitude of the three axial acceleration magnitudes 
over the previous 1 second, sampled at 100 Hz.

PeakAccel Peak acceleration magnitude from the previous second.

BRAmplitude Breathing rate amplitude is used for internal development 
only.

HRV Heart rate variability.

ECGAmplitude Uncalibrated ECG amplitude measured from the peak of the R 
wave to the peak of the S wave of the QRS complex

Table 6. Description of the content of the folders named P# in the dataset. In this table, we explain only the 
most relevant files in the dataset. <ID> represents the participant number from 0 to 29. <ACTIVITY> is the 
artifact name as listed in Table 4.
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that our preliminary exploration only focuses on the 4th set of LED configuration parameters (LED current 
32mA; pulse width 123.8μs; integration time 117.3μs), as described in our Methods.

Dataset outlook and template matching. Firstly, we analysed EarSet to study how each facial motion 
artifacts appear unique in the collected in-ear PPG signals. In Fig. 6, we can appreciate at a glance how two diverse 
facial movements, such as lip puller (a) and nod (b), have a very different impact on the PPG trace when com-
pared to a full-body movement like running (c)–in which the signal is dominated by the running cadence rather 
than by the cardiac signal. Notably, we can observe substantial differences even among the two facial movements: 
while the impact of the lip puller appears very localized and aligned with the motion (as we can see from the var-
iations along the gyroscope axes), the nod seems to have a more prolonged impact on the DC component of PPG 
trace. By manually inspecting the data, we noticed that for a few [participant, motion] combinations, the PPG was 
not affected by artifacts. In particular, the vertical and horizontal movement of the eyes did not cause any artifact 
on the PPG signals. This is due to the limited involvement of the facial muscles, especially of those near the ears, 
during eye movements. Similarly, for the left and right eye wink motions, some participants could not perform 
the motion with both eyes or not at all. In other cases, the wink was subtle and hence did not result in any artifact 
in the corresponding PPG signal. For the rest of the analysis, we filtered out these [participant, motion] combina-
tions for which the PPG was not affected by motion.

To deepen our investigation, and gain a better visual understanding of how the various motion artifacts 
affect the morphology of the PPG pulses, we relied on a template matching analysis42. In doing so, we crafted a 
template pulse by taking the average of all the pulses of each user when still. We then plot the template pulse in 
red and use it as a reference against all the PPG pulses present in each motion session (plotted in gray). Figure 7 
depicts the template matching analysis for shake (a), brow raiser (b), lip puller (c), and mouth stretch (d). The 
plots show how each of the considered movements affects the morphology of the PPG pulse differently, resulting 
in subtle, yet notable artifacts. Many applications rely on morphological features computed on the PPG signals42. 
Hence, such artifacts in the morphology of each pulse could lead to erroneous vitals estimation. We believe that 
our dataset represents a good resource for a more in-depth study and characterization of this issue for an emerg-
ing class of devices–earables equipped with heath-related sensors.

Handcrafted metrics extraction from EarSet. We sought to proceed with our exploration of the dataset 
by extracting handcrafted features commonly derived from PPG signals for various health sensing applications 
listed in our Methods. For all the PPG signal metrics excluding Perfusion Index, we apply a 4th-order Butterworth 
band-pass filter (low-cut =0.4Hz, high-cut =4Hz) for signal smoothening. To facilitate a fair comparison of the 
PPG signal metrics for each facial motion artifact available in EarSet, we normalized their values using a standard 
min-max normalization. We chose to independently normalize the metric values for each user’s motions artifacts. 
Specifically, normalizing every user independently allows us to retain the subject-dependent motion artifact char-
acteristics as well as the unique blood vessel morphology of each user.

Fig. 6 Samples of green PPG and IMU (gyroscope) data under different motion artifacts.

Fig. 7 Template matching of PPG pulses from user 12 for four different motions. The red line represents the 
template pulse computed with data from the still condition. The gray lines are the pulses from different motion 
conditions.
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Figure 8 reports the empirical cumulative distribution function (ECDF) of how head/face and full-body 
movements impact the Peak-to-Peak Magnitude Variance (a), Peak-Time Interval Variance (b), Perfusion Index 
(c), and the Spectral Kurtosis (d) of the in-ear PPG signal. Similar patterns can be observed for other metrics. 
For this analysis, we considered the normalized PPG signal metrics computed from both the left and the right 
ear for all the users. We can observe that the PPG signal metrics for the “still” situation remain consistent across 
the entire population. On the other hand, the facial(head/face) and full-body movements appear to have more 
widespread distributions as well as different patterns. This is especially true for full-body movements. Notably, 
the findings of the spectral kurtosis analysis (d) are also aligned to the literature42, showing higher values for 
clean PPG signal. This can be explained by the presence of sharper peaks in the Fourier spectrum of clean 
(still in our case) PPG. These preliminary results suggest that different motion categories (i.e., head/face and 
full-body) create diverse artifacts in the PPG signal, and therefore it might be necessary to adopt dedicated 
approaches when applying signal filtering techniques. Our preliminary analysis of EarSet show that our dataset 
is a good source to start exploring this avenue.

Finally, We studied whether it is possible to spot differences between the individual motions using the col-
lected PPG signals in EarSet. We began by looking at the Mean Absolute Error (MAE) between all the PPG 
signal metrics extracted under the various motion artifact and the “still” stationary PPG signal baseline. As 
we can see from Fig. 9, for the majority of the PPG signal metrics, there are statistically significant differences 
between the still baseline and most of the artifacts. As expected, more intense head/face movements, like tilt and 
mouth stretch, yield greater differences in the signal metrics computed against the still baseline. This is much 
more evident while looking at full-body movements. Besides, a comparison of data from the left (??) and right 
(??) ear hints at differences between the PPG signals collected from the two ears. Multi-site PPG signals from the 
ears have been largely understudied so far. We believe our dataset is the perfect starting point to further explore 
this area.

Fig. 8 Empirical Cumulative Distribution Function (ECDF) of how the various classes of motion artifacts 
impact some of the handcrafted metrics extracted from PPG.

Fig. 9 Heatmaps of how the various motion artifacts impact the handcrafted metrics extracted from the green 
PPG signal ((a) left ear; (b) right ear). The values reported in the heatmaps are the Mean Absolute Error (MAE) 
with respect to the still baseline. The heatmaps’ cells are annotated with a T whenever there is a statistically 
significant difference between the still baseline signal and the MA-corrupted one (p < 0.05).
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Usage Notes
Data pre-processing. The data recorded from the Zephyr does not require additional processing as they 
are already pre-processed (with the exception of the ECGAmplitude and the BRAmplitude, which can be easily 
pre-processed using NeuroKit library).

However, the data collected from our earable prototype requires pre-processing. Firstly, the raw accelerome-
ter data has to be converted to milli-g units by multiplying with 0.061, and the raw gyroscope data has to be con-
verted to milli-dps (degrees per second) by multiplying with 17.5. This converts the raw IMU sensor data from 
an integer format to a more usable/standard format (i.e., milli-g and milli-dps). We then remove the direct cur-
rent (DC) offset from the gyroscope data by applying a Butterworth band-pass filter (0.4–4 Hz cutoff). Secondly, 
the PPG signals can be pre-processed using bandpass filtering options available in Heartpy or NeuroKit libraries 
to extract HR, SpO2, etc.

EarSet dataset. The EarSet dataset is available in43. Convenient libraries to pre-process and clean the physio-
logical signals include HeartPy (https://python-heart-rate-analysis-toolkit.readthedocs.io/en/latest/) to extract 
heart rate data from PPG or ECG sensors, NeuroKit (https://neurokit2.readthedocs.io/en/latest/index.html) 
and BrainFlow (https://github.com/brainflow-dev/brainflow) to analyze PPG and ECG signals.

We believe that the EarSet dataset will foster research of new solutions to problems such as:

•	 Motion Artifacts Filtering: The dataset enables the exploration of how subtle head and face motions affect 
in-ear IMU and PPG signals. Firstly, this allows studying what kind of facial movements cause significant 
degradation of the PPG signals and how they might affect the accuracy of vital signs estimation. Secondly, 
the dataset will motivate the design of sophisticated filtering techniques for in-ear PPG signals - targeted at 
eliminating head and facial motion artifacts.

•	 Sensor Location: EarSet offers a unique opportunity to study whether the availability of PPG sensors in both 
ears could improve the estimation of vital signs. Having access to independent streams of PPG signals from 
the left and right ears could highlight asymmetries in the way people perform head and facial movements. 
These findings could be exploited to design improved signal-filtering approaches.

•	 Sensor Configuration: Given the need for low power consumption in future earable devices, the dataset allows 
the exploration of how different PPG hardware configurations (including 3 wavelengths), each with specific 
power requirements, affect the acquired PPG signal quality. This has important implications for the design of 
future devices and processing pipelines.

•	 State-of-the-art Comparison: The dataset contains several physiological measurements from ECG signals 
measured using a Zephyr Bioharness 3.0 chest strap. This enables validation and benchmarking of vital signs 
estimation methods applied to in-ear data with state-of-the-art methods from commercial devices unaffected 
by head/facial motions.

While the EarSet dataset opens up novel opportunities for earable devices, our approach still has a few lim-
itations and presents opportunities for further improvements. Our focus is to offer a dataset to investigate the 
impact of head/face motions, in addition to full-body activities, on in-ear PPG signal quality and vital signs 
estimation. Skin tone is an additional factor that could affect data quality35. Although EarSet offers diversity in 
skin tones, the acquired data does not follow a uniform distribution among the six categories of pigmentation29. 
Future work will consider expanding the dataset to include additional participants to uniformly cover all skin 
tones.

All our participants were healthy at the time of the data collection and had no heart-related conditions. 
Future data collection efforts will consider participants with underlying conditions that could affect the mor-
phology of the PPG signal even without the presence of motion-related artifacts. Correctly distinguishing the 
two cases would significantly increase the trustworthiness of earable devices beyond commercial settings - with 
the potential to be applied in clinical settings. Additionally, manual assessment of the PPG signal quality from 
experts in the field would complement the dataset, enabling the development of automatic pipelines to estimate 
expert-grade clinical assessments.

Code availability
We provide the raw data files obtained during the data collection structured by a user identifier. We did not 
implement any specialized code to pre-process the data.
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