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Automatic segmentation 
framework of X-Ray tomography 
data for multi-phase rock using 
Swin Transformer approach
Hao Chen1, Xiaoqi Cao1, Xiyan Zhang2, Zhenyu Wang3, Bingjing Qiu3,4 ✉ & Kehong Zheng1,3 ✉

A thorough understanding of the impact of the 3D meso-structure on damage and failure patterns 
is essential for revealing the failure conditions of composite rock materials such as coal, concrete, 
marble, and others. This paper presents a 3D XCT dataset of coal rock with 1372 slices (each slice 
contains 1720 × 1771 pixels in x × y direction). The 3D XCT datasets were obtained by MicroXMT-400 
using the 225/320kv Nikon Metris custom bay. The raw datasets were processed by an automatic 
semantic segmentation method based on the Swin Transformer (Swin-T) architecture, which aims to 
overcome the issue of large errors and low efficiency for traditional methods. The hybrid loss function 
proposed can also effectively mitigate the influence of large volume features in the training process 
by incorporating modulation terms into the cross entropy loss, thereby enhancing the accuracy of 
segmentation for small volume features. This dataset will be available to the related researchers for 
further finite element analysis or microstructural statistical analysis, involving complex physical and 
mechanical behaviors at different scales.

Background & Summary
Identifying different features and phases within composite rock materials such as coal1, concrete2,3, marble4,5, 
etc., enables the rational numerical prediction of mechanical properties, failure conditions, and prevention 
mechanisms of composite rock under complicated loading conditions, yielding accurate prediction results. 
Current research on the failure prediction mechanism of composite rock materials is mainly based on experi-
mental analyses from the macroscopic perspective, including static compression loading6, dynamic loading, and 
impact loading7–9, etc. The limitations of such experiments are that the effective information gained is confined 
to examining the stress-strain characteristics10, particle size distribution characteristics11, and surface fracture 
evolution12. Thus, accurate 3D representations of the rock-like material meso-structures, in which the different 
material phases are segmented and labelled, aid in explaining their failure behaviors through computational 
simulations.

XCT images provide valuable information about the state of the material in 3D,such as mineral inclu-
sion13,14 and their spatial distribution15,16, fracture morphology12,17, fracture density18, and their correlation with 
macro-scale fracture mechanisms. The development of CT technology and equipment in the field of coal-rock 
damage is summarized19,20, and research progress on CT characterization of coal-rock damage is also over-
viewed21,22. XCT image segmentation refers to the classification of the related pixels into different mineral phases 
(including pore space, cracks or more detailed subphases), which is one of the most crucial steps to extract 
useful information for subsequent mechanical property analyses. Due to non-ideal scanning conditions, recon-
struction algorithms, and limited CT resolutions, the related scanning experiments might lead to the partial 
volume blurring (PVB) effect of composite rock materials, which makes extracting internal phases automatically 
a near to impossible task23,24.
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Several traditional segmentation methods, such as the edge detection algorithm25,26, watershed algorithm27–29, 
graph cut algorithm30, and clustering algorithm31, have been widely used for segmenting the meso-structures 
of composite rocks. However, because of weak boundaries among the sub-phases and the blurring effect caused 
by PVB, the segmentation errors (including over-segmentation, under-segmentation, or even complete loss of 
small targets) caused by fixed thresholding were inevitable. Several segmentation algorithms have been devel-
oped to solve the above problems. For instance, a segmentation method of fractures based on contour evolution 
and gradient direction consistency was proposed to accurately segment the fracture networks in the sequence 
of coal rock CT images32. The gray level co-occurrence matrix (GLCM) theory was also applied to quantitatively 
analyze the meso-damage evolution and the fracturing characteristics using the acquired CT images at each 
scanning stage33,34. The tensile fracture behaviors of concrete are captured by Monte Carlo simulations (MCSs) 
of realistic meso-scale models based on high-resolution micro-scale XCT images35–37. From the above analysis, 
image intensity or image gray cannot provide sufficient information for the accurate segmentation of the related 
XCT image with low contrast and high noise, particularly different mineral phases with small targets and weak 
boundaries.

In this regard, the related challenges can be addressed by using a deep learning (DL) approach, particu-
larly convolutional neural networks, which have produced outstanding success in classifying and segmenting 
images38,39. Compared with traditional segmentation methods, the DL models only need to be trained once 
and then can be used for new datasets with the same size and resolution or similar morphology40, thereby 
significantly reducing computational costs and avoiding training errors. Researchers in the field of medical 
image segmentation employ DL approaches to solve problems such as tumor segmentation41, cell segmenta-
tion42, lung segmentation43, and organ segmentation44. In recent years, supervised DL techniques, such as atten-
tion mechanism45, feature pyramid46, and encoder-decoder models47, have been widely applied to the semantic 
segmentation of composite rock materials. The U-Net model48 and its variants49 were invented based on fully 
convolutional networks50, which have been widely used in the study of porous media, including mineral clas-
sification51,52, porosity estimation53,54, and fluid flow prediction55. However, a significant drawback with U-Net 
and its variants is that continuous pooling operations degrade feature resolution, leading to the loss of spatial 
information. This may lead to achieved segmentation results that are usually low in accuracy on the boundary 
and small target identification.

To solve the above-mentioned challenges, we present a new procedure for using Swin Transformer (Swin-T)56 
to accurately segment XCT images of composite rock materials for accurate characterization to generate digital 
virtual FE models. Swin-T is a new deep learning network structure based on global feature extraction, which 
integrates the features of DCNN to extract features from multiple scales. Firstly, the performance of Swin-T was 
compared with the U-Net and Deeplabv3 + models57 using various evaluation indicators. This was followed 
by the investigation of the effect of various patch sizes, various loss functions, and various networks on the 
accuracy, loss, and IoU index under the same batch size and the same number of epochs. Finally, the accurate 
meso-structure reconstruction of composite rock, with a volume fraction of 0.47% cracks, 91.81% coal, 7.19% 
gangue, and 0.53% pyrite, was carried out, and then the computational model was generated for later mechanical 
simulation and presented as an example.

Methods
Experimental detail.  The raw coal samples were collected from Jin-ling Coal Mine located in Henan 
Province, China, and then cut into the cube sample with a height of 40 mm. The CT-scanned raw images were 
obtained from the X-Ray Imaging facility (MicroXMT-400) located at Zhejiang University, using the 225/320kv 
Nikon Metris custom bay. By rotating the sample, XCT projections from different angles of the specimen are col-
lected for computational reconstruction, resulting in 1372 CT slices (each slice consisting of 1720 × 1771-pixel 
array).

In our previous study58, the selected coal sample were simplified into coal and gangue phases, without con-
sidering the pyrite and void phases. This might further cause inaccurate 3D reconstruction of numerical models. 
Figure 1 shows the raw images, the segmented binary and four-class images. Particularly, a binary segmentation 
image shown in Fig. 1b only contains void (black) and solid (white) components. Actually, the void component 
represents cracks, whereas the solid component can be sub-classified into coal, gangue, and pyrite components, 
leading to a four-class segmentation image. In the four-class segmentation, cracks, coal, gangue, and pyrite are 
shown in light gray, blue, yellow, and red, respectively, due to their increasing densities.

As shown in Fig. 1c, traditional segmentation methods often fail to achieve high accuracy and strong adapt-
ability when dealing with all types of CT images with low signal-to-noise ratios. To address this issue, a common 
solution for deep learning is to provide a pixel-level semantic classification map, where each pixel is labelled 
with different subphases. The primary challenge in image segmentation of composite rock materials is the lack 
of ground truth, which complicates the evaluation of the accuracy of a particular image segmentation method 
because the ground truth is unknown.

The ground truth masks shown in Fig. 1d were manually annotated using the commercial software Avizo 9.0. 
A total of 158 manually segmented slices were selected as the ground truth datasets by selecting one image every 
10 of 1579 images. In the selected 158 ground truth datasets, 143 slices were used as the training datasets, and 15 
slices were employed as the validation datasets.

Data preprocessing.  To eliminate noise within the image while preserving the edges and enhancing the 
contrast, the median and non-local mean filters were applied to the raw grayscale image, and then the bit depth of 
the raw dataset was reduced from 16 to 8 bit, which aims to reduce the data processing time.
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Data augmentation.  Deep learning requires a large amount of training data, which is not always available 
due to the massive difficulty and labor cost of ground truth annotation for XCT images. A standard technique 
to increase the size and variances of the training data is to apply a reasonable transformation to the input data 
randomly.

For the selected typical rock XCT images, the different sub-phases are spatially continuous regions. This 
implies that the network can easily learn local variations, such as the distribution characteristics of different 
mineral phases. As shown in Fig. 2, random transformations, such as cropping, flipping48, padding49, rotation50, 
and other methods were used to expand the volume of the training data, which will mitigate over-fitting prob-
lems. We randomly selected some images for data augmentation using the following transformations: scaling 
in the range [0.8, 1.2], rotation by [−10, 10] degrees, and mirroring along the vertical and horizontal axes. 
Considering the poor X-ray CT scanning quality, 6% Gaussian random noise was also added to some images to 
improve the robustness of the method.

Fig. 1  Deep learning-based segmentation and labeling. (a) presents the workflow of the deep learning-based 
segmentation; (b–e) presents the comparison of traditional segmentation results and the deep-learning 
segmentation results for a few representative samples. Different colors denote different phases.

Fig. 2  Data augment effect. (a) original image (b) random rotation (c) random flipping (d) random scaling.
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Transformer model.  The transformer model40 was a typical encoder-decoder architecture, which is con-
nected by multiple self-attention and stacked by multi-head attention layers, and a feed-forward network connec-
tion layer. The multi-head self-attention mechanism is shown in Fig. 3. The attention mechanism efficiently pays 
attention to the more critical information in the task goal. Multi-head self-attention first needs to set three traina-
ble weight matrices Q, K, and V, and then use the scaled dot-product attention to calculate the self-attention weight
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where, Q = XWQ, K = XWK, V = XWV, X is the input feature map with the learnable weight matrix WQ, WK, and 
WV. dk is the vector dimension of each key. The attention weight is then connected with multiple self-attention 
mechanisms to form a multi-head attention mechanism, and its calculation formula is as follows:
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Swin transformer model.  As an improved Transformer model47,48, Swin-T has the ability to establish 
long-range dependencies by using moving windows, which overcomes the shortage of information interaction 
between groups. As shown in Fig. 4a, the Swin-T model is composed of Patch Partition, Linear Embedding, Swin 
Transformer Block, and Patch Merging. Each stage reduces the resolution of the input feature map to expand 
the receptive field layer by layer. The image is first input into the Patch Partition module to divide the image into 
non-overlapping image blocks, each divided image block is regarded as a token, and the flattening operation is 
performed in the channel direction. The Linear Embedding module then uses linear variation to map it into a 
vector of dimension.

The Swin-T block is a cascade of two multi-head attention modules, consisting of Windowed Multi-Head 
Self-Attention (W-MSA), Shifted Windowed Multi-Head Self Attention (SW-MSA), and Multilayer Perceptron 
(MLP). The Layer Norm (LN) layer is used before each MSA module and each MLP that aims to make the train-
ing more stable and connected by residual after each module. The W-MSA in the Swin-T model first divides the 
input image into several non-overlapping windows, and then the pixels in each window is performed with other 
pixels in the window to obtain information. The SW-MSA mechanism can complete the pixel self-attention 
calculation of the offset window, thereby indirectly increasing the receptive field of the network and improving 
the efficiency of information utilization. The MLP module employs a fully connected approach to compute the 
relationships between each pixel within a fixed-size window. Simultaneously, it utilizes the GELU activation 
function59, thereby enhancing non-linearity performance and network generalization60–62. The specific opera-
tion is shown in Fig. 5. The features from other Swin-T blocks passed through several convolutional layers, and 
then fused with the features obtained from PPM. The fused features are used to produce the final segmentation 
result based on the probability distribution of each pixel in the pores, coal, gangue, and pyrites.

Training process using Swin-T network model.  The training and testing processes of the Swin-T net-
work is summarized in Fig. 6. Before training, as the size of raw images is 1720 × 1771 pixels with a pixel size of 
5.35 μm, the masks are randomly cropped from the full-size images to 448 × 448 sub-images to meet the need of 
GPU memory. Then, the corresponding masks are fed into the Swin-T to conduct model training processing. This 
is followed by morphological operations, such as the boundaries and regions enhancement to get the final seg-
mentation. Finally, extensive experiments were carried out to evaluate the performance of the proposed approach, 
and various loss functions were also developed in combination with training results comparison to supervise the 
training of the early layers of the multi-task and multi-output network.

The model training was performed on a workstation with a 24GB graphics memory Nvidia RTX 3090TI GPU 
and CUDA (v11.7) acceleration. The datasets were trained using Swin-T architecture in batches of a user-defined 
number of images with PyTorch 2.0, and the UNet and DeepLabv3 + architectures were used as comparison 
groups for the verification of the effectiveness and superiority of the improved mode.

Fig. 3  The structure of the multi-head self-attention mechanism.
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Data Records
The datasets were made available from figshare https://figshare.com/projects/Raw_data_and_segmented_label_
data_of_rock_sample_derived_from_X-ray_CT/162046. There are three items in the project: “Raw XCT data of 
rock”63, which contains a.raw files for rock XCT data; “Training dataset and model weight”64, which contains the 
dataset used for Swin-T training and the well-trained network weight; and “3D representative model”65, which 
contains a .nii file for the 3D reconstructed results obtained from the well-trained Swin-T model.

Technical Validation
In this section, two important metrics are selected to measure the performance of the entire network: one is 
accuracy54, which is used to measure the percentage of the correctly predicted pixels. The other indicator is the 
intersection over union (IoU)55, which was used to measure the ratio between the intersection and union of 
predicted and labelled pixel areas.

IoU TP
TP FN FP (4)

=
+ +

Fig. 4  The workflow of the semantic segmentation with the Swin-T network. (a) The structure of the Swin-T 
network (b) The structure of two successive Swin-T blocks.

Fig. 5  (a) Window segmentation of input patch in the W-MSA module; (b) Operation of moving window; (c) 
Shifted window segmentation of input patch in the SW-MSA module.
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Accuracy TP TN
TP TN FN FP (5)

= +
+ + +

Where, TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative pixel amounts, 
respectively.

Evaluation of segmentation models.  To verify the effectiveness and superiority of the improved model 
proposed in this paper, the Swin-T model is compared with UNet and DeepLabv3 + architectures with the same 
dataset, experimental environment and the same network parameter configuration. The effect of various networks 
on the final IoU index is summarized in Fig. 7. It is clear that the Swin-T model achieves superior segmentation 
results, with a mean IoU value of 87.63%, significantly higher than the global accuracy values of 80.14% and 
84.39% obtained from UNet and DeepLabv3 + respectively. Similar change trend also can be found in coal and 
gangue phases. However, it should be also noticed that the IoU value obtained from the DeepLabv3 + are slightly 
higher than the results obtained from the UNet and Swin-T model in crack and pyrite phases, this is mainly due 
to the crack and pyrite phases were not specifically considered in the ground truth datasets.

For better visual comparison of the selected sample segmentation capabilities of each comparison method, 
the segmentation results are also visualized in Fig. 7, where the predicting segmentation results of each com-
parison method are marked by enlarging the interest area of the image. The UNet algorithm often provides 
unsatisfactory results because of some pixels in the pyrite label is wrongly segmented into gangue phase and 
some gangue phases are also mis-segmented into cracks. For DeepLabv3 + architecture, the results are slightly 
improved due to only few coal phases are under-segmentation, which can be further validated by the error bar 
shown in Fig. 7e. However, Swin-T algorithm works well in the segmentation of the selected samples (Fig. 7d), 
as Swin-T can automatically find discriminative and representative features by training the model.

Evaluation of various loss functions.  In deep learning approach, the loss function is used to estimate the 
deviation between the predicted value and the real value of the network. By minimizing the loss function, the 
model can reach the convergence state and reduce the error of the predicted value of the model. In this section, 
we proposed a hybrid loss function that contains cross entropy (CE) loss and focal loss (FL)66. The hybrid loss 
function is defined as:

= −� �L p p( ) log( ) (6)CE

Fig. 6  Schematic illustration of (a) Dataset preprocessing, (b) Data augmentation and model training, (c) 3D 
reconstruction.
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= − − γ� � �L p p p( ) (1 ) log( ) (7)FL

L w L w L(1 ) (8)Hybird CE FL= × + − ×

Where, �p ∈ [0, 1] is the model’s estimated probability matrix for the class, γ is tunable focusing parameter, γ ≥ 0, 
and w ∈ [0, 1] is the dynamic coefficient67 for the hybrid loss function. the decreasing value based on the training 
iteration process. Here, w gradually decreases from 1 to 0 as iterations increase, resulting in a higher proportion 
of FL in the loss function and ultimately leading to better network results. The γ is set to 2 that aims to enhance 
the discrimination among various objects.

The effects of various loss functions on the IoU index are shown in Fig. 8. As shown in Fig. 8a, the mean IoU 
values of the whole sample and its internal phases (including pore, coal, gangue and pyrite) obtained from the 
hybrid loss function is higher than the results obtained from CE loss function and Focal loss function. We can 
see that a better segmentation result can be achieved by using the hybrid loss function, with 88.36%, 88.48%, 
98.28%, 85.55% and 81.11% for the whole sample, pore, coal, gangue, and pyrite respectively. The proposed 
hybrid loss function applies a modulating term to the cross-entropy loss, which can effectively discount the 
effect of easy negatives.

Qualitative analysis shown in Fig. 8b,c also proved that the segmentation effects are significantly improved 
by using hybrid loss function. As shown in the enlarged images, the cracks existed in the raw images cannot be 
identified through CE loss and Focal loss, but the pixels in the cracks can be identified more correctly by using 
the hybrid loss function. The quantitative analysis further proved that the proposed approach is simple and 
highly effective.

Evaluation of various patch sizes.  In order to compare the impact of iteration times on the training effect 
influenced by various patch sizes, three patch size (2242, 4482, and 6722) are selected to illustrate model enhance-
ment degree when the model is fully trained and the results are summarized in Figs. 9, 10. It can be clearly seen 
from the Fig. 9 that the loss values of all networks are continuously decreasing in the initial stage of training, and 
eventually become stable after 80000 iterations. Especially, the model training convergence is notably superior 

Fig. 7  Segmentation results comparison with different networks. (a) presents the segmentation result of 
the Swin-T architecture; (b) presents the segmentation results of the U-Net architecture; (c) presents the 
segmentation result of Deeplabv3 + with the ResNet101 backbone (d) presents the enlarged view comparison 
of different networks; (e) presents the variation of IoU metric for the whole sample and its internal phases 
influenced by various networks.
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with a patch size of 6722 compared to the other two patch sizes. As shown in Fig. 9, it also can be seen that the 
average accuracy for a patch size of 6722 is 96.58%, with a standard deviation of 0.642. The mean loss value is 
0.035, with a standard deviation of 0.007. These findings suggest that using a larger patch size improves the sta-
bility of the network’s predictive performance. This leads to a lower probability of prediction errors, allowing the 
model to achieve higher accuracy values.

Qualitative analysis shown in Fig. 10 proved that a better segmentation result can be achieved using a patch 
size of 6722, with 88.42%, 98.30%, 86.36%, and 89.31% for the pore phase, coal phase, gangue phase and the 
mean value of the sample respectively, except the pyrite with 84.16%. This is mainly due to the pyrite boundaries 
are not sufficiently manual labelled in the ground truth data, and the network usually mistake the pyrite and the 
gangue in composite rock materials. It can be inferred that a larger receptive field allows the network to extract 
more informative features, resulting in more accurate results. However, it should be noticed that increasing the 
patch size also brings the drawback of higher computational costs for training process.

Quantitative characterization of the meso-structure of the selected coal sample.  To quantita-
tively characterize internal mineral phases of the selected coal sample, a series of morphological operations are 
carried to identify the boundary of different mineral phases using the commercial software Avizo 9.0. As shown 

Fig. 8  Qualitative and quantitative analysis of the trained network influenced by different loss functions.  
(a) presents the comparison results of the IoU metrics. (b) presents the segmentation results with hybrid loss. 
(c) presents the quantitative comparison results influenced by different loss functions.

Fig. 9  Relationship between the convergence of accuracy, loss and iteration step during the training process.
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in Fig. 11, most of the pixels belonging to the coal, gangue, pyrite and cracks were correctly identified, except 
some micro-cracks and spots. The volume fraction of 0.47% cracks, 91.81% coal, 7.19% gangue, and 0.53% pyrite 
are quantitatively determined (Fig. 11a–e).

It should be noticed that the real volume fraction for the internal mineral phases is not obtained, the accuracy 
of various segmentation methods cannot be evaluated quantitatively. However, the comparison of the segmented 
volumes, as demonstrated through 3D volume rendering, suggests that the segmentation accomplished using 
Swin-T was satisfactory and exhibited significant enhancement.

Fig. 10  Qualitative and quantitative analysis of the trained network influenced by different patch sizes.  
(a) presents the comparison results of the IoU metrics. (b) presents the segmentation results with a patch size  
of 6722 pixels. (c) presents the quantitative comparison results influenced by different patch sizes.

Fig. 11  (a) 3D volume rendering images of the composite coal rock based on the Swin-T segmentation results 
(the cracks are in blue and the coal in purple, the gangue in yellow and the pyrite in red); (b–e) presents the 
reconstruction model of sub-phases.
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Code availability
The codes, which are used to generate the 3D representative models and the related results of this manuscript, are 
released and publicly available at https://github.com/Chall513032/CoalSegmentation.
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