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Electromyography and kinematics 
data of the hand in activities of 
daily living with special interest for 
ergonomics
Alba Roda-Sales    ✉, Néstor J. Jarque-Bou   , Vicent Bayarri-Porcar, Verónica Gracia-Ibáñez   , 
Joaquín L. Sancho-Bru    & Margarita Vergara   

This work presents a dataset of human hand kinematics and forearm muscle activation collected 
during the performance of a wide variety of activities of daily living (ADLs), with tagged characteristics 
of products and tasks. A total of 26 participants performed 161 ADLs selected to be representative of 
common elementary tasks, grasp types, product orientations and performance heights. 105 products 
were used, being varied regarding shape, dimensions, weight and type (common products and assistive 
devices). The data were recorded using CyberGlove instrumented gloves on both hands measuring 18 
degrees of freedom on each and seven surface EMG sensors per arm recording muscle activity. Data of 
more than 4100 ADLs is presented in this dataset as MATLAB structures with full continuous recordings, 
which may be used in applications such as machine learning or to characterize healthy human hand 
behaviour. The dataset is accompanied with a custom data visualization application (ERGOMOVMUS) 
as a tool for ergonomics applications, allowing visualization and calculation of aggregated data from 
specific task, product and/or participants’ characteristics.

Background & Summary
The complexity of the human hand, with 25 main degrees of freedom (DoF) controlled by more than 30 mus-
cles, provides the required ability to perform activities of daily living (ADLs). Understanding the relationship 
between hand movements and forearm muscular activation during ADLs is challenging, and may be useful 
for several applications such as improving control of prosthetic hands1, developing more realistic hand mod-
els2, or improving hand rehabilitation methods3. Nevertheless, for these purposes a large amount of kinematic 
and muscular activation data is needed. In this sense, several researchers4 have pointed out the importance of 
high-quality open-access datasets of grasping data, while also highlighting the need to compile, classify and 
standardize these data.

Product designers and ergonomists can also benefit from these databases. Product ergonomics assessment is 
usually limited to studying qualitative kinematic parameters such as grasp type used or hand contacting areas, 
and grip strength5. Analysing kinematic and muscular activation parameters such as median or extreme pos-
tures used by participants with varied characteristics when performing different tasks with products with differ-
ent characteristics would provide important information regarding the effect of product design characteristics, 
contributing to the design of more inclusive products.

Although some datasets of hand kinematics during task performance are available in the literature6–10, as 
well as forearm EMG datasets, very few datasets exist with simultaneously recorded kinematics and EMG11–15, 
and they present several weaknesses. The main weakness is that the tasks recorded are not representative of 
ADLs11,12,14,15, being mainly grasping movements or static hand postures. Moreover, the kinematic data are 
sometimes presented as raw data instead of anatomical angles11, or have been collected with methods that are 
not the most reliable12.

To tailor a dataset representative of human hand behaviour (therefore allowing to characterise human hand 
function from a clinical point of view, to apply artificial intelligence techniques or to provide data to product 
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designers, among others), datasets must contemplate a wide range of tasks representative of ADLs, elementary 
actions (holding, twisting, pouring, etc.) and grasp types, as several studies evidence that the task performed 
affects hand posture16. Another key aspect is considering products with different design characteristics, as 
aspects such as handle diameters have been observed to affect functional range of motion17, and aspects such as 
additional handles, thickened handles or bent handles have been found to produce specific effects in extreme 
postures and ranges of motion18. Similarly, handle diameter, weight and object position have been observed 
to affect forearm muscle activity19–21. Furthermore, several studies evidence an effect on grasp type selected 
when using products with different design characteristics22–24. Apart from these effects of the product itself, a 
representative sample of participants has to be recruited, considering participants’ gender, age and hand length. 
Finally, some technical aspects have to be considered, such as continuous recording of data (especially in ADLs 
requiring product manipulation, where the complexity of the tasks makes hand posture more variable), using 
the most appropriate units of measure depending on the purpose of the data collected, or providing data for both 
the dominant and non-dominant hands.

In this paper we present the MOVMUS-UJI Dataset, which contains a total of 4186 recordings with hand 
anatomical angles and forearm muscular activation while performing activities of daily living, along with tagged 
characteristics of products used, tasks performed and participants. Data are presented as MATLAB structures, 
accompanied with a custom data visualization application, ERGOMOVMUS, to ease the use of the data for 
ergonomists. The main contribution of this dataset compared to others is its synchronization of hand kinematics 
and forearm muscle activation with tagged information regarding the subject’s and task’s characteristics, and 
product design features, allowing more specific data analyses focusing on certain task/product characteristics. 
One of the strengths of the dataset is the variety of products used (105 products) and the variety of tasks per-
formed requiring different elementary actions (161 different tasks, divided into 614 elementary tasks), and dif-
ferent grasp types, performance heights and product orientations. It is also worth mentioning that the sample of 
participants was selected so as to be representative of the healthy adult population (with a controlled proportion 
of ages and genders). Another important strength is the presentation of data, both available as a MATLAB/GNU 
Octave data structure (.mat) containing the full continuous recordings, and also a statistical summary of the 
recordings (5th, 50th and 95th percentiles) in a spreadsheet file (in.xlsx or.ods) accompanied with a custom data 
visualization application. The data structure may be useful for users experienced in coding, having a lot of poten-
tial for applications such as machine learning, as it contains complete continuous recordings. The statistical  

Fig. 1  (A) Participant equipped with Biometrics sEMG electrodes (LE230) and CyberGlove data gloves. (B) Hand 
reference posture for kinematics recording.

Fig. 2  (A) Grid and spot areas selected for the sEMG recordings. (B) Five anatomical landmarks used to draw 
the grid. (C) Tubigrip with the grid defining the spots location. The signals from these seven spots are related to 
seven different movements according to previous work27. Spot 1: wrist flexion and ulnar deviation (WF_UD); 
spot 2: wrist flexion and radial deviation (WF_RD); spot 3: digit flexion (DF); spot 4: thumb extension and 
abduction/adduction (TM); spot 5: finger extension (FE); spot 6: wrist extension and ulnar deviation (WE_
UD); spot 7: wrist extension and radial deviation (WE_RD).
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summary of these recordings, along with the data visualization application, provides a more intuitive way to 
access statistical data. This can be particularly valuable for specialists such as clinicians or product designers 
when characterizing healthy human hand behaviour or optimizing product ergonomics, among other appli-
cations. This dataset is accompanied with a usage guide, which contains detailed information regarding the 
environment, tasks, objects, data acquisition system, visualization application and file structure details. The data 
presented herein follow standard rules: kinematic data are provided as anatomical angles following the ISB sign 
criteria25, and muscular activity is presented as a value between 0–1 proportional to participants’ maximum 
voluntary contraction (MVC).

Methods
Study participants.  The study consisted of three phases (A, B and C), with 26 right-handed participants 
(13 males, 13 females) participating in each phase. Only 22 participants took part in all the phases of the exper-
iment, so that the total amount of participants recruited was 30. The mean age was 30.81 ± 11.17 years in phase 
A and 31.19 ± 11.18 years in phases B and C. Inclusion criteria were gender parity in overall data, right-handed-
ness, age between 20 and 55 years and no reported upper limb pathologies. Recruitment was performed through 
print advertisements and social media. All participants gave written informed consent before the experiments, 
which were performed in accordance with the principles of the Declaration of Helsinki. Approval was granted by 
the Research Ethics Committee with Human Beings (formerly Deontology Committee) of Universitat Jaume I 
(Spain), reference number CD/31/2019.

Acquisition setup.  Motion capture equipment.  Kinematic data were acquired using two instrumented 
gloves (CyberGlove Systems LLC): a CyberGlove II on the right hand and a CyberGlove III on the left hand 
(Fig. 1a). Each of these gloves has 18 strain gauges, allowing to determine the anatomical angles of the underlying 
joints. The angle rotated by each joint with respect the reference posture (hands resting flat on a table, with the 
fingers and thumb together, and the middle fingers aligned with the forearms, see Fig. 1b) is then obtained from 
these signals, according to a previously validated calibration protocol26.

sEMG equipment.  Muscle activity was recorded using a Biometrics DataLITE wireless recording unit 
(Biometrics Ltd.) at a sampling frequency of 1000 Hz. Seven integral dry reusable wireless sEMG electrodes 
(LE230) were used for each forearm. Electrodes were placed in the centre of seven representative spot areas of 
the right forearm, according to previous work27, and were set out in longitudinal direction (Figs. 1, 2), following 
the SENIAM recommendations28. To locate these seven spot areas, a Tubigrip with a grid defining the spots 
location was put on the subject’s forearm, placing it using five easily identifiable anatomical landmarks27 (Fig. 2). 
These seven spots were chosen to be representative of all available muscle activity of the whole forearm, accord-
ing to previous works27.

Fig. 3  Different scenarios of the experiment. Scenarios: a table and shelves at different heights (1), a table (2), a 
door with exchangeable handles (3), a sink (4), a desk (5), a lock on a panel (6), a screw in a wooden wall (7) and 
electrical sockets and turning buttons on a panel (8).

https://doi.org/10.1038/s41597-023-02723-w


4Scientific Data |          (2023) 10:814  | https://doi.org/10.1038/s41597-023-02723-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Environment.  The tasks were performed in a laboratory environment that simulated home areas. The scenar-
ios (Fig. 3) consisted of: a table and shelves at different heights (Scenario 1), a table (Scenario 2), a door with 
exchangeable handles (Scenario 3), a sink (Scenario 4), a desk (Scenario 5), a lock on a panel (Scenario 6), a 
screw in a wooden wall (Scenario 7) and electrical sockets and turning buttons on a panel (Scenario 8).

Products.  The 105 products used in the recorded tasks were selected to be representative of the wide vari-
ety of products commonly used to perform ADLs. Thus, different product types were selected: bottles, cans, 
jars, houseware, food packaging, cutlery, assistive devices, self-care and cleaning products, among others. 
Furthermore, they were selected to cover different weights, dimensions and section shapes (further information 
regarding their characteristics can be found in the guide attached to the dataset). All the products used were real, 
except in the task of peeling a cucumber (the cucumber was replaced with a 3D printed cucumber) and in tasks 
requiring cutting food (play dough was used instead of food). The location of the products in each scenario is 
detailed in the guide attached to the dataset. Figure 4 shows an overview of the products used.

Acquisition protocol.  The main dimensions of participants’ hands were measured before wearing the 
instrumented gloves. Furthermore, participants’ forearm hair was removed and skin cleaned with alcohol before 

Fig. 4  Overview of the products used to perform the tasks.
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placing the sEMG sensors in the forearm. Then, a kinematic reference posture (hands lying flat on a table with 
fingers and thumbs close together, with middle fingers aligned with forearms) was recorded before performing all 
the experiment tasks, and was considered zero for all the anatomical angles.

To normalize muscular activation signal, seven records of maximum voluntary contraction (MVC) were 
performed: flexion and extension of the fingers, flexion and extension of the wrist, ulnar and radial deviation of 
the wrist, and pronation of the forearm (Fig. 5). Participants were asked to take a comfortable posture and exert 
maximum effort without the help of muscles other than those of the forearm and hand.

Signal synchronisation.  The CyberGlove kinematic data and sEMG records were synchronised using custom 
data acquisition software especially designed for this purpose, matching the initial and final instants of each 
record. This acquisition software was developed in C++, synchronising glove and sEMG by using the SDK 
libraries of the CyberGlove and Biometrics devices.

Fig. 5  Seven MVC records for the normalization of the muscle activity signal. From left to right: flexion and 
extension of the fingers, flexion and extension of the wrist, ulnar and radial deviation of the wrist, and pronation 
of the forearm.

Fig. 6  Recorded anatomical angles. Nomenclature: _F for flexion (in yellow), _A for abduction (in turquoise); 
digits 1 to 5. Joints: IP (interphalangeal joint), PIP (proximal interphalangeal joints), MCP (metacarpophalangeal 
joints), CMC (carpometacarpal joints), PalmArch (palmar arch resulting from flexion/extension of 
carpometacarpal joints of ring and little fingers), WR (wrist).
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Recorded tasks.  The experiment was performed in three different phases: A, B and C. In phase A, the tasks 
performed only required using the right hand with cylindrical, lateral pinch and lumbrical grasp types. In phase 
B, the tasks only required using the right hand with oblique, special pinch, hook, intermediate and five-finger 
pinch grasp types. Tasks in phase C required using both hands (bimanual tasks) with all the previously men-
tioned grasp types. Order of tasks was randomized for each participant. One complete task was performed 
during each continuous run of data recording, during which the operator marked specific events that were later 
used to separate the task’s component elementary tasks, e.g. holding, pouring, twisting, etc. Therefore, phase 
A was composed of 79 tasks (342 elementary tasks), phase B consisted of 33 tasks (128 elementary tasks), and 
phase C of 49 tasks (144 elementary tasks). Further information regarding the elementary tasks considered in 
each recording can be found in the guide attached to the dataset. An example for one task can be seen in Table 1.

The participants were given clear instructions about how to perform each task, and they were told to start and 
end the task in the same posture: hands lying relaxed at both sides of the body for tasks performed in a standing 
posture, and hands lying relaxed on the table when sitting (initial posture for each task is specified in the guide 
attached to the dataset). While carrying out each task, the operator marked specific events that were later used 
to separate the different elementary tasks.

For each task, participants were given clear instructions on the elementary tasks to be performed and on the 
grasp types to be used by each hand. Table 1 illustrates the instructions given to participants as well as labelling 
of tasks and elementary tasks in the dataset.

Signal processing.  Angles calculation.  Joint angles were computed from raw glove data following the cali-
bration protocol proposed in previous works26. This protocol includes the determination of gains and also some 
corrections to avoid cross-coupling effects for specific anatomical angles. The joint angles obtained according to 
this protocol are shown in Fig. 6:

sEMG signal processing.  To compute muscle activity, sEMG records were first normalised by dividing them 
by the maximal values from any record (7 MVCs and all tasks) measured for each subject. In this way, sEMG 
activity from the same spot of different individuals or sEMG activity between different spots can be compared. 
Afterwards, the normalised recordings were resampled to 100 Hz to present synchronized data with angles.

Data splitting.  Each task recorded was separated into different elementary tasks as detailed in the dataset guide 
by using the labelling performed by the operator while recording the data.

Filtering.  Kinematic data were filtered with a 2nd-order two-way low pass Butterworth filter with a cut-off fre-
quency of 5 Hz. The sEMG data were filtered with a fourth-order bandpass filter between 25–500 Hz, rectified, 
filtered by a fourth-order low-pass filter at 8 Hz, and smoothed by Gaussian smoothing29.

Outliers and missing signal during recordings.  A total of 4186 tasks (15964 elementary tasks) were recorded 
across all the participants and experiments. Nevertheless, signal was missing during some recordings. Tasks 
with missing signal were removed, leaving 15823 elementary tasks in the final dataset. Outliers were erased con-
sidering the active and functional range of motion of the joints measured in a previous study30. Specifically, the 
50th percentile of each joint for each elementary task was calculated and those values higher or lower than the 
mean range of motion values of each joint plus three times its standard deviation were eliminated. During this 
analysis, a malfunction of the glove gauge recording right palmar arch flexion was detected after performing the 
experiments. Therefore, to ensure that all data are correct, data of this DoF are not reported in the dataset. In the 
end, 55 outliers were deleted: 5 cases in CMC1_F, 30 cases in IP1_F, 11 cases in PIP2_F, 7 cases in PIP3_F, 1 case 
in PIP4_F and 1 case in PIP5_F. Outliers in the thumb joint may be due to a poor fit of the gauge in that finger. 
Outliers in PIP joints are negative values (around −20°) and may be due also to a poor fit of these gauges for a 
specific subject, since most cases were found in the same subject, who had a small hand length.

Data Records
Data files.  Data are presented as several MATLAB structures stored in.mat files: KIN_EMG_DATA.mat, 
PARTICIPANT_DATA.mat, TASK_DATA.mat and PRODUCT_DATA.mat. The data are accompanied by a 
guide (.pdf), which provides more detailed information regarding the data series as well as the environment, 
tasks, products and data acquisition system. The dataset is publicly available to all research community at the 
Zenodo open repository31.

T ET PR SC ELEMENTARY TASK

111

55

9 1

Move closer to take the object from the top shelf (reaching phase)

56 Take the object from the top shelf. Leave it on the kitchen top

57 Release the object and return to P1 (release phase)

58 Move closer to take the object from the kitchen top (reaching phase)

59 Take the object from the kitchen top. Leave it on the bottom shelf

60 Release the object and return to P1 (release phase)

Table 1.  Elementary tasks into which task T = 111 is divided. Columns containing T (ID of the task), ET (ID of the 
elementary task), PR (ID of the products used during the task), SC (ID of the scenario where the task is performed).

https://doi.org/10.1038/s41597-023-02723-w
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KIN_EMG_DATA.  Substructure containing all kinematic and sEMG data recorded, classified by task, elemen-
tary task and participant. For the kinematic data, the sign criteria for each joint motion were defined as follows:

PIP(2-5)_F, IP1_F, MCP(1-5)_F: Flexion + / Extension -
MCP(2-3, 3-4, 4-5)_A: Fingers separated + / Fingers together -
PalmArch: Flexion + /Extension –
CMC1_F: Flexion + /Extension – (See Fig. 7)
CMC1_A: Abduction + /Adduction - (See Fig. 7)
WR_F: Flexion + / Extension -
WR_A: Ulnar deviation + /Radial deviation –
Note that movement of thumb CMC joint is complex, and nomenclature used in literature to define these 

movements is varied32,33. We adopted the one used by Brand and Hollister33.
For the muscle activity, normalised signal for the seven representative spot areas (Fig. 2) were presented 

ordered from Spot 1 to 7 (columns 1 to 7 in case of right hand, columns 8 to 14 in case of left hand).

PARTICIPANT_DATA.  Substructure containing information of the participants recruited (age, gender, hand 
and forearm length, height, and phases in which the participant was recruited).

TASK_DATA.  Substructure containing information regarding task characteristics (product grasped/manipu-
lated with each hand, grasp span, use of both hands, product orientation, action performed and height). Table 2 
details the variables, their meanings and codification.

VARIABLE VALUE/LABELLING

T ID of the task

ET ID of the elementary task

PRODUCT_DH ID of the product grasped with dominant hand.

PRODUCT_NDH ID of the product grasped with non-dominant hand.

SPAN_DH
Span of grasp performed with dominant hand.
  0 = None (no product grasped)
  1 = Main product span (specified in PRODUCT_DATA)
  2 = Secondary product span (specified in PRODUCT_DATA)

SPAN_NDH   Span of grasp performed with non-dominant hand.
  Codified as SPAN DH.

BIMANUAL
Hands involved in task:
  0 = Non-bimanual (only dominant hand involved)
  1 = Bimanual (both hands involved)

GRASP_DH

  Grasp type performed with dominant hand:
  1 = Cylindrical
  2 = Lateral pinch
  3 = Lumbrical
  4 = Oblique
  5 = Special Pinch
  6 = Hook
  7 = Intermediate
  8 = Five finger pinch
  9 = Free

GRASP_NDH Grasp type performed with non-dominant hand.
Codified as GRASP DH.

ORI_PRODUCT_DH

Orientation of product grasped with dominant hand: (see Fig. 8)
  1 = Vertical
  2 = Horizontal (transverse)
  3 = Horizontal (longitudinal)
  4 = Other (none of the previously mentioned or in motion)

ORI_PRODUCT_NDH Orientation of product grasped with non-dominant hand.
Codified as ORI_PRODCUT_DH.

ACTION_DH

Action performed with dominant hand:
  1 = Reaching
  2 = Releasing
  3 = Transporting
  4 = Holding
  5 = Pouring
  6 = Pulling
  7 = Pushing
  8 = Twisting (clockwise)
  9 = Twisting (anticlockwise)
  10 = Other

ACTION_NDH Action performed with non-dominant hand.
Codified as ACTION_DH.

TASK_HEIGHT
Height of performance of the task:
  1 = High-Median (above shoulder)
  2 = Median (between shoulder and hips)
  3 = Median-Low (below hips)

Table 2.  Fields in TASK_DATA substructure. Abbreviations: Dominant hand as DH, non-dominant hand as NDH.
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PRODUCT_DATA.  Substructure containing information regarding product characteristics. Table 3 details the 
variables, their meaning and codification.

Custom data visualization application (ERGOMOVMUS).  A custom data visualization application 
for ergonomics assistance (ERGOMOVMUS) has been developed using the MATLAB GUIDE environment, in 
order to easily select different fields regarding participants, task and product characteristics previously detailed. 
The application is provided with the dataset available at Zenodo31, and has several spreadsheets in OOXML 
Transitional and OpenDocument formats (in.xlsx/.ods) attached: KINEMATIC_DATA.xlsx and sEMG_DATA.

Fig. 7  Carpometacarpal joint motion.

Fig. 8  Product orientations considered. 1 = Vertical, 2 = Horizontal transverse, 3 = Horizontal longitudinal. 
In the special case of dishes and bowls, without a clear grasping axis, “horizontal transversal” orientation was 
considered. When product orientation was not controlled, it was classified as “4 = other”.

VARIABLE VALUE/LABELLING

PRODUCT ID of the product (accordingly to the guide attached to the dataset)

WEIGHT Product weight (in g)

SPAN_1 Main span (in mm) (e.g. diameter of the body of a jar)

SPAN_2 Secondary span (in mm) (e.g. diameter of the cap of a jar)

SHAPE_SPAN_1

Section shape of main span: (see Fig. 9)
  1 = Circular
  2 = Rectangular
  3 = Circular faceted
  4 = Elliptical
  5 = Elliptical faceted
  6 = Plate
  7 = Other

SHAPE_SPAN_2 Section shape of secondary span
Codified as SHAPE_SPAN_1.

AD
Product type:
  0 = Not assistive device (common product)
  1 = Assistive device

Table 3.  Fields in PRODUCT_DATA substructure.

https://doi.org/10.1038/s41597-023-02723-w
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xlsx contain a statistical summary of the full recordings of the dataset consisting of 5th, 50th and 95th percentiles of 
each joint kinematics and each spot muscular activation for each subject and elementary task; PARTICIPANTS_
DATA.xlsx, TASK_DATA.xlsx and PRODUCT_DATA.xlsx contain the same information as the homonym .mat 
files of the dataset. The application allows visualizing and saving in an OOXML Transitional format (.xlsx) spread-
sheet both kinematic and forearm muscular activation data corresponding to selectable specific characteristics 
of participants, tasks and products. A screenshot of the main window of the application can be seen in Fig. 10.

Technical Validation
Data acquisition.  Before and after each experiment phase, participants were asked to randomly move their 
hands, in order to check that all the gauges were shown active on the virtual model of the CyberGlove software.

Fig. 9  Example of products classified in each section shape group.

Fig. 10  Screenshot of the main menu of ERGOMOVMUS.

https://doi.org/10.1038/s41597-023-02723-w
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After recordings, the number of labels used to divide each task into elementary tasks was checked to be 
correct, ensuring that no labels were missing. Furthermore, as detailed in previous sections, in order to avoid 
possible unexpected signal values all kinematic and sEMG data collected were filtered.

Statistical descriptive analysis of data collected.  In order to validate data, 95th, 50th and 5th per-
centiles of joint angles and muscular activation for each participant and elementary task were plotted using 
box-and-whisker graphs. Kinematic data from two grasp types requiring markedly different postures (cylindrical 
and special pinch) were plotted for comparison (Fig. 11). Analogously, sEMG data during transportation tasks of 
products belonging to weight groups 0g–500g and 2500g–3000g were plotted (Fig. 12). It can be observed that the 
hand posture obtained for each grasp type is different, and values of joint angles are within the ranges obtained 
in previous studies measuring hand functional range of motion30,34,35 or datasets providing hand kinematic data 
during the performance of different ADLs6,7,13. Furthermore, the muscular activation obtained was higher during 
transportation tasks of products belonging to weight group 2500g–3000g, and the obtained values are aligned 

Fig. 11  Box and whisker plots of 95th, 50th and 5th percentiles of kinematic data collected in tasks requiring 
cylindrical and special pinch grasp types. Joints and movements labelled as explained in Fig. 6. Forearm spots  
labelled as explained in the main text. Note that right palmar arch data is not available and does not appear in 
the plots.

https://doi.org/10.1038/s41597-023-02723-w
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with those reported in previous studies where surface electromyography (sEMG) was collected during the per-
formance of a diverse set of ADLs using products with different weights7,13.

Limitations.  The use of instrumented gloves may imply some loss of dexterity during the performance of 
tasks requiring fine manipulation. Nonetheless, this loss of dexterity may not produce a significant effect on 
mean postures, ranges of motion or motion synergies. Muscle activation has been obtained using surface EMG, 
which does not allow focusing on a specific muscle, and only from seven specific areas of the forearm where only 
extrinsic hand muscles are present.

Usage Notes
These data can be used for several applications, such as machine learning, healthy hand characterization or 
product design ergonomics. The main strengths of this dataset for these potential uses are its provision of syn-
chronized data of hand kinematics and forearm muscle activation with tagged information regarding partici-
pants and task characteristics, and product design features, allowing more specific analyses. Another strength is 
the variety of products used (105 products) and tasks performed, requiring different elementary actions, grasp 
types, performance heights and product orientations (161 different tasks, divided into 614 elementary tasks). 
Finally, the presentation of these data, both as a MATLAB/GNU Octave data structure (.mat) and through a 
custom data visualization application, allows its usability in several applications.

It has to be considered that real food was not used to perform the tasks in order to prevent the gloves from 
getting stained or wet (all products are appropriately tagged with the corresponding substitute material in the 
dataset guide file). Therefore, tasks involving food were simulated and might be performed in a slightly different 
way than when performed with real food.

Finally, it has to be mentioned that velocity of performance of the tasks might be slightly affected by the loss 
of dexterity and touch sensitivity resulting from the use of the instrumented gloves36.

Code availability
The custom MATLAB code used to calculate hand anatomical angles is freely available on Zenodo37. Its use 
requires a prior calibration procedure of the data glove, which was developed in previous work26.
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