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a proteomic meta-analysis 
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Extracellular vesicles play major roles in cell-to-cell communication and are excellent biomarker 
candidates. However, studying plasma extracellular vesicles is challenging due to contaminants. 
Here, we performed a proteomics meta-analysis of public data to refine the plasma EV composition 
by separating EV proteins and contaminants into different clusters. We obtained two clusters with 
a total of 1717 proteins that were depleted of known contaminants and enriched in EV markers 
with independently validated 71% true-positive. These clusters had 133 clusters of differentiation 
(CD) antigens and were enriched with proteins from cell-to-cell communication and signaling. We 
compared our data with the proteins deposited in PeptideAtlas, making our refined EV protein list a 
resource for mechanistic and biomarker studies. As a use case example for this resource, we validated 
the type 1 diabetes biomarker proplatelet basic protein in EVs and showed that it regulates apoptosis 
of β cells and macrophages, two key players in the disease development. Our approach provides a 
refinement of the EV composition and a resource for the scientific community.

Introduction
Extracellular vesicles (EVs) are membrane bilayer-bound particles containing lipids, proteins, nucleic acids, and 
saccharides that are secreted by cells1. EVs are mainly classified as exosomes or ectosomes depending on their 
biogenesis2. Exosomes range from 30 to 200 nm in diameter and are formed via the endocytic pathway, leading 
to the formation of multivesicular bodies, which are then fused to the plasma membrane and released as EVs2. 
Ectosomes represent a variety of EV types, including microvesicles and apoptotic bodies, that buds directly 
from the plasma membrane2. Microvesicles are EVs of 100 to 1000 nm in diameter, whereas apoptotic bodies 
are larger EVs (>1000 nm) that are formed by blebbing of cells undergoing apoptosis1–4. EVs have immense 
potential as biomarkers, as they can carry signatures of the tissues of origin and processes affected by disease4. 
However, a main challenge to studying EV function and its potential as disease biomarkers is obtaining pure 
preparations of EVs from biofluids. This is due to the co-presence of high amounts of contaminants such as 
lipoproteins and albumin5,6, which share some physicochemical properties7,8.

Several analytical techniques have been developed for the isolation of EVs, including ultracentrifugation 
(UC), density gradient ultracentrifugation (DGUC), cushion ultracentrifugation (CUC), polymer-based precip-
itation (PP), size-exclusion chromatography (SEC) and immunocapture (IC)7,8. These techniques have individ-
ual advantages but also suffer from unique contaminant profiles7,8. For instance, UC co-precipitates particles of 
similar density, while SEC co-fractionates particles of similar sizes7,8. To improve the rigor of the EV preparation 
protocols, the International Society for Extracellular Vesicles (ISEV) developed a guideline with recommenda-
tions on experimental design and reporting results9, but obtaining pure EV preparation with high yields is still a 
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challenge. Sequential purification steps have also been explored, but they can result in substantial sample losses, 
with EV recovery as low as 1% after two purification steps10,11. Furthermore, their labor intensiveness makes 
application to clinical biomarker studies challenging, given the need for large numbers of samples for adequate 
statistical power. Therefore, there is still a need to systematically evaluate different EV isolation techniques to 
better understand their performance and the nature of their contaminants.

Our team has been interested in understanding the roles of EVs in type 1 diabetes (T1D) development and 
their potential as biomarkers of the disease, as we discussed in a recent review3. It has been shown that EVs carry 
microRNAs and chemokines that can induce β-cell apoptosis12–14. However, more systematic studies are needed 
to refine the composition of EVs to facilitate the testing of individual components on T1D development.

Re-use of data deposited in public repositories allows for combined comprehensive analysis to be per-
formed that otherwise would not be possible with data collected in a single study. This type of study is called 
meta-analysis and provides an opportunity to answer new questions or re-affirm/refute conclusions from pre-
vious studies15. In meta-analyses, studies are systematically searched in the literature and included or excluded 
with well-defined criteria, allowing for a combined analysis of the data from the different studies16. Here, we 
performed a meta-analysis of published proteomics data to refine the protein composition of plasma EVs. 
Considering that purification procedures have different performances, resulting in distinct EV/contaminant 
ratios6, we took advantage of these ratio differences to cluster EV-specific proteins separately from contaminants 
based on protein abundance profiles. This resulted in clusters enriched in EV markers, therefore, highly likely 
to be bona fide EV proteins, which were separated from well-known contaminant proteins. We performed a 
systematic review of the literature to validate the enrichment of EV proteins in these clusters. As a test case, we 
validated one of the proteins from the EV-enriched clusters as a bona fide EV protein using an imaging method, 
which is not prone to false-positive results due to contaminants in the sample. We also compared the clusters 
enriched with EV proteins to study their functions and their potential as biomarker candidates for T1D. We 
demonstrate that the meta-analysis is a powerful approach to refine EV composition and provide a better under-
standing of its biological roles. In addition, the refined list of plasma EV proteins represents a resource for future 
mechanistic and biomarker studies.

Materials and Methods
Datasets. Mass spectrometry proteomics datasets of human plasma EVs were searched in PRIDE17 and 
MassIVE18, the main data repositories for untargeted proteomics of the ProteomeXchange consortium. The 
searches were done in November and December 2021, using the keywords “extracellular vesicles”, “exosomes”, 
“microvesicles”, “plasma” and “serum”, following the PRISMA guidelines for meta-analysis16. Only label-free 
proteomics data collected on Thermo Orbitrap instruments with data-dependent acquisition were used (Fig. 1) 
to allow a consistent data analysis workflow. Isobaric tag labeling and low-resolution ion trap data would not 
allow to quantify the data intensity-based absolute quantification (iBAQ) method19, which we used for quantifi-
cation. To reduce potential variability due to pathogenesis processes, only data from extracellular vesicles isolated 
from the plasma of healthy humans were used in our analysis. Study inclusion and exclusion criteria are listed 
in Fig. S1. The datasets, along with their ProteomeXchange identifiers, publications, and relevant details of the 
experimental methods, are listed in Table 1.

Data processing. Data were processed with MaxQuant software (v.1.6.14)20 by matching against the human 
reference proteome database from UniProt Knowledgebase (downloaded on November 27, 2021). Searching 
parameters included protein N-terminal acetylation and oxidation of methionine as variable modifications, and 
carbamidomethylation of cysteine residues as fixed modification when appropriate. Mass shift tolerance was 
used as the default setting of the software: 20 ppm for the first search and 4.5 ppm for the second round. Only 
fully tryptic-digested peptides were considered, allowing up to two missed cleaved sites per peptide. Each data 
set was filtered with a 1% false-discovery rate at both peptide-spectrum and protein levels, resulting in a 2% 
false-discovery rate when all datasets were combined. Quantification of proteins was done using intensity-based 
absolute quantification iBAQ values extracted with MaxQuant. These values were further normalized by the total 
intensity of the whole sample to calculate the relative copy number of each protein for comparing proteins across 
different studies. The relative copy numbers were used to compare protein abundances across the different sets 
of data.

Clustering and enrichment. Clustering analysis was performed using the protein abundances with 
MultiExperiment Viewer – MeV (v. 4.9.0)21. Missing values were imputed with 1/10 of the smallest value in the 
whole dataset to set a background level, which prevents the software to overfit the data. Clustering was done by 
using the k-means clustering method with Pearson correlation and a maximum of 50 iterations across all indi-
vidual datasets. The k-means method was used because it separates proteins into distinct clusters. To determine 
the optimal number of clusters, we ran separate analyses with 10, 15, 20, and 25 clusters. The optimal num-
ber of clusters was determined by cross-checking the enrichment of the top 100 proteins that appear the most 
often in the literature and have been made into a resource in Vesiclepedia22. Enrichment was calculated based 
on fold-enrichment and statistical significance with Fisher’s exact test. Principal Component Analysis (PCA) 
was employed after eliminating proteins with missing values, resulting in the use of 51 proteins for this analysis. 
The goal of PCA was to reduce the data’s dimensionality and visualize the variance in the methods used for EV 
extraction and identify patterns and relationships among proteins. A Python script was developed to create a PCA 
graph, demonstrating the distribution of samples in a lower-dimensional space, and it is available on GitHub23 
(Fig. S2).
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Systematic review of validated human EV proteins. The literature searches were done in PubMed on 
June 28, 2023, following the PRISMA guidelines for systematic reviews16. The used keywords were “extracellular 
vesicles”, “EV”, “microvesicles”, “MV”, “exosome” AND “immunogold” AND “human”. Studies that had no asso-
ciated full text, were not conducted in human samples, were not conducted on EVs, that did not target proteins 
or did not use immunogold electron microscopy were excluded from the final list. The inclusion and exclusion 

Fig. 1 Proteomics meta-analysis of plasma extracellular vesicles (EVs). (a) Approaches: proteomics 
data from plasma EVs purified with a variety of methods were downloaded from ProteomeXchange, 
processed with MaxQuant and submitted to clustering analysis. Abbreviations: C - centrifugation, CUC 
- cushion ultracentrifugation, DGUC - density gradient ultracentrifugation, DUC - dilution followed by 
ultracentrifugation, PP - polymer-based precipitation, PROSPR - PRotein Organic Solvent PRecipitation, 
SEC - size-exclusion chromatography, UC - ultracentrifugation. (b) Highest enriched cluster with the top 
100 extracellular vesicle proteins from Vesiclepedia when testing different numbers of clusters. P-values were 
calculated by Fisher’s exact test based on the distribution of expected vs. detected proteins from the top 100 
Vesiclepedia proteins in each cluster. (c) Classical EV markers found in clusters 10 and 11.
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criteria are listed in Fig. S3. Enrichment was calculated based on fold-enrichment and statistical significance with 
Fisher’s exact test, while the true positive rate was calculated with the following formula:

True-positive rate = (true positives)/(true positives + false negatives), being true positives the validated EV 
proteins that were found in EV-enriched clusters and false negatives, the validated EV proteins that were found 
in other clusters.

Functional- and cell-enrichment analysis. Functional-, tissue- and cell-enrichment analyses were 
done with DAVID24 using the KEGG database with default parameters. Specific tissue markers were mapped by 
comparing the data against a previously published human tissue proteomics dataset25. Specific pathways were 
curated with Vanted26. A script was written in R to plot a bubble graph, and it is available on GitHub23. Networks 
were built and plotted with Cytoscape (v. 3.9.1)27. Pathway analysis was also conducted with Ingenuity Pathway 
Analysis (Qiagen).

Cell growth and apoptosis assay. Murine MIN6 β cell and Raw 264.7 macrophage cell lines were cultured 
in DMEM containing 10% FBS and 1% penicillin-streptomycin and maintained at 37 °C in a 5% CO2 atmosphere. 
Cells were seeded one day prior to being treated with varying concentrations of recombinant platelet basic pro-
tein (R&D, catalog number 1091-CK-025/CF) for 24 h followed by an additional 24 h cytokine cocktail (100 ng/
mL IFN-γ: R&D, catalog number 485-MI-100, 10 ng/mL TNF-α: R&D, catalog number 410-MT-010, and 5 ng/
mL IL-1β: R&D, catalog number 401-ML-005) treatment. Apoptosis was measured by caspase-Glo 3/7 assay 
(Promega, catalog number G8092), according to the manufacturer’s instructions.

Dataset Method N Purification concept Protocol

Purification of human plasma exosomes for proteomics: 
optimization and application to detect changes in 
response to exercise40,41

Size exclusion 
chromatography (SEC) 29

Large particles elute faster in the 
chromatography since they are less 
retained by matrix.

-Removed cell debris (2,000 × g) and large 
vesicles (10,000 × g) by centrifugation, for 
10 min each
-Separated EVs by SEC using gravity 
columns

Plasma-derived exosomes from healthy and 
osteosarcoma42,43

Dilution followed by 
ultracentrifugation (DUC) 3

Dilute sample to reduce viscosity and 
centrifuged at lower speed removed cell 
debris, while EVs were recovered in main 
centrifugation.

-Diluted sample 8x in PBS and centrifuged 
at 10,000 × g for 30 min to remove debris
-Recovered EVs by centrifugation at 
110,000 × g
-Wash pellet with PBS/centrifugation at 
110,000 × g

Human plasma extracellular vesicles LC-MS/MS44,45 Centrifugation (C) 25
Centrifugation at lower speed removed 
cell debris and recover EVs with higher 
speed.

-Removed cell debris by centrifuging 
2,000 × g for 30 min
-Recovered EVs by centrifuging at 
10,000 × g for 30 min

Tissue- and plasma-derived exosomal protein 
biomarkers define multiple human cancers46,47 Ultracentrifugation (UC) 32

Centrifugation at lower speed removed 
cell debris and large EVs. EVs were 
recovered by higher speed centrifugation.

-Removed cell debris and large EVs by 
centrifugation at 500 × g for 10 min, 
3,000 × g for 20 min and 12,000 × g for 
20 min
-Recovered EVs by centrifugation at 
100,000 × g for 70 min
-Washed with PBS/centrifugation at 
100,000 × g for 70 min

A novel and simple strategy to isolate extracellular 
vesicles from human plasma and tissue culture medium 
with high yield and purity48,49

Polymer precipitation 
(PP)/density gradient 
ultracentrifugation 
(DGUC)

3
The polymer precipitation binds to EVs 
based on their affinity to lipids, and then 
are separate iohexol gradient by their 
density.

-Added equal volume of 20% w/v 
polyethylene glycol PEG6000
-Centrifuged for 15 min at 4,000 × g to 
recover extracellular vesicles
-Centrifuged on a 0–50% iohexol gradient at 
200,000 × g for 65 h

A novel and simple strategy to isolate extracellular 
vesicles from human plasma and tissue culture medium 
with high yield and purity48,49

PP/SEC 3
EVs are captured by polymer 
precipitation followed by separation in 
SEC.

-Added equal volume of 20% w/v 
polyethylene glycol PEG6000
-Centrifuged for 15 min at 4,000 × g to 
recover extracellular vesicles
-Separated by SEC

Proteome profiling of blood plasma-derived exosomes 
in chronic lymphocytic leukemia50,51

Cushion ultracentrifugation 
(CUC_1) 4

EVs are captured by DUC and separated 
on a sucrose cushion. EVs stay in the 
interphase, while contaminants spread 
into both layers.

-Removed cell debris and large EVs by 
centrifugation at 300 × g for 10 min and at 
10,000 × g for 10 min
-Recovered EVs by centrifugation at 
100,000 × g for 100 min
-Centrifugation on 40% sucrose cushion at 
100,000 × g for 120 min
-Wash EVs with PBS/centrifugation at 
100,000 × g for 120 min

Isolation of extracellular vesicles by PROSPR52,53 PRotein Organic Solvent 
PRecipitation (PROSPR) 3

Soluble proteins are precipitated with 
acetone, while EVs remains in the 
supernatant.

-Added 4 volumes of −20 °C acetone
-Vortexed for a few seconds
-Removed soluble proteins by pelleting at 
3,000 × g for 1 min

Isolation of extracellular vesicles by PROSPR52,53 Cushion ultracentrifugation 
(CUC_2) 3 EVs are captured by DUC followed by 

centrifugation on a sucrose cushion.

-Removed cell debris by centrifuging 300 × g 
for 30 min
-Recovered EVs by centrifuging at 
16,500 × g for 30 min
-Sucrose cushion centrifugation at 
200,000 × g for 2 h and 16 h

Table 1. Characteristics of the proteomics datasets used in the meta-analysis.
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Exosome isolation and detection from human plasma. Deidentified human plasma was purchased 
from BioIVT. To avoid the components contained in plasma from interfering with the detection of exosomes, the 
plasma was purified by size exclusion chromatography (70 nm qEVsingle, IZON) to separate plasma components 
from exosomes. The fractions containing exosomes were incubated overnight on ExoView® chips (NanoView 
Biosciences) pre-coated with capture antibodies against human CD9, CD63, CD81, and negative control IgG. 
To detect proteins carried by exosomes, the chips were further incubated with fluorescently (CF488A)-labeled 
anti-CXCL7 antibody (Biorbyt, orb667781). The processed chips were scanned in the ExoView® instrument 
(NanoView Biosciences), and the results were analyzed with the NanoView analysis software.

Results
Meta-analysis and data processing. Plasma EV proteomics datasets were searched in the main public 
repositories for untargeted proteomics associated with the ProteomeXchange consortium, MassIVE, and PRIDE, 
identifying 24 potential studies. To keep the datasets consistent and allow to perform a single quantification 
method, only label-free data collected by data-dependent acquisition in orbitrap mass spectrometers were used 
in the study. This allowed us to use the intensity-based absolute quantification (iBAQ) method and normalize the 
datasets by relative copy number, enabling the comparison across different experiments. We also removed studies 
that were from the analysis of post-translational modifications (phosphorylation and glycosylation), that had no 
raw data files, insufficient metadata details and no biological replicates. One additional study was removed based 
on the low coverage. A total of 7 studies were eligible for the meta-analysis (see flow diagram for inclusion/exclu-
sion criteria Fig. S1). To further make the meta-analysis consistent, we excluded samples associated with disease, 
and only the 105 mass spectrometry datasets from control samples were used (see characteristics in Table 1 with 
number of samples and purification method) (Fig. 1a). The data were processed with MaxQuant for peptide/
protein identification and quantification, leading to the identification of 4,611 proteins (Table S1). A principal 
component analysis showed that the samples cluster based on the separation method (Fig. S2), supporting the 
idea that each method provides a different profile. We performed clustering analysis to group proteins based on 
their abundance distribution. To have discrete groups, proteins were clustered by the k-means method. The ideal 
number of clusters were tested in increments of 5 from 10 to 25. We evaluated the ideal number of clusters by 
performing an enrichment analysis of the top 100 EV proteins from the Vesiclepedia database (Table S1) and con-
sidered the ideal number of clusters to be the ones that provided a cluster with the best enrichment of the top 100 
EV proteins. A total of 15 clusters were found to exhibit the best enrichment of the top 100 EV proteins (Fig. 1b, 
Table 2). Among the 15 clusters, clusters 10 and 11 were significantly enriched with the top 100 EV proteins from 
Vesiclepedia (1.3- and 1.7-fold, respectively; p-values of 0.02583 and 0.00139, respectively).

As the Vesiclepedia top 100 proteins were selected based on how often they appear in the literature, it is likely 
that contaminants that are commonly associated with EVs are included in that list22. Therefore, we performed a 
systematic review of the literature to obtain an improved list of human EV proteins that were validated by immu-
nogold electron microscopy, a gold-standard technique to validate the localization of proteins in EVs. The litera-
ture search resulted in 204 papers that we examined manually and 48 matched our inclusion criteria, as shown in 
Fig. S3. A total of 47 EV proteins validated by immunogold electron microscopy were identified (Table S2). From 
this list, 28 identified were also found in our proteomics meta-analysis, of which 20 were grouped into clusters 
10 and 11 (Fig. 1c), representing a 71.4% true-positive rate with a significant enrichment of 1.9-fold (Fisher’s 
exact test p-value = 0.00018917). Overall, the clustering analysis was effective in enriching for EV proteins.

Contaminants. We examined the profile of well-known contaminants (human serum albumin, lipoproteins 
- based on the apolipoprotein subunits) of plasma EV preparations to better understand the performance of 

Cluster Top 100 Proteins in cluster Fold enrichment p-value Representative proteins

1 12 777 0.6 0.01608 PPIA, NEDD8, ENO1

2 3 191 0.6 0.15103 H2AC4, CST2, Immunoglobulins

3 4 144 1.1 0.1976 KNG1, VWF, CLEC3B, HBB, FCN3

4 0 99 0.0 0.07808 APOC1, APOA2, APOA4, APOD, APOA1

5 2 90 0.9 0.27153 ALB, TF, SERPINA8, F12, F10, F2, A1BG

6 3 70 1.7 0.15905 FGG, F9, C7, C8A, C8B, C9, IGKC

7 0 52 0.0 0.26385 FGB, FBA, CFH

8 1 49 0.8 0.36434 Immunoglobulins

9 25 1132 0.9 0.06748 Ribosomes, RNA-binding proteins, tRNA synthases

10 32 997 1.3 0.02583 CD63, CD81, ESCRT proteins, RAB proteins, integrins

11 30 720 1.7 0.00139 CD9, CD40, HLA, RAB proteins, integrins, N-glycosylation 
proteins

12 2 92 0.9 0.26967 A2M, C3, C5, F13B, C1QA, C1QB, Immunoglobulins

13 0 72 0.0 0.1574 APOB, APOC3, APOC4, APOE, APOF, APOM

14 1 33 1.2 0.36889 HPR, Immunoglobulins

15 1 93 0.4 0.22365 APOC1, APOD, LPA

Table 2. Enrichment of the top 100 extracellular vesicle proteins from Vesiclepedia across the different protein 
clusters in the proteomics meta-analysis.
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different methods. For methods based on centrifugation (centrifugation - C, cushion ultracentrifugation - CUC, 
dilution followed by ultracentrifugation - DUC and ultracentrifugation - UC), 10% to 35% of the total proteome 
consisted of proteins were human serum albumin and lipoproteins (Fig. 2a). Compared to the UC, the additional 
step of CUC failed to reduce the proportion of contaminants in the samples, or to increase the proportion of EV 
proteins in clusters 10 and 11 (Fig. 2b). The best recovery of proteins from cluster 11 was achieved with C only 
(Fig. 2b). Protein Organic Solvent PRecipitation (PROSPR) had a similar contamination profile compared to 
the centrifugation, but with lower recovery of clusters 10 and 11. Polyethylene glycol polymer precipitation (PP) 
followed by density gradient ultracentrifugation (DGUC) highly enriched for lipoproteins, with apolipoprotein 
subunits accounting for over 50% of the total protein abundance in the sample (Fig. 2a). When PP was followed 
by size-exclusion chromatography (SEC), a similar proportion of contaminants was observed, but the serum 
albumin was the major contaminant (Fig. 2a). SEC alone had approximately 35% of the sample comprised of the 
3 analyzed contaminants, predominantly lipoproteins (Fig. 2a). However, SEC alone yielded the best recovery 
of cluster 10 and the second highest for cluster 11, with these 2 clusters representing approximately 35% of the 
sample proteome combined (Fig. 2b).

We examined the profile of serum albumin and lipoproteins across 15 clusters. Clusters 10 and 11, which 
showed the best enrichment in EV proteins, had a low amount of these contaminants in contrast to cluster 1 that 
showed a high amount of albumin, over 15% (Fig. 2c). Clusters 4, 13, and 15 were abundant in apolipoproteins, 
ranging from 1.5% to 6.5% (Fig. 2c). These results showed that clusters 10 and 11 were enriched in EV proteins 
and depleted of common plasma contaminants.

Markers of plasma EVs. To study cellular markers present in plasma EVs, we performed a cell-enrichment 
analysis using Database for Annotation, Visualization, and Integrated Discovery (DAVID). The analysis was 
based on the UniProt Knowledgebase tissue database. It showed that clusters 10 and 11 were overrepresented 

Fig. 2 Relative abundance of proteins across different extracellular vesicle purification methods and 
clusters of the proteome meta-analysis. The proteome samples were quantified by intensity-based absolute 
quantification (iBAQ) and each protein was normalized to the total sample amount. (a) Abundances of 
common extracellular vesicle preparation contaminants across different purification methods. (b) Abundances 
across different purification methods of clusters 10 and 11, which are enriched in EV markers. (c) Abundances 
of common extracellular vesicle preparation contaminants across different clusters of the proteome meta-
analysis. Abbreviations: C - centrifugation, CUC - cushion ultracentrifugation, DGUC - density gradient 
ultracentrifugation, DUC - dilution followed by ultracentrifugation, PP - polymer-based precipitation, PROSPR 
- PRotein Organic Solvent PRecipitation, SEC - size-exclusion chromatography, UC - ultracentrifugation.
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in proteins from blood and immune cells, including platelets, erythrocytes, T cells, B cells, monocytes, and den-
dritic cells (Fig. 3a). The clusters were also enriched in proteins from fibroblasts, keratinocytes, adipocytes, and 
Cajal-Retzius cells, a type of cortical neurons (Fig. 3a). To look for proteins that can be used as markers of specific 
cells, we examined the cluster of differentiation (CD) antigens, which are cell surface proteins used to distinguish 
cell populations by immunoassays. We found that CD antigens were enriched in cluster 10 while depleted in 
the other clusters. Out of 188 total CD antigens identified, 133 cell-specific CD antigens were present in cluster  

Fig. 3 Cellular markers. (a) Cells enriched in proteins from clusters 10 and 11 in the DAVID analysis. Node 
(circle) sizes represents number of proteins and colors, the fold enrichment. (b) Number of CD antigens and 
enrichment (compared to the total identified proteins) across different clusters. Significance was determined by 
Fisher’s exact test. (c) Network of CD antigens across different clusters. Classical extracellular vesicle markers 
are colored in orange.
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10 (Fig. 3b,c, Table S3). These included markers of specific cells, such as CD45 (leukocyte, PBMC), CD3 (T cell), 
CD4 (T-helper cell), CD8 (cytotoxic T cell), CD19, CD20 and CD34 (B cell), CD14 and CD11b (monocyte), 
CD47 (reticulocyte), CD16a and CD16b (granulocyte), CD177 and CD312 (neutrophil), CD36 and CD235a 
(erythrocyte), CD41, CD42a, CD42b and CD16 (platelet), and CD146 (endothelial cells) (Fig. 3a). These results 
show that the plasma EVs carries dozens of CD markers that can be further used for immunology and cell biology 
experiments.

Pathways enriched in EV proteins. To investigate possible functions of plasma EVs, we performed a 
functional-enrichment analysis using the DAVID tool and the KEGG annotation (the complete list of enriched 
pathways is available in Open Science Framework28). Clusters 10 and 11 were enriched in proteins from several 
cell-to-cell communication pathways, such as pathways on antigen processing and presentation, ECM-receptor 
interaction, PD-L1 expression and PD-1 checkpoint, B-cell receptor signaling, chemokine signaling, and T-cell 
receptor signaling (Fig. 4). These clusters were also enriched in proteins from other cell signaling pathways, such 
as apoptosis, calcium signaling, Fc γ receptor-mediated phagocytosis, insulin signaling, insulin secretion pathway, 
and NOD-like receptor signaling pathways (Fig. 4). Clusters 10 and 11 were also overrepresented in lipid (estro-
gen, phosphatidylinositol, phospholipase D, and sphingolipid)-mediated signaling pathways (Fig. 4). Metabolic 
proteins, such as from the citrate cycle, cysteine and methionine metabolism, fatty acid metabolism, glycolysis/
gluconeogenesis, and pentose phosphate pathways, were enriched, especially in cluster 11 (Fig. 4). Proteins from 
DNA replication, RNA transcription (RNA polymerase and spliceosome), and protein translation (ribosome and 
aminoacyl-tRNA biosynthesis) processes were enriched in cluster 9 (Fig. 4), which was not enriched with EV 
markers (Table 2). These results suggest that EVs may play a role in diverse communication and signaling path-
ways in addition to being enriched with specific metabolic pathways.

Plasma EV proteins as potential type 1 diabetes biomarkers. We next evaluated the potential of 
plasma EV proteins as biomarker candidates. For this, we compared our data with the human plasma proteins 
deposited in PeptideAtlas (4608 proteins). PeptideAtlas is an invaluable resource containing not only pep-
tides from proteins identified in plasma, but also information on peptides with established assays for targeted 

Fig. 4 Pathway-enrichment analysis. Distribution of selected pathway enrichment across different clusters. The 
circle sizes represent the fold enrichment and the colors, p-values.
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proteomics, a main technique used for biomarker analyses29. By matching against the 1717 proteins from clus-
ters 10 and 11 with the PeptideAtlas, we found 1069 common proteins (Fig. 5a, Table S4). Therefore, selecting 
targets among these 1069 proteins yields a higher chance of generating successful targeted proteomics assays. To 
further explore the potential of these proteins as biomarkers, we compared the 1069 proteins with a list of 266 
T1D biomarker candidates from a systematic review that we recently conducted30. This analysis resulted in a list 
of 41 plasma EV proteins that are also T1D biomarker candidates (Fig. 5a, Table S5). As changes in proteins that 
make them biomarkers are often drivers or consequences of the pathological process of the diseases, we took a 
closer look at the 41 plasma EV proteins that are T1D biomarker candidates. We performed an Ingenuity pathway 
analysis (Qiagen), which revealed an enrichment in proteins from cytokine/chemokine signaling (Fig. 5b). These 
results showed that plasma EVs carries several proteins that are candidates for T1D biomarkers, with a good like-
lihood to be developed in targeted proteomics assays and possible contributions to the disease process.

Fig. 5 Evaluation of extracellular vesicle proteins potential as biomarker candidates. (a) Extracellular vesicle 
(EV) proteins from clusters 10 and 11 were compared the Human Plasma PeptideAtlas database, and a systematic 
review of type 1 diabetes (T1D) biomarker candidates30. (b) Network of T1D biomarker candidates present in 
EVs. The network was built after pathway-enrichment analysis performed with Ingenuity software (Qiagen).
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Validation and biological activity of an EV protein identified in our meta-analysis. As the 
chemokine-signaling pathway was highly enriched in clusters 10 and 11 and among the plasma EV proteins that 
are T1D biomarker candidates (Figs. 4, 5b), we decided to further investigate this pathway. We were especially 
interested in this pathway as many chemokines play a role in T1D development31. A detailed annotation of this 
pathway revealed a total of 7 chemokines and 5 receptors detected, along with complete signaling branches related 
to the JAK/STAT and SRC/DOCK2/RAC1-2 cascades (Fig. 6a). Among the identified EV-chemokines, proplatelet 
basic protein (PPBP, also known as chemokine CXCL7) (Figs. 5b, 6a) has been validated as a T1D biomarker, with 
reports of its elevated levels in the plasma prior to and at the onset of the disease32,33. One of PPBP’s receptors, 
CXCR2, was also present in the plasma EVs (Fig. 6a). Therefore, we hypothesize that PPBP might have a role in 
T1D development. We first validated the presence of PPBP in EVs using the ExoView technology. In this tech-
nology, EVs are captured in microchips with antibodies against CD9, CD63, and CD81 then specific EV proteins 
are imaged by immunostaining using a fluorescence microscope. As a positive control, we stained for CD81 and 
our target PPBP. The images show an example of EVs captured with anti-CD9 antibodies and stained for CD81 
and PPBP. The results show that the majority of the captured EVs contained CD81, while only a small fraction 
contained PPBP (Fig. 6b). The quantification showed that despite the number of particles positive for PPBP 
being low in plasma, it is significantly higher than the negative control for EV capture with pre-immune mouse 
antibody (MIgG), confirming the presence of this protein in plasma EVs (Fig. 6c). We next sought to determine 
if this increased level of plasma PPBP has a role in regulating cytokine-mediated apoptosis, a key process during 
T1D development. We pre-treated MIN6 β cells and Raw 264.7 macrophages with recombinant PPBP, prior to 
exposure to a cytokine cocktail (interferon γ, interleukin β, and tumor necrosis factor α). We found that PPBP 
induces MIN6 apoptosis, but in contrast, PPBP reduces Raw 264.7 apoptosis (Fig. 6d,e). Overall, these results 
show a remarkable enrichment of the chemokine-signaling pathway in EVs. In addition, we validated the pres-
ence of PPBP in EVs, which was identified in our meta-analysis. Furthermore, PPBP might play a role in T1D 
development by differentially regulating apoptosis in β cells and macrophages, two cell types that play key roles 
in T1D development.

Discussion
Obtaining highly pure EV preparations is a complex task. For instance, plasma lipoproteins have similar sizes, 
and some particles have similar densities as EVs, making it difficult to attain pure EVs with techniques based on 
size and density6–8. Another challenge is the unavoidable presence of a high abundance of plasma proteins, such 
as albumin. To address this challenge, multiple purification steps with albumin depletion columns have been 
explored34. However, multi-step purifications lead to substantial sample losses, with almost complete EV loss 
after 3 purification steps6. Therefore, there is a need to better understand the characteristics of different isolation 
methods so that optimal approaches can be incorporated in each study. By applying a meta-analysis to datasets 
refined the composition of plasma EVs, leading two clusters with 1717 proteins enriched in EV proteins. We 
validated these clusters by performing a systematic review of human EV proteins that were analyzed by immu-
nogold electron microscopy. Our analysis also quantified differences in contaminants across these methods and, 
herein, we provide insights into strengths and weaknesses of each method.

Centrifugation-based purification methods had similar contamination profiles. Diluting the plasma before 
the centrifugation seems to have a strong contaminant-reducing effect, through diminishing the concentration 
of proteins and consequently, their aggregation or absorption to EVs. However, the larger volume in DUC also 
affected the recovery of EVs during centrifugation. Inclusion of purification steps based on the same physi-
cal properties (e.g., ultracentrifugation vs. cushion ultracentrifugation) provided no added benefit in sample 
purity. Sequential purification steps had better results when using different physical-chemical properties, such 
as SEC followed by DGUC, but they led to a low EV recovery (~1%)11. Polymer-based precipitation (PP) had 
large amounts of lipoprotein contamination, probably due to their mechanism of enriching for EVs by bind-
ing to lipids. These findings suggest that understanding of contaminant characteristics is key to understanding 
limitations of each isolation technique, ways to improve sample preparation quality, and ability to distinguish 
activities of EVs from those of contaminants. In terms of EV sample recovery, high speed centrifugations had a 
low recovery, probably due to aggregation or disruption of EVs35,36. SEC had the best performance recovering 
proteins from clusters 10 and 11 combined, which is consistent with previous observation that SEC can recover 
35% of the plasma EVs11. Centrifugation at 10,000xg showed an enrichment to cluster 11, probably by enriching 
for EVs with higher density. Therefore, for applications where pure materials are not required, such as targeted 
proteomics analysis, a single-step enrichment might be more appropriate than attempts to obtain highly purified 
materials in trace amounts.

Cell-specific proteins were identified in EVs from a variety of immune cells including lymphocytes, mono-
cytes, neutrophils, and dendritic cells. These were accompanied by the presence of cell-surface CD antigens, 
which can be used as cellular markers. Many of these CD antigens have roles in cell signaling and cell-to-cell 
communication, consistent with earlier reports of EV participation in those events. A classic example of inter-
cell communication by EVs is antigen presentation and T-cell activation by B-cell derived EVs37. Our pathway 
analysis further showed that plasma extracellular vesicles are also enriched in cell-to-cell communication and 
signaling proteins. However, the extent of the enrichment and the completeness of some signaling pathways 
were unprecedented. For instance, we found that the EV clusters had 133 CD antigens and complete signaling 
pathways. This opens the possibility that EVs can not only be a signaling messenger but complement cells that 
lack specific signaling pathways.

As a proof of principle for how these data can be applied, we also investigated the possibility of targeting EV 
proteins as T1D biomarkers and found that 41 current T1D biomarker candidates are present in EVs. Among 
these proteins is PPBP, which has been shown to be a T1D biomarker candidate in two separate studies32,33. 
We found that PPBP regulates apoptosis of β cells and macrophages. However, its role in T1D development  
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is still poorly understood. The protection of macrophages and induction of β-cell apoptosis might represent a 
signal amplification mechanism, leading to an increase in β-cell death. The PPBP cleavage product, CXCL7, is a 
major chemokine that primes neutrophil migration by aggregating with platelets and inducing the formation of 

Fig. 6 Chemokine signaling components in extracellular vesicles and their activity in β cells and macrophages. 
(a) Chemokine signaling pathway components detected in plasma extracellular vesicles (clusters 10 and 11). 
(b) Showing the representative ExoView image of extracellular vesicles captured from human plasma in the 
chip and stained for CD81 and proplatelet basic protein (PPBP). (c) The bar graph represents number of total 
extracellular vesicles captured in the ExoView chip, and subpopulations containing CD81 and PPBP (n = 3). 
Significance by 1-way ANOVA *p ≤ 0.05, **p ≤ 0.01, & ****p ≤ 0.0001 (d,e) The bar graphs represent fold 
change in apoptosis in Raw 264.7 and MIN6 cells pretreated with different concentrations of PPBP for 24 h and 
then treated with a cytokine cocktail (CT, 100 ng/mL IFN-γ, 10 ng/mL TNF-α, and 5 ng/mL IL-1β) vs. control 
(noCT). N = 4 ± SD, Significance by 2-way ANOVA *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 & ****p ≤ 0.0001.
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neutrophil extracellular traps (NETs)38. Neutrophil-platelet aggregates have been found to be abundant in blood 
of pre-diabetic and recent T1D onset mice and humans39. In addition, NETs were shown to cause β-cell death 
in vitro39, further supporting that PPBP might have a role in T1D development. However, additional work is 
needed to have a mechanistic understanding on the action of PPBP in T1D.

Overall, we provided an alternative approach for characterizing the EV composition. We found that C and 
SEC methods led to the best plasma EV recovery, but none of the studied methods led to pure preparations. Our 
analysis showed that plasma EVs are derived from a variety of cells and that they are enriched in cell surface 
markers and cell-to-cell communication molecules. Our study provides lists of proteins that are highly likely to 
be bona fide EV proteins than can be used for prioritization for mechanistic and biomarker studies. As an exam-
ple, we validated the presence of PPBP in EVs and further showed that controls apoptosis in culture β cells and 
macrophages and might have a role in T1D development.

Data availability
Additional data are available in Open Science Framework28. This includes MaxQuant results and parameter files 
for each dataset under the folder “MaxQuant_results_and_parameters”, which are named based on their Pride 
accession numbers; an excel file containing the complete abundance data matrix under the folder “Processed_
data_matrix”; and the results from the DAVID functional enrichment analysis under the folder “Enrichment 
analyses”.

Code availability
The R and Python scripts written to generate Fig. 5 and Figure S2 are available in GitHub23.

Received: 14 August 2023; Accepted: 13 November 2023;
Published: xx xx xxxx

References
 1. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200, 373–383, https://doi.

org/10.1083/jcb.201211138 (2013).
 2. Buzas, E. I. The roles of extracellular vesicles in the immune system. Nat Rev Immunol, 1–15 https://doi.org/10.1038/s41577-022-

00763-8 (2022).
 3. Aguirre, R. S. et al. Extracellular vesicles in beta cell biology: Role of lipids in vesicle biogenesis, cargo, and intercellular signaling. 

Mol Metab 63, 101545, https://doi.org/10.1016/j.molmet.2022.101545 (2022).
 4. Salomon, C. et al. Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society 

Scientific Statement. Endocr Rev 43, 441–468, https://doi.org/10.1210/endrev/bnac009 (2022).
 5. Baranyai, T. et al. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and 

Size Exclusion Chromatography Methods. PLoS One 10, e0145686, https://doi.org/10.1371/journal.pone.0145686 (2015).
 6. Brennan, K. et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles 

in human serum. Sci Rep 10, 1039, https://doi.org/10.1038/s41598-020-57497-7 (2020).
 7. Burton, J. B., Carruthers, N. J. & Stemmer, P. M. Enriching extracellular vesicles for mass spectrometry. Mass Spectrom Rev https://

doi.org/10.1002/mas.21738 (2021).
 8. Coumans, F. A. W. et al. Methodological Guidelines to Study Extracellular Vesicles. Circ Res 120, 1632–1648, https://doi.org/10.1161/

CIRCRESAHA.117.309417 (2017).
 9. Thery, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International 

Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7, 1535750, https://doi.org/10.1080/2
0013078.2018.1535750 (2018).

 10. Xu, R., Greening, D. W., Rai, A., Ji, H. & Simpson, R. J. Highly-purified exosomes and shed microvesicles isolated from the human 
colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods 87, 
11–25, https://doi.org/10.1016/j.ymeth.2015.04.008 (2015).

 11. Vergauwen, G. et al. Robust sequential biophysical fractionation of blood plasma to study variations in the biomolecular landscape 
of systemically circulating extracellular vesicles across clinical conditions. J Extracell Vesicles 10, e12122, https://doi.org/10.1002/
jev2.12122 (2021).

 12. Lakhter, A. J. et al. Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as 
a biomarker of type 1 diabetes. Diabetologia 61, 1124–1134, https://doi.org/10.1007/s00125-018-4559-5 (2018).

 13. Javeed, N. et al. Pro-inflammatory beta cell small extracellular vesicles induce beta cell failure through activation of the CXCL10/
CXCR3 axis in diabetes. Cell Rep 36, 109613, https://doi.org/10.1016/j.celrep.2021.109613 (2021).

 14. Zhu, X. et al. Exosomal miR-140-3p and miR-143-3p from TGF-beta1-treated pancreatic stellate cells target BCL2 mRNA to 
increase beta-cell apoptosis. Mol Cell Endocrinol 551, 111653, https://doi.org/10.1016/j.mce.2022.111653 (2022).

 15. Shorten, A. & Shorten, B. What is meta-analysis? Evid Based Nurs 16, 3–4, https://doi.org/10.1136/eb-2012-101118 (2013).
 16. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71, https://doi.

org/10.1136/bmj.n71 (2021).
 17. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic 

Acids Res 50, D543–D552, https://doi.org/10.1093/nar/gkab1038 (2022).
 18. Choi, M. et al. MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets. Nat Methods 

17, 981–984, https://doi.org/10.1038/s41592-020-0955-0 (2020).
 19. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342, https://doi.org/10.1038/

nature10098 (2011).
 20. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-

wide protein quantification. Nat Biotechnol 26, 1367–1372, https://doi.org/10.1038/nbt.1511 (2008).
 21. Chu, V. T., Gottardo, R., Raftery, A. E., Bumgarner, R. E. & Yeung, K. Y. MeV+R: using MeV as a graphical user interface for 

Bioconductor applications in microarray analysis. Genome Biol 9, R118, https://doi.org/10.1186/gb-2008-9-7-r118 (2008).
 22. Pathan, M. et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids 

Res 47, D516–D519, https://doi.org/10.1093/nar/gky1029 (2019).
 23. Vallejo, M. C. Plasma Extracellular Vesicles. GitHub https://doi.org/10.5281/zenodo.10079817 (2023).
 24. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics 

resources. Nat Protoc 4, 44–57, https://doi.org/10.1038/nprot.2008.211 (2009).

https://doi.org/10.1038/s41597-023-02748-1
https://doi.org/10.1083/jcb.201211138
https://doi.org/10.1083/jcb.201211138
https://doi.org/10.1038/s41577-022-00763-8
https://doi.org/10.1038/s41577-022-00763-8
https://doi.org/10.1016/j.molmet.2022.101545
https://doi.org/10.1210/endrev/bnac009
https://doi.org/10.1371/journal.pone.0145686
https://doi.org/10.1038/s41598-020-57497-7
https://doi.org/10.1002/mas.21738
https://doi.org/10.1002/mas.21738
https://doi.org/10.1161/CIRCRESAHA.117.309417
https://doi.org/10.1161/CIRCRESAHA.117.309417
https://doi.org/10.1080/20013078.2018.1535750
https://doi.org/10.1080/20013078.2018.1535750
https://doi.org/10.1016/j.ymeth.2015.04.008
https://doi.org/10.1002/jev2.12122
https://doi.org/10.1002/jev2.12122
https://doi.org/10.1007/s00125-018-4559-5
https://doi.org/10.1016/j.celrep.2021.109613
https://doi.org/10.1016/j.mce.2022.111653
https://doi.org/10.1136/eb-2012-101118
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1093/nar/gkab1038
https://doi.org/10.1038/s41592-020-0955-0
https://doi.org/10.1038/nature10098
https://doi.org/10.1038/nature10098
https://doi.org/10.1038/nbt.1511
https://doi.org/10.1186/gb-2008-9-7-r118
https://doi.org/10.1093/nar/gky1029
https://doi.org/10.5281/zenodo.10079817
https://doi.org/10.1038/nprot.2008.211


13Scientific Data |          (2023) 10:837  | https://doi.org/10.1038/s41597-023-02748-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

 25. Jiang, L. et al. A Quantitative Proteome Map of the Human Body. Cell 183, 269–283 e219, https://doi.org/10.1016/j.cell.2020.08.036 
(2020).

 26. Junker, B. H., Klukas, C. & Schreiber, F. VANTED: a system for advanced data analysis and visualization in the context of biological 
networks. BMC Bioinformatics 7, 109, https://doi.org/10.1186/1471-2105-7-109 (2006).

 27. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 
2498–2504, https://doi.org/10.1101/gr.1239303 (2003).

 28. Vallejo, M. C. Human Plasma Extracellular Vesicle Proteomics Meta-analysis. Open Science Framework https://doi.org/10.17605/
OSF.IO/2UQPK (2022).

 29. Deutsch, E. W. et al. Advances and Utility of the Human Plasma Proteome. J Proteome Res 20, 5241–5263, https://doi.org/10.1021/
acs.jproteome.1c00657 (2021).

 30. Sarkar, S. et al. Systematic review of type 1 diabetes biomarkers reveals regulation in circulating proteins related to complement, lipid 
metabolism, and immune response. Clin Proteomics 20, 38, https://doi.org/10.1186/s12014-023-09429-6 (2023).

 31. Eizirik, D. L., Colli, M. L. & Ortis, F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5, 
219–226, https://doi.org/10.1038/nrendo.2009.21 (2009).

 32. Zhang, Q. et al. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med 210, 191–203, 
https://doi.org/10.1084/jem.20111843 (2013).

 33. Frohnert, B. I. et al. Predictive Modeling of Type 1 Diabetes Stages Using Disparate Data Sources. Diabetes 69, 238–248, https://doi.
org/10.2337/db18-1263 (2020).

 34. Palviainen, M. et al. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo-Implications for 
biomarker discovery. PLoS One 15, e0236439, https://doi.org/10.1371/journal.pone.0236439 (2020).

 35. Linares, R., Tan, S., Gounou, C., Arraud, N. & Brisson, A. R. High-speed centrifugation induces aggregation of extracellular vesicles. 
J Extracell Vesicles 4, 29509, https://doi.org/10.3402/jev.v4.29509 (2015).

 36. Nordin, J. Z. et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles 
preserving intact biophysical and functional properties. Nanomedicine 11, 879–883, https://doi.org/10.1016/j.nano.2015.01.003 
(2015).

 37. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183, 1161–1172, https://doi.org/10.1084/
jem.183.3.1161 (1996).

 38. Page, C. & Pitchford, S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int 
Immunopharmacol 17, 1176–1184, https://doi.org/10.1016/j.intimp.2013.06.004 (2013).

 39. Popp, S. K. et al. Circulating platelet-neutrophil aggregates characterize the development of type 1 diabetes in humans and NOD 
mice. JCI Insight 7, https://doi.org/10.1172/jci.insight.153993 (2022).

 40. Vanderboom, P. M. et al. A size-exclusion-based approach for purifying extracellular vesicles from human plasma. Cell Rep Methods 
1, https://doi.org/10.1016/j.crmeth.2021.100055 (2021).

 41. Vanderboom, P. & Nair, K. S. Purification of human plasma exosomes for proteomics: optimization and application to detect 
changes in response to exercise. PRIDE Archive. https://identifiers.org/pride.project:PXD026483 (2021).

 42. Han, Z. et al. Matrix-assisted laser desorption ionization mass spectrometry profiling of plasma exosomes evaluates osteosarcoma 
metastasis. iScience 24, 102906, https://doi.org/10.1016/j.isci.2021.102906 (2021).

 43. Han, Z. & Qiao, L. Plasma-derived exosomes from healthy and osteosarcoma. PRIDE Archive. https://identifiers.org/pride.
project:PXD024072 (2021).

 44. Tunset, M. E. et al. Extracellular vesicles in patients in the acute phase of psychosis and after clinical improvement: an explorative 
study. PeerJ 8, e9714, https://doi.org/10.7717/peerj.9714 (2020).

 45. Haslene-Hox, H. Human plasma extracellular vesicles LC-MS/MS. PRIDE Archive. https://identifiers.org/pride.project:PXD016293 
(2020).

 46. Hoshino, A. et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 182, 1044–1061 e1018, https://
doi.org/10.1016/j.cell.2020.07.009 (2020).

 47. Molina, H. & Lyden, D. Tissue- and plasma-derived exosomal protein biomarkers define multiple human cancers. PRIDE Archive. 
https://identifiers.org/pride.project:PXD018301 (2020).

 48. Zhang, X., Borg, E. G. F., Liaci, A. M., Vos, H. R. & Stoorvogel, W. A novel three step protocol to isolate extracellular vesicles from 
plasma or cell culture medium with both high yield and purity. J Extracell Vesicles 9, 1791450, https://doi.org/10.1080/20013078.20
20.1791450 (2020).

 49. Vos, H. R. & Stoorvogel, W. A novel and simple strategy to isolate extracellular vesicles from human plasma and tissue culture 
medium with high yield and purity. PRIDE Archive. https://identifiers.org/pride.project:PXD015283 (2021).

 50. Haderk, F. et al. Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci Immunol 2 https://doi.org/10.1126/
sciimmunol.aah5509 (2017).

 51. Iskar, M. & Seiffert, M. Proteome profiling of blood plasma-derived exosomes in chronic lymphocytic leukemia. PRIDE Archive. 
https://identifiers.org/pride.project:PXD004420 (2017).

 52. Gallart-Palau, X. et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation 
(PROSPR). Sci Rep 5, 14664, https://doi.org/10.1038/srep14664 (2015).

 53. Gallart-Palau, X. & Sze, S. K. Isolation of extracellular vesicles by PROSPR. PRIDE Archive. https://identifiers.org/pride.
project:PXD002668 (2015).

Acknowledgements
The authors thank Mr. Nathan Johnson of PNNL for his help in drafting Figs. 1, 6A. This work was supported 
by the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases grant U01 
DK127786 (to R.G.M, T.O.M. and S.R.), R01 DK060581 (to R.G.M), R01 DK133881 (to E.K.S. and R.G.M.), 
R01 DK121929 (to E.K.S.) and R01 DK126444 (to S.R.). S.R. was also supported by UAB-DRC P&F, CDIB 
Department, and UAB-Comprehensive Diabetes Center.

Author contributions
M.C.V., S.H.P., S.R., E.K.S., T.O.M., R.G.M. and E.S.N. designed research study; M.V.C. performed the meta-
analysis; F.H., S.S., E.C.E. and H.R.H. performed the experiments and analyzed respective data; E.C.E., S.M.P., 
S.S., I.D.L., Y.Y. and E.S.N. performed the systematic review; S.H.P., S.R., E.K.S., T.O.M., R.G.M. and E.S.N. 
provided guidance and resources to the project. M.C.V. and E.S.N. wrote the manuscript. All authors revised the 
manuscript and gave final approval for publication.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s41597-023-02748-1
https://doi.org/10.1016/j.cell.2020.08.036
https://doi.org/10.1186/1471-2105-7-109
https://doi.org/10.1101/gr.1239303
https://doi.org/10.17605/OSF.IO/2UQPK
https://doi.org/10.17605/OSF.IO/2UQPK
https://doi.org/10.1021/acs.jproteome.1c00657
https://doi.org/10.1021/acs.jproteome.1c00657
https://doi.org/10.1186/s12014-023-09429-6
https://doi.org/10.1038/nrendo.2009.21
https://doi.org/10.1084/jem.20111843
https://doi.org/10.2337/db18-1263
https://doi.org/10.2337/db18-1263
https://doi.org/10.1371/journal.pone.0236439
https://doi.org/10.3402/jev.v4.29509
https://doi.org/10.1016/j.nano.2015.01.003
https://doi.org/10.1084/jem.183.3.1161
https://doi.org/10.1084/jem.183.3.1161
https://doi.org/10.1016/j.intimp.2013.06.004
https://doi.org/10.1172/jci.insight.153993
https://doi.org/10.1016/j.crmeth.2021.100055
https://identifiers.org/pride.project:PXD026483
https://doi.org/10.1016/j.isci.2021.102906
https://identifiers.org/pride.project:PXD024072
https://identifiers.org/pride.project:PXD024072
https://doi.org/10.7717/peerj.9714
https://identifiers.org/pride.project:PXD016293
https://doi.org/10.1016/j.cell.2020.07.009
https://doi.org/10.1016/j.cell.2020.07.009
https://identifiers.org/pride.project:PXD018301
https://doi.org/10.1080/20013078.2020.1791450
https://doi.org/10.1080/20013078.2020.1791450
https://identifiers.org/pride.project:PXD015283
https://doi.org/10.1126/sciimmunol.aah5509
https://doi.org/10.1126/sciimmunol.aah5509
https://identifiers.org/pride.project:PXD004420
https://doi.org/10.1038/srep14664
https://identifiers.org/pride.project:PXD002668
https://identifiers.org/pride.project:PXD002668


1 4Scientific Data |          (2023) 10:837  | https://doi.org/10.1038/s41597-023-02748-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/ 
10.1038/s41597-023-02748-1.
Correspondence and requests for materials should be addressed to E.S.N.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2023

https://doi.org/10.1038/s41597-023-02748-1
https://doi.org/10.1038/s41597-023-02748-1
https://doi.org/10.1038/s41597-023-02748-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A proteomic meta-analysis refinement of plasma extracellular vesicles
	Introduction
	Materials and Methods
	Datasets. 
	Data processing. 
	Clustering and enrichment. 
	Systematic review of validated human EV proteins. 
	Functional- and cell-enrichment analysis. 
	Cell growth and apoptosis assay. 
	Exosome isolation and detection from human plasma. 

	Results
	Meta-analysis and data processing. 
	Contaminants. 
	Markers of plasma EVs. 
	Pathways enriched in EV proteins. 
	Plasma EV proteins as potential type 1 diabetes biomarkers. 
	Validation and biological activity of an EV protein identified in our meta-analysis. 

	Discussion
	Acknowledgements
	Fig. 1 Proteomics meta-analysis of plasma extracellular vesicles (EVs).
	Fig. 2 Relative abundance of proteins across different extracellular vesicle purification methods and clusters of the proteome meta-analysis.
	Fig. 3 Cellular markers.
	Fig. 4 Pathway-enrichment analysis.
	Fig. 5 Evaluation of extracellular vesicle proteins potential as biomarker candidates.
	Fig. 6 Chemokine signaling components in extracellular vesicles and their activity in β cells and macrophages.
	Table 1 Characteristics of the proteomics datasets used in the meta-analysis.
	Table 2 Enrichment of the top 100 extracellular vesicle proteins from Vesiclepedia across the different protein clusters in the proteomics meta-analysis.




