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Plasma metabolomics profiling 
of 580 patients from an Early 
Detection Research Network 
prostate cancer cohort
Elisa Benedetti1,2, Kelsey Chetnik1,2, Thomas Flynn3, Christopher E. Barbieri3, 
Douglas S. Scherr3, Massimo Loda   4 & Jan Krumsiek   1,2,5 ✉

Prostate cancer is the second most common cancer in men and affects 1 in 9 men in the United States. 
Early screening for prostate cancer often involves monitoring levels of prostate-specific antigen (PSA) 
and performing digital rectal exams. However, a prostate biopsy is always required for definitive cancer 
diagnosis. The Early Detection Research Network (EDRN) is a consortium within the National Cancer 
Institute aimed at improving screening approaches and early detection of cancers. As part of this effort, 
the Weill Cornell EDRN Prostate Cancer has collected and biobanked specimens from men undergoing a 
prostate biopsy between 2008 and 2017. In this report, we describe blood metabolomics measurements 
for a subset of this population. The dataset includes detailed clinical and prospective records for 580 
patients who underwent prostate biopsy, 287 of which were subsequentially diagnosed with prostate 
cancer, combined with profiling of 1,482 metabolites from plasma samples collected at the time of 
biopsy. We expect this dataset to provide a valuable resource for scientists investigating prostate cancer 
metabolism.

Background & Summary
Prostate Cancer (PCa) is the second most common malignancy (after lung cancer) in men, with more than 1.4 
million new cases and more than 375,000 deaths worldwide in 20201. When detected early, PCa can usually be 
treated and managed without impacting the patient’s lifespan, and the 5-year survival rate for patients diagnosed 
with early-stage, localized PCa is virtually 100%2. However, when detected after the appearance of symptoms, 
PCa is typically at a more advanced stage, often after the development of metastases. For this group of patients, 
the 5-year survival rate drops to 32%3. Therefore, early detection of this disease is essential for patient survival.

Serum Prostate-Specific Antigen (PSA) quantification has been at the core of screening practices for the past 
35 years4. However, recent studies have shown how PSA, while being informative in the prediction of recur-
rence5,6, has demonstrated very limited accuracy in discriminating PCa patients from controls (only ~25% of 
men with elevated PSA are found to have prostate cancer after biopsy7), and in discriminating indolent from 
aggressive disease (Area-under-the-curve, or AUC, less than 65%8). This has led to substantial overdiagnosis 
and overtreatment of patients with indolent disease9,10, with significant impact on the quality of life of these 
patients11. Therefore, better biomarkers for the early detection of PCa are urgently needed.

The National Cancer Institute Early Detection Research Network (NCI-EDRN) Prostate Cancer Cohort 
has been created to collect patient specimens and develop new clinically applicable molecular biomarkers to 
replace PSA testing for the diagnosis and risk assessment of PCa12. As part of these efforts, Weill Cornell Medicine 
recruited 1,144 patients with no prior history of prostate cancer, who underwent a prostate biopsy between 2008 
and 2017. Extensive clinal data were collected for these patients, including patient’s demographic information 
and medical history, as well as 12- and 24-month clinical follow-up. For cancer patients, this included details on 
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patient treatment and response, additional longitudinal PSA measurements, as well as the results of any relevant 
clinical tests, such as CTs or bone scans, MRIs, or repeat biopsies. For controls, information regarding longitudinal 
PSA measurements, digital rectal exam (DRE) results, and repeat biopsy results were recorded where available.

Recent studies have identified several blood metabolites as potential biomarkers for PCa diagnosis and prog-
nosis. Among these, elevated sarcosine levels and decreased levels of phosphatidylcholines (PCs) and citrate 
have been observed in plasma of PCa patients compared to healthy controls13,14. Moreover, increased sarcosine 
abundance has been linked to prostate cancer metastasis15. A notable study employed 1H NMR-based metab-
olomics to discern characteristic metabolic panels for different stages of prostate cancer, demonstrating the 
potential of metabolomics in cancer research16. The discovery of these biomarkers is crucial for more precise 
PCa diagnosis13,17. However, further validation is needed to ensure their clinical effectiveness18.

Here, we present a new dataset related to 580 individuals from the Weill Cornell EDRN Prostate Cancer 
Cohort, for which metabolomic profiling was performed on plasma samples collected prior to biopsy (Fig. 1). 
The metabolite quantification included four profiling modes: (1–2) two separate reverse phase (RP)/Ultrahigh 
Performance Liquid Chromatography (UPLC) – Tandem Mass Spectroscopy (MS/MS) methods with positive 
ion mode electrospray ionization (ESI), (3) one RP/UPLC-MS/MS with negative ion mode ESI, and (4) one 
Hydrophilic Interaction Chromatography (HILIC) UPLC-MS/MS with negative ion mode ESI, allowing for the 
detection of more than 1,400 compounds, spanning 9 molecular classes and almost 120 molecular pathways. 
Here we make these data, together with the corresponding rich clinical annotations, publicly available to the 
scientific community.

Methods
Weill cornell early detection research network (edrn) prostate cancer cohort.  The Weill Cornell 
EDRN Prostate Cancer Cohort was consented and recruited 1,144 patients (518 cases and 626 controls) over 9 
years (from 2008 to 2017). In order to be eligible for the study, patients needed to be adult males, have no prior 
history of prostate cancer or prostate biopsies, and be scheduled to undergo prostate biopsy at Weill Cornell 
Medicine in New York City. Need of prostate biopsy was determined based on suspicion of prostate cancer, which 
primarily included elevated PSA levels, abnormal digital rectal exam (DRE) results, or suspicious findings based 
on imaging. Prostate biopsies included at least 10 cores taken in a laterally directed fashion, and a fasting blood 
sample was collected prior to prostate biopsy from all recruited patients. Biopsy tissue, together with urine and 
blood samples were processed and biobanked at Weill Cornell Medicine.

For each patient, extensive clinical parameters were collected, including biopsy results, prostate cancer diag-
nosis and 2-year follow-up clinical information. EDTA-plasma samples for metabolomics profiling were selected 
to include patients with complete 12- and 24-months follow-up information available (see Data Records section 
for more details). This subset included a total of 580 patients, with 267 men diagnosed with PCa and 313 controls 
(Fig. 1). An overview of the main clinical and demographic parameters for this cohort is provided in Table 1.

This study has been approved by the Weill Cornell Internal Review Board (IRB protocol number 
0711009545). All patients provided informed consent for the collection, storage, and de-identified sharing of 
their data for research purposes. The IRB has approved the release of data in the provided format.
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Fig. 1  Study overview. The Weill Cornell Medicine EDRN Prostate Cancer Cohort included 1,144 patients 
undergoing prostate biopsy. For each patient, biopsy tissue, as well as urine and blood plasma were collected 
and biobanked. Clinical annotations included demographic information and medical history, as well as 12- 
and 24-months follow-up including biopsy pathology reports, PSA measurements, patients’ treatment, and 
clinical exams. From this cohort, plasma samples of 580 patients (267 cases and 313 controls) were profiled 
metabolically by Metabolon, Inc.
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Sample collection processing.  Fasting blood was collected prior to biopsy in 6 ml BD Vacutainer® EDTA 
tubes. Immediately after blood draw, the tube was inverted 8–10 times to mix the additive with the blood and 
placed immediately on ice. Tubes were centrifuged at 2,500 rpm for 15 minutes at 4 °C within two hours of blood 
collection. Plasma aliquots of 100ul or 200 ul were extracted from the top layer, transferred into 0.5 ml polypro-
pylene micro tubes and stored at −80C until shipment for metabolomic profiling.

Metabolomics analysis.  Metabolomic profiling of samples and quality control was performed by 
Metabolon Inc. (Morrisville, NC).

Sample preparation.  Upon receipt, samples were catalogued and instantly stored at −80oC until they were 
processed. Each acquired sample was allocated a unique identifier for tracking all handling, tasks, and outcomes. 
Both the original samples and any resultant aliquots were monitored continuously through an automated system.

On the extraction day, the frozen samples were thawed while on ice. Sample preparation was conducted 
using the automated MicroLab STAR® mechanism (Hamilton Company, Reno, NV). A volume of 100 µl from 
each sample was relocated to a well within a deepwell plate. Before the extraction, several isotopically labeled 
standards were introduced to each specimen to ensure precise extraction. For the purpose of removing proteins 
or disengaging small molecules bound to proteins or encapsulated in the precipitated protein matrix, proteins 
were sedimented with 500 µl of methanol via rigorous shaking for 2 minutes using a GenoGrinder 2000 (Glen 
Mills, Inc, Clifton, NJ), succeeded by a 10-minute centrifugation at 680 g.

Ultrahigh performance liquid chromatography – tandem mass spectroscopy (UPLC-MS/MS).  The 
sample was partitioned into five aliquots: two for examination using dual independent reverse phase (RP)/Ultrahigh 
Performance Liquid Chromatography (UPLC) – Tandem Mass Spectroscopy (MS/MS) approaches with positive 
ion mode electrospray ionization (ESI), one for testing through RP/UPLC-MS/MS with negative ion mode ESI, one 
for evaluation via Hydrophilic Interaction Chromatography (HILIC) UPLC-MS/MS with negative ion mode ESI, 
and a single sample was set aside for backup. Samples were momentarily situated on a TurboVap® (Zymark, Inc., 
Hopkinton, MA) to eliminate the methanol solvent. Extracts were subsequently dried under liquid nitrogen cooling 
prior to analysis.

Chromatography was performed using an ACQUITY (Waters, Milford, MA) ultra-performance liquid chro-
matography (UPLC) held at 40 °C–50 °C, and mass spectrometry was performed using a Q-Exactive (Thermo 
Scientific, Waltham, MA) high resolution/accurate mass spectrometer interfaced with a heated electrospray 
ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. The linearity of the 
instrument performance standards has been shown previously19. Immediately prior to analysis, dried samples 
were reconstituted in 40 µL ›of the “A” mobile phase solvent, as specified for each analytical method in the sup-
plementary data of Ford et al.20. Each reconstitution solvent contained several instrument performance stand-
ards at fixed concentrations to ensure injection and chromatographic consistency and to aid in peak alignment. 
After reconstitution, samples were centrifuged at 2800 rpm for 5 minutes. The injection volume was 5 mL with 
a 2x loop overfill.

For the RP/UPLC - MS/MS with positive ion mode ESI arm, the two aliquots were analyzed using acidic 
positive ion conditions; one was chromatographically optimized for more hydrophilic compounds and the other 
for more hydrophobic compounds. In the first case, the extract was gradient-eluted from a C18 column (Waters 
UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic acid 
(PFPA) and 0.1% formic acid (FA), while in the second, the extract was gradient-eluted from the same C18 
column mentioned before, this time using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was 
operated at an overall higher organic content (for details, see Ford et al.20).

Cases (N = 267) Controls (N = 313) p-value

Age in years

0.109median (IQR) 66.0 (59.0–71.5) 64.0 (58.0–70.0)

[min, max] [39, 85] [33, 84]

BMI
0.981

median (IQR) 26.3 (24.4–29.0) 26.3 (24.2–19.3)

PSA in ng/ml
0.010

median (IQR) 5.3 (4.0–7.9) 4.9 (3.6–6.7)

Elevated PSA N = 242 N = 276 0.490

Abnormal DRE N = 40 N = 21 0.001

Gleason score (GS)

GS 6 N = 113
GS 7 N = 121
GS 8 N = 15
GS 9 N = 17
GS 10 N = 1

— —

Table 1.  Demographics of the profiled cohort. BMI = Body Mass Index; PSA = Prostate-Specific Antigen; 
DRE = Digital Rectal Exam; IQR = Interquartile Range. A Wilcoxon test was performed for continuous 
variables (Age, BMI, PSA), and a Fisher’s exact test for dichotomous variables (Elevated PSA, Abnormal DRE).
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The aliquot for profiling with RP/UPLC-MS/MS with negative ion mode ESI was analyzed using basic neg-
ative ion optimized conditions, using a separate dedicated C18 column. The basic extracts were gradient-eluted 
from the column using methanol and water, with 6.5 mM Ammonium Bicarbonate at pH 8.

The aliquot for profiling with HILIC/UPLC-MS/MS with negative ion mode ESI was analyzed via negative 
ionization following elution from a HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 µm) using a 
gradient consisting of water and acetonitrile with 10 mM Ammonium Formate, pH 10.8. The MS analysis alter-
nated between MS and data-dependent multistage (MSn) scans using dynamic exclusion. The scan range varied 
slighted between methods but covered 70–1000 m/z.

All MS2 spectra were collected with a data dependent acquisition (DDA) method using an exclusion list as 
described in Ford et al. previously20.

Detailed instrument parameters, reagents, standards, and chromatography run times are listed in 
Supplementary Material 1.

Data extraction and compound identification.  Proprietary, in-house software by Metabolon was used 
to perform the detection and integration of MS peaks. The extracted chromatograms were binned by mass in a 
specified range; moreover, for each sample, a noise baseline was determined. All samples were aligned using the 
retention index (RI)21, a parameter computed from retention time (RT), of internal standards spiked into every 
analyzed sample. The internal standards were isotopically labelled metabolites that elute approximately every 30 s 
of chromatography, therefore spanning the whole chromatographic range, providing a reference for alignment 
across samples.

Compound identification was performed by matching the ion chromatographic features to a curated library 
of more than 5,000 purified standards or recurrent unknown entities22. Biochemical identifications were based 
on three criteria: (1) retention index within the RI window of the proposed identification, where the window 
is based both on the behavior of standards over a concentration range as well as historic behavior, (2) accurate 
mass match to library entries within 10 ppm m/z of the measured compound, and (3) a forward and reverse 
fragmentation scores23. Briefly, the forward score indicates how well the ions in the experimental spectrum were 
present in the library at the correct ratios, while the reverse score indicates how well the ions in the library were 
present in the experimental spectrum at the correct ratios. Compounds that satisfied criteria 1 and 2 and with 
forward and reverse fragmentation scores above 80% were automatically approved, while compounds with frag-
mentation scores below 35% were automatically rejected. Compounds with intermediate scores were marked 
for manual review and approval22. Metabolites were assigned confidence tiers according to the following guide-
lines: Biochemical Name (no asterisk) corresponds to Metabolomics Standards Initiative Tier 1 identification, 
indicating a compound confirmed based on an authentic chemical standard with high confidence in its identity. 
Biochemical Name * indicates a compound that has not been confirmed based on a standard, but for which 
there is high confidence in its identity (Not Tier 1). Biochemical Name ** represents a compound for which a 
standard is not available, but for which there is reasonable confidence in its identity or the information provided 
(Not Tier 1).

Peaks that could not be matched to any entry in the library were individually analyzed across injections, to 
identify strong correlations likely arising from isotope or adduct relationships. Recurrent peaks that could not 
be related to known compounds but that strongly correlated across multiple injections were considered likely 
to represent authentic biological entities that are not yet included in the library entries. These compounds were 
manually analyzed and reviewed, and, if considered to likely represent a novel undocumented biochemical, were 
assigned a numerical designation (e.g., “X-12345”) and were added as a new library entry for future analyses and 
classification. Importantly, these unknown metabolite names are consistent across studies, allowing for compa-
rability with other Metabolon datasets.

Curation.  All identification and quantification tasks underwent QC to confirm the quality of the identifi-
cation and the integrity of peak integration. This concluding verification stage eliminated procedural artifacts, 
substances with inferior peak forms and thus flawed integration, compounds showing a systematic upward or 
downward trend in area, and fragmentation scores that led to rejected library identifications. Procedural artifacts 
were categorized as biochemicals existing in the biological samples at levels < = 3× those in the water process 
blanks. For compounds that were detected in both positive and negative modes, one mode was selected to repre-
sent the substance, based on the relative standard deviation among samples and the percentage of samples where 
the metabolite was observed in each mode.

Data normalization.  Since the samples in this study were profiled over multiple days (run-days), a data nor-
malization step was performed to correct variation resulting from inter-day instrument tuning differences. The 
integrated area-under-the-curve data for each metabolite was first divided by the corresponding run-day median 
for that metabolite and then multiplied by the overall dataset median for that metabolite.

Missing values.  Missing values can result from chromatographical issues, software processing errors, when 
metabolite levels are below the limit of instrument detection (LOD), or simply when a metabolite is not present in 
a particular sample. Alternatively, sometimes missing values arise due to technical problems such as a temporary 
reduction in electrospray performance due to particulate material in the spray nozzle (Payne et al. 2009). These 
values are represented by NAs (not a number) in the data matrix.

Data preprocessing.  To facilitate statistical analysis, we provide a preprocessed version of the metabo-
lomics data in addition to the raw metabolite ion counts. The preprocessing workflow involved the following 
steps: (1) Metabolites with more than 50% missing values were filtered out. (2) Metabolite abundances were 
normalized using the probabilistic quotient approach24, using only variables with less than 20% missing values 
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to construct the reference sample. (3) Normalized values were log-scaled to improve normality, as metabolite 
abundances are typically log-normally distributed. (4) The remaining missing values were imputed using a 
k-Nearest-Neighbors-based algorithm (knn with variable preselection and k = 10)25.

Clinical annotations.  This cohort has rich clinical annotations, which range from global demographic 
details and patients’ medical history to detailed pathology and treatment information, as well as 12- and 24-month 
follow-up for both cases and controls, for a total of 420 unique parameters. Importantly, the follow-up information 
includes longitudinal PSA measurements pre and post biopsy, detailed biopsy pathology reports, patients’ treatment, 
as well as any additional prostate cancer related clinical test, such as CTs or bone scans, MRIs, or repeat biopsies.

An overview of the types of annotations available is provided in Table 2. A detailed description of all clinical 
parameters is included in the clinical annotation data file (see Data Records).

Category Number of parameters Examples

Demographics 14

Age

Ethnicity

Smoking

Cancer history 8
Family history of prostate cancer

Previous cancer diagnoses

Medical history/Comorbidities 12

Arthritis

Diabetes

Inflammatory bowel disease

Pre-biopsy clinical data 43

Digital rectal exam results

Longitudinal PSA measurements

Low % free PSA

Prostate-related conditions 10

Prostatitis

Benign prostatic hyperplasia

Urethritis

Prostate-related medications 10

5-alpha reductase inhibitors

Alpha-blockers

Androgens

Past surgical history 10

TURP

TUIP

TUMT

Biopsy procedure details 7

Biopsy date

Number of cores taken

Prostate size

Prostate cancer diagnosis 14

Cancer diagnosis

Gleason score

TNM stages

Per-biopsy-core pathology report 97

Core position

Primary Gleason score

Secondary Gleason score

Perineural invasion

Percent of cancer in core

Core length

Negative biopsy reporting 5

High grade PIN

Atypia

Atrophy

12-month follow-up clinical data 60

Bone scan results

CT scan results

MRI results

12-month follow-up prostate cancer treatment details 31
Treatment Type and Duration

Radical prostatectomy results

24-month follow-up clinical data 62

Bone scan results

CT scan results

MRI results

24-month follow-up prostate cancer treatment details 48
Treatment type and duration

Radical prostatectomy results

Table 2.  Overview of clinical annotations.
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Data Records
The integrated metabolite ion counts, the preprocessed metabolomics data, the metabolite annotations, 
and the deidentified clinical data are available for download on Metabolomics Workbench, https://doi.
org/10.21228/M86H7K26. The data is available as a zip file (EDRN_Data.zip) and contains two data files (EDRN_
MetabolomicsData.xlsx and EDRN_ClinicalData.xlsx) and one text document (preprocessing_workflow.docx) 
detailing the data preprocessing steps.

The unprocessed ion count data (tab “Data” in file EDRN_MetabolomicsData.xlsx) include metabolite 
abundances of 1,482 biochemicals, of which 1,155 are compounds of known identity (named biochemicals) 
covering 119 biochemical pathways across 9 molecular classes (tab “MetaboliteAnnotations” in file EDRN_
MetabolomicsData.xlsx), and 327 are compounds of unknown structural identity (unnamed biochemicals). The 
preprocessed data (tab “PreprocessedData” in file EDRN_MetabolomicsData.xlsx) were generated as described 
in Section 2.4 and only account for metabolites with less than 50% missing values. The data file includes 1,169 
metabolites (915 known and 254 unknowns). To protect patients’ privacy, in the clinical annotation file (tab 
“ClinicalAnnotations” in file EDRN_ClinicalData.xlsx) the age of individuals older than 90 years is reported as 
90 and all dates have been reported as number of days prior to or since biopsy. A detailed description of each 
clinical variable is provided in the tab “Legend”.

Technical Validation
In order to avoid systematic effects in any of the comparison groups, samples were randomized both across 
profiling days and within each profiling run and plate.

Moreover, several types of control samples were analyzed in parallel with the experimental samples to assess 
instrument and process variability. First, a pool of well-characterized EDTA human plasma (“MTRX”) served 
as a technical replicate throughout the data set. These matrix samples were used to estimate process variability 
by calculating the median relative standard deviation (RSD) for all measured metabolites (i.e., non-instrument 
standards) present in 100% of the pooled matrix samples. The median RDS for process variability was around 9%.

Additionally, a mixture of QC standards was spiked into every analyzed sample and used to aid chromato-
graphic alignment and to monitor instrument performance. In this case, instrument variability was determined 
by calculating the median RDS for the QC standards that were added to each sample prior to injection into the 
mass spectrometers. The median RDS for instrument variability was roughly 6%. Note that the QC standards 
were carefully chosen not to interfere with the measurement of compounds in the biological samples.

Water samples (“PRCS”) were additionally included in each run and served as process blanks for the assess-
ment and removal of process artifacts. A schematic representation of the plate layout is provided in Fig. 2.

Code availability
The R code used to preprocess the metabolomics data was based on R 4.0.1 and the R package maplet27. The 
code is available at https://github.com/krumsieklab/prostate-cancer-edrn. In the same script, we also provide an 
example to illustrate how to use the maplet R package to load the data and run differential analyses based on the 
available clinical parameters. This can serve as a template for users to build their own analysis pipelines.

Received: 15 March 2023; Accepted: 14 November 2023;
Published: xx xx xxxx

Process blanks (PRCS)

Technical replicates (MTRX)

Biological samples

Randomized Samples

x4

RP / UPLC - MS / MS with 
positive ion mode ESI (2x) 

RP / UPLC-MS / MS with 
negative ion mode ESI 

HILIC / UPLC - MS / MS with 
negative ion mode ESI

Fig. 2  Plate layout and quality control samples. Each plate included four ultra-pure water samples that served 
as process blanks (PRCS) for the assessment and removal of process artifacts, four samples of pooled EDTA 
human plasma (MTRX) that served as technical replicates throughout the dataset, and 36 biological samples. 
For metabolomic analysis, each plate is generated in four replicates, one for each of the four platform arms: 
two separate reverse phase (RP)/Ultrahigh Performance Liquid Chromatography (UPLC) – Tandem Mass 
Spectroscopy (MS/MS) methods with positive ion mode electrospray ionization (ESI), one RP/UPLC-MS/MS 
with negative ion mode ESI, and one Hydrophilic Interaction Chromatography (HILIC) UPLC-MS/MS with 
negative ion mode ESI.
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