
1Scientific Data |          (2023) 10:810  | https://doi.org/10.1038/s41597-023-02722-x

www.nature.com/scientificdata

Shotgun metagenomes from 
productive lakes in an urban region 
of Sweden
alejandro Rodríguez-Gijón  1,4 ✉, Justyna J. Hampel  1,4, Jennah Dharamshi  1, 
Stefan Bertilsson  2 & Sarahi L. Garcia  1,3 ✉

Urban lakes provide multiple benefits to society while influencing life quality. Moreover, lakes and their 
microbiomes are sentinels of anthropogenic impact and can be used for natural resource management 
and planning. Here, we release original metagenomic data from several well-characterized and 
anthropogenically impacted eutrophic lakes in the vicinity of Stockholm (Sweden). Our goal was to 
collect representative microbial community samples and use shotgun sequencing to provide a broad 
view on microbial diversity of productive urban lakes. Our dataset has an emphasis on Lake Mälaren as a 
major drinking water reservoir under anthropogenic impact. This dataset includes short-read sequence 
data and metagenome assemblies from each of 17 samples collected from eutrophic lakes near the 
greater Stockholm area. We used genome-resolved metagenomics and obtained 2378 metagenome 
assembled genomes that de-replicated into 514 species representative genomes. This dataset adds new 
datapoints to previously sequenced lakes and it includes the first sequenced set of metagenomes from 
Lake Mälaren. Our dataset serves as a baseline for future monitoring of drinking water reservoirs and 
urban lakes.

Background & Summary
Healthy lakes and shorelines provide multiple societal benefits and contribute positively to our quality of life 
and livelihoods. Lakes can be used as sources of drinking water for surrounding urban areas and can also supply 
water for industry and agricultural irrigation. Lakes also offer ample opportunities for recreation and tourism. 
However, urbanization of surrounding areas, causing eutrophication and other types of anthropogenic impacts, 
can pose major threats to the sustainable use of these natural ecosystems. In this way, lakes are not only valuable 
resources, but also sentinels of anthropogenic impacts and environmental change, as their microbiomes are 
highly sensitive to perturbations, and respond rapidly and predictably to changing environmental conditions1–4. 
In depth and high-quality records of the current state of lake microbiomes can thus be used as a baseline to 
assess change and anthropogenic impacts on lake water quality. However, we face a paucity of such metagen-
omic data that could provide us with more deep and insightful information about microbial diversity and 
the genome-encoded functional traits of such communities. Here, we release metagenomic data (Table 1 and 
Table S1) and metagenome-assembled genomes (MAGs)5 from several urban and anthropogenically impacted 
Swedish lakes. Most of these lakes have previously been studied and characterized in terms of limnological fea-
tures and water chemistry, but information on their microbial communities is scarce.

Lake Mälaren is the third largest lake in Sweden, and according to the Mälaren Water Protection Association 
(Mälarens vattenvårdsförbund), it serves as the main drinking water supply to approximately 2 million resi-
dents in Sweden. The lake receives high nutrient loads from surrounding agricultural areas and has a history of 
recurrent cyanobacterial blooms6. Moreover, the eastern part of the lake drains into the Baltic Sea, transport-
ing nutrient rich waters into the vulnerable coastal zones7. Despite its significance, Lake Mälaren is severely 
understudied and the microbial community composition in the lake has only been superficially characterized. 
This comprehensive metagenomic dataset is thus the first detailed insight into the bacterial dynamics of Lake 
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Mälaren, and was obtained during the 2021 summer season. For comparison, we sampled two productive lakes 
(Trehörningen and Långsjön; Fig. 1) in the vicinity of Uppsala to contrast and compare variation in microbial 
communities both within and between similar lakes from the same region of Sweden.

Additionally, we sequenced and assembled metagenomes from five previously sampled eutrophic lakes in 
the urban Stockholm-Uppsala region: lakes Ekoln, Erken, Limmaren, Vallentunasjön, and Norrviken. These 
samples, collected in 2002, have previously been characterized for their bacterial composition using less com-
prehensive and now outdated methods (i.e., clone libraries and sanger sequencing, and terminal-restriction 
fragment length polymorphism, T-RFLP)8,9. These five highly eutrophic lakes have a long history of seasonal 
cyanobacterial blooms in the summer8 and feature pronounced seasonal dynamics within the bacterioplank-
ton communities9,10. In brief, Lake Ekoln is a subbasin in the northern part of Lake Mälaren. It stratifies in 
summer and receives high nutrient inputs from the city of Uppsala and the surrounding agricultural areas. 
Lake Erken, located east of Uppsala, is a eutrophic lake that is thermally stratified during the summer and has 

Sample name Lake Date Extraction method Number of SRGs found in the sample

Sample_104_S78 Ekoln Aug-2002 Qiagen 57

Sample_105_S79 Erken Aug-2002 Qiagen 52

Sample_101_S75 Limmaren Aug-2002 Qiagen 93

Sample_103_S77 Norrviken Aug-2002 Qiagen 51

Sample_102_S76 Valentunasjön Aug-2002 Qiagen 103

Sample_107_S7 Mälaren_B 05-Aug-2021 MP Bio 83

Sample_104_S4 Mälaren_D 05-Aug-2021 MP Bio 84

Sample_102_S2 Mälaren_B 11-Aug-2021 MP Bio 71

Sample_113_S84 Mälaren_B 21-Jul-2021 Qiagen 52

Sample_108_S8 Mälaren_B 21-Jul-2021 MP Bio 62

Sample_103_S3 Mälaren_D 21-Jul-2021 MP Bio 51

Sample_110_S81 Mälaren_B 24-Aug-2021 Qiagen 57

Sample_109_S9 Mälaren_B 24-Aug-2021 MP Bio 78

Sample_111_S82 Mälaren_D 24-Aug-2021 Qiagen 67

Sample_105_S5 Mälaren_D 24-Aug-2021 MP Bio 76

Sample_107_S80 Trehörningen 30-Aug-2021 Qiagen 73

Sample_106_S6 Långsjön 30-Aug-2021 MP Bio 58

Table 1. Sampling locations, dates of sample collection, extraction method, and number of SRGs per sample. 
For more metadata including latitude, longitude, depth, and temperature see Table S1.

Fig. 1 Map of sampling locations. Note that Mälaren was sampled at two nearby but different locations (named 
Mälaren_B and Mälaren_D in supplementary data files). For coordinates and metadata, see Table S1.
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been extensively studied for several decades11, also with regards to microbial community composition12–14. Lake 
Erken also serves as a backup drinking water reservoir for the nearby city of Norrtälje. Lake Limmaren, located 
70 km north of Stockholm, receives high nutrient loads from sediments and has a long history of dense blooms 
of Microcystis, Anabaena, and Aphanizomenon8. Historical accumulation of nutrients from urban settlements 
also plays a significant role in the state of the hypereutrophic lake Vallentunasjön located in a suburban area 
north of Stockholm10. The lake has undergone major restoration efforts, but still suffers from eutrophication 
with frequent cyanobacterial blooms. Lastly, lake Norrviken in Stockholm has received high historical loads of 
domestic and industrial sewage in the past and is also subjected to intense cyanobacterial blooms15.

Our broader ambition was to collect and sequence data that could be used to provide a comprehensive view 
of microbial communities in urban lakes of the greater Stockholm area, with special emphasis on Lake Mälaren 
(Table S1). Such data could also be used to identify microbial health hazards (such as pathogens), serving as a 
baseline for future monitoring efforts based on microbiomes as sentinels of environmental health. Finally, this 
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Fig. 2 Quality of the MAGs. Completeness (A) and contamination (B) across all the 2378 metagenome-
assembled genomes (MAGs, in grey). Highlighted in black, the 514 species representative genomes (SRGs). 
Correlation between completeness and contamination for all 514 SRGs, colored by phyla (C). The legend 
table indicates the number of MAGs and SRGs classified as high-quality (>90% completeness and <5% 
contamination), medium-quality (≥50% completeness and <10% contamination), and low-quality (<50% 
completeness and <10% contamination), following the MIMAG standards for MAG quality completeness and 
contamination cutoffs35.
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dataset could be used to generate novel hypotheses on linkages between lake microbiomes and human activities 
in the watershed. We thus release 17 shotgun metagenomes (Table S2) and their corresponding single-sample 
assemblies. In addition, we performed genome-resolved metagenomics and obtained 2378 MAGs (>30% com-
pleteness and <10% contamination) (Fig. 2 and Table S3). We then clustered MAGs from across all samples 
together based on 95% average nucleotide identity (ANI) and obtained 514 species representative genomes 
(SRGs; >50% completeness and <6% contamination) (Fig. 2). We also provide an overview of the number of 
SRGs specific to and shared between the different sampled lakes (Fig. 3) and relative abundance patterns of dif-
ferent classes of Bacteria represented by SRGs across the lake metagenomes (Fig. 4 and Table S4).

Methods
Sampling. Surface water samples from Swedish lakes were collected in both 20028 and 2021 (Fig. 1). Samples 
from lakes Ekoln, Erken, Limmaren, Norrviken, and Vallentunasjön were collected in August 2002 and their 
bacterial 16 S rRNA gene composition was previously superficially described using molecular cloning and sanger 
sequencing8. We retrieved one membrane filter (Supor, Gelman) from each of those lakes from a −80 °C freezer, 
where they have been stored since 2002. Samples from lakes Mälaren (2 locations in Stockholm: Drottningholm - D  
and Brostugan - B), Trehörningen (Uppsala), and Långsjön (Uppsala) were collected in July and August 2021 (Table 1).  
In these cases, surface water was collected from a wooden deck with a Limnos tube-sampler (Limnos, Poland) 
and 300 mL hand-filtered in duplicate onto 0.2 µm Sterivex filters (Millipore) that were subsequently frozen at − 
20 °C until DNA extraction. Environmental parameters (temperature, dissolved oxygen, and conductivity) were 
measured using a YSI sonde (Table S1).

DNa extractions. For all samples, DNA was extracted using the DNAeasy PowerWater kit (Qiagen) fol-
lowing the manufacturer’s instructions and DNA concentrations were measured using a Qubit dsDNA HS 
kit (Thermo Fisher Scientific Inc). However, for some of the samples the Qiagen kit did not yield high quality 
DNA. Additionally, the duplicate filters from 2021 were selected for extractions at Linneaus University using the 
FastDNA® SPIN Kit for soil (MP Biomedicals) with a modified cell lysis step to ensure extraction of cyanobac-
teria. First, 1467 µL of Sodium Phosphate Buffer (from kit), 183 µl MT buffer (from kit), and 16.5 µl of Proteinase 
K solution (MP Biomedicals) were added to the Sterivex filters. The filters were mixed, tightly capped, wrapped 
in parafilm and incubated overnight (~15 hours) in a rotating oven at 55 °C. This was done to ensure extraction 

60

55

51

42

32

16

13
12

9 9 9 9
8

7 7
6

5 5
4 4

3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0

20

40

60

Limmaren S_101_S75
Mälaren S_104_S4
Mälaren S_107_S7
Mälaren S_109_S9
Mälaren S_105_S5
Trehörningen S_107_S80
Mälaren S_102_S2
Mälaren S_111_S82
Mälaren S_108_S8
Langsjön S_106_S6
Ekoln S_104_S78
Mälaren S_110_S81
Mälaren S_113_S84
Erken S_105_S79
Norrviken S_103_S77
Mälaren S_103_S3

52 057 05100

Valentunasjön S_102_S76

SRG per sample

G
RS

noitcesretni
ezis
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of DNA from low biomass samples and to improve cell lysis. Following the overnight incubations, samples were 
extracted following the manufacturer’s protocol. All DNA concentrations were measured using the Qubit dsDNA 
HS kit (Thermo Fisher Scientific Inc). All samples that yielded DNA were sent for sequencing.

Library preparation and sequencing. Sequence libraries were prepared using SMARTer Thruplex library 
preparation (350 bp average fragment size) at the National Genomics Infrastructure (NGI) at the Science for 
Life Laboratory (SciLifeLab) in Stockholm. Sequencing was done on the Illumina NovaSeq 6000 platform using 
a S4 v1.5 flowcell in 300 cycle mode (2 × 150 bp). The Bcl to FastQ conversion was performed using bcl2fastq_
v2.20.0.422 from the CASAVA software suite at NGI. Sequences were demultiplexed and quality control and raw 
data were retrieved on an HPC server hosted by the Swedish National Infrastructure for Computing (SNIC).

analysis of raw sequence reads. Processing of raw sequence reads was performed using the metaWRAP 
pipeline16 (v1.3.2). Forward and reverse reads were first trimmed using the “read_qc” module with default settings 
and TrimGalore17 (v0.5.0). Final trimmed reads were assembled into metagenome assemblies using the “metaW-
RAP_assembly” module with MegaHit18 (v1.1.3). Short scaffolds (<1000 bp) were discarded by default before assess-
ing assembly quality statistics using QUAST19 (v. 5.0.2) (Table S2). Assembly of contigs were subsequently binned into 
MAGs using the “metaWRAP_binning” module. Briefly, this module performs binning using three metagenomic 
binning tools: CONCOCT20 (v1.0), metaBAT221 (v2.12.1) and maxBIN222 (v2.2.6). Bins generated from these three 
tools were then consolidated and refined using the “metaWRAP_bin_refinement” module with cutoffs of above 30% 
for completeness and below 10% for contamination, resulting in MAGs (Table S3). The final bin set was assessed by 
CheckM23 (v1.1.3) for completeness, contamination, and other statistics. All bins with quality completeness >30% 
and contamination <10% were considered as MAGs (for detailed statistics see Fig. 2) and included in further analyses.
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Taxonomic classification of MAGs was performed using GTDB-tk24 (v1.5.0) according to GTDB classifica-
tion25 (data release version r202). Taxonomy of all 2378 MAGs can be found in Table S3. All MAGs were then 
dereplicated at the species-level using dRep26 (v3.0.0) with default settings, which resulted in 514 genomes that 
represent the species present across all of the lakes (SRGs; Fig. 3). In this pipeline, MAGs were first compared 
with a rapid primary algorithm MASH27 and then a secondary clustering algorithm ANIm was run based on 
an Average Nucleotide Identity (ANI) threshold of 95%, genome completeness of > = 50%, and contamination 
< = 5%. The most complete and least contaminated MAGs were selected as species representatives (Table S3). 
Finally, the “metaWRAP_quant_bin” module was used to estimate the relative abundance of SRGs across all 
samples. The “metaWRAP_quant_bins” module estimates the abundance of MAGs across the sampling using 
Salmon28 (v1.9.0) to index the metagenomic assembly and align reads from each sample to the assembly. 
Coverage tables were generated estimating the abundance of each contig in each sample in genome copies per 
million reads (Fig. 4 and Table S4).

To estimate the total number of reads mapped per metagenome, we mapped all 514 SRGs to all trimmed 
clean reads using Bowtie2 (v2.5.1)29. An index was created using the function bowtie2-build calling all 514 SRGs, 
and then mapped against all 17 metagenomes using default parameters. The resulting sam files were converted 
into bam files, and then used to count the number of mapped clean reads using SAMtools30 (v1.17). These results 
are reported in Table S1.

A map of the sampling locations was constructed in ArcGIS (v3.28 Firenze). Figures depicting SRG com-
pleteness and contamination were generated using ggplot2 (v3.3.5) in RStudio (v2022.02.3 + 492). The inter-
section graph of shared SRGs across samples was generated using the UpsetR package31 (v1.4.0). To obtain 
the total number of genome copies per million reads for every represented bacterial class (Fig. 4), we took the 
genome copies per million for each SRG (Table S4) and summed them per bacterial class. We then calculated 
the number of SRGs per class using the function percencat from the package plada (v0.1.0; https://github.com/
alejandrorgijon/plada_package). The heatmap was generated using the R package ComplexHeatmap32 (v2.10.0) 
and hierarchical clustering was performed with default settings.

Data Records
All raw read sequence files and single-sample metagenome assemblies are available at the European Nucleotide 
Archive (ENA) under the BioProject accession PRJEB5481733. All 2378 MAGs have been deposited in a 
SciLifeLab Figshare data repository5: https://doi.org/10.17044/scilifelab.22270225.v3. The 514 SRGs have 
also been deposited under NCBI Bioproject PRJNA102139134. Statistics for raw reads, assemblies, refined 
high-quality bins, and dereplicated MAGs (SRGs) are provided in the supplementary tables, and include MAG 
and SRG IDs and taxonomy, MAG membership in SRGs, presence and relative abundance estimates of SRGs 
across samples, and genome information (Tables S1–S4).

technical Validation
The quality of the raw reads was monitored and certified by the National Genomics Infrastructure (NGI) in 
Solna, Sweden according to accreditation by Swedac ISO/IEC 17025. The quality scale used is Sanger/phred33/
Illumina 1.8+. Quality distribution showed Q30 aggregated percentage of bases to be higher than 89 for all 
metagenomes. PHRED score was 36 for all samples (Table S1). The quality of the MAGs that compose the SRGs 
was computed with CheckM23 (v1.1.3).

code availability
No custom code was used in this project.
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