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Fragment contribution models for 
predicting skin permeability using 
HuskinDB
Laura J. Waters   ✉, David J. Cooke & Xin Ling Quah

Mathematical models to predict skin permeation tend to be based on animal derived experimental 
data as well as knowing physicochemical properties of the compound under investigation, such as 
molecular volume, polarity and lipophilicity. this paper presents a strikingly contrasting model to predict 
permeability, formed entirely from simple chemical fragment (functional group) data and a recently 
released, freely accessible human (i.e. non-animal) skin permeation database, known as the ‘Human Skin 
Database – HuskinDB’. Data from within the database allowed development of several fragment-based 
models, each including a calculable effect for all of the most commonly encountered functional groups 
present in compounds within the database. the developed models can be applied to predict human skin 
permeability (logKp) for any compound containing one or more of the functional groups analysed from 
the dataset with no need to know any other physicochemical properties, solely the type and number 
of each functional group within the chemical structure itself. This approach simplifies mathematical 
prediction of permeability for compounds with similar properties to those used in this study.

Introduction
The rate and extent of permeation through human skin is a fundamental property that must be determined for any 
compound that may come into contact with skin, including a plethora of chemicals found in cosmetics and pharma-
ceutical products. In some cases this permeation may be desirable, such as transdermal drug delivery systems1, yet 
in other cases it should be avoided, such as for cosmetics and sun protection products2. Experimental determina-
tion of permeation through human skin is a complex and expensive process with alternatives frequently used such 
as animal skin3, even though these are known to often be unreliable predictive systems and bring their own issues 
regarding storage, preparation and predictive ability4. Thirty years ago, as an alternative to experimental determina-
tion, researchers began to consider mathematical models for predicting skin permeability including the well-known 
‘Potts and Guy’ model5. In more recent years in silico-based systems have become more widespread comprising a 
range of computational approaches6–8, such as machine learning methods9 and quantitative structure-permeability 
relationships (QSPRs) that relate skin permeability to physicochemical properties and structural descriptors10,11. 
The vast majority of these models have relied on properties for a compound that are either well-known, for example 
molecular weight12, along with properties that can be predicted, for example lipophilicity and polar surface area13. 
Therefore, for a potentially permeable compound such models require a range of information to be known which 
may not be available. Very few studies have thought to try and simplify the structure-permeability relationship 
by quantifying group contributions from functional groups within the compound as a correlatable property. One 
study partially analysed functional group effects on the permeability of hydrocortisone esters from the perspective 
of their free energy of transfer of solute into the rate-limiting barrier of the stratum corneum but did not expand the 
relationship beyond this group of compounds14. A second study by the same authors analysed the functional group 
effects on permeability of methyl-substituted p-creosols yet again, did not expand the concept beyond this series 
of compounds15. In another study a range of properties were considered for predicting permeability including the 
number of carbon atoms present and some functional groups, although the latter were then mainly excluded as not 
significant within the dataset used, possibly as the dataset was comparatively small (n = 91) and based on animal  
(as opposed to human) skin data16.

In other analytical in silico scenarios fragment-based approaches have been used to predict useful informa-
tion, for example for molecular property prediction17, and more relevant to this study, to predict permeation 
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through the blood-brain barrier (BBB)18 whereby the models developed were noted as useful for the identi-
fication, selection and design of new drug candidates. A variety of additional uses of the group contribu-
tion approach can also be found in the literature, for example to predict the properties of aerosols19 and the 
well-established estimation of partition coefficients20,21. To be able to create such a model requires a comprehen-
sive dataset of experimental data which may include information on experimental uncertainty with chemical 
descriptors22. For this study a freely accessible and comprehensive dataset of skin permeation data was used 
that solely comprised of human skin data with incorporated experimental parameters for each value included, 
known as HuskinDB23, making it the most relevant dataset available for consideration. Previous work from 
our group has established several models for predicting skin permeability using this dataset24 yet the models 
required knowledge of the physicochemical properties of the compound under investigation, such as partition 
coefficient (logP), topological surface area (TPSA) and molecular volume (MV). This study negates the need for 
such information by correlating skin permeation with only the knowledge of the type and number of functional 
groups present within the molecule in question, thus simplifying the predictive process immensely.

Results
Firstly, a QSPR model was initially created using permeability coefficient (logKp) values from the HuskinDB 
dataset for 180 compounds containing ten functional groups (as listed in the Methods section) to confirm the 
validity of the concept. This dataset was selected from the original full dataset to avoid seven ‘unusual’ functional 
groups (boron, cyanide, epoxide, fluorine, nitro, phosphate and thiol) where only a small number of compounds 
included these groups and it was deemed insufficient data to create a reliable contribution for those particular 
groups. Where more than one logKp value was available for a compound a series of experimental parameters 
were chosen to reduce the value to one, selected to most closely reflect those experienced in vivo, namely: abdo-
men source, epidermis and dermis layers, concentrated solute and an experimental donor solution temperature 
31–35 °C. An experimental donor pH between 7 and 7.5 was selected to maximise the dataset as the majority of 
compounds that had specified pH only had data in this pH range available. The ten most commonly-encountered 
functional groups within the dataset (amide, amine, aromatic, bromine, carboxylic acid, chlorine, ester, ether, 
hydroxyl and ketone) were independently correlated with logKp for each of the training set compounds (n = 144) 
to produce an equation (Eq. 1) that considers the individual contributions of each fragment to the overall per-
meation value. Coefficients of determination (R2) and root mean square error (RMSE) values for the training set 
(n = 144) and subsequent test set (n = 36) are presented along with Eq. 1 which displays the contribution for each 
functional group analysed. It should be noted that this equation also takes into consideration the prevalence of 
each functional group present in the molecule, for example if the compound contains two aromatic groups then 
the contribution value should be calculated as (+0.186 × 2).

= − . + . × − . × − . ×
+ . × − . × + . ×
− . × − . × − . × − . ×

= = . = .

= = . = . (1)

Kp n n n
n n n
n n n n

n R

n R

log 5 622 0 186( aromatic) 0 369( amide) 0 374( amine)
0 329( bromine) 0 757( carboxylic acid) 0 182( chlorine)
0 272( ether) 0 245( ester) 0 349( hydroxyl) 0 313( ketone)

Training set: 144, 0 5002, RMSE 0 76

Test set: 36, 0 4003, RMSE 0 96

2

2

Although the resultant equation allows prediction for permeation for the first time using group contributions 
for any compound that contains one or more of the ten functional groups included, and the training and test sets 
both produced a reasonable correlation it is not as high as some models using physicochemical properties seen 
by others, such as that of Moss and Cronin’s analysis of steroids (n = 116, R2 = 0.82)25 or Magnusson et al. with an 
equation based on molecular weight alone (n = 87, R2 = 0.847)26.

For this reason, a second model was established to understand the relationship between predictive ability and 
experimental conditions. To achieve this, permeation data was divided into four experimental categories: skin 
source (breast/abdomen/thigh), skin type (epidermis/epidermis + dermis/dermis/stratum corneum), donor 
concentration (dilute/saturated) and experimental temperature (20–25/26–30/31–35/36–40 °C). A summary of 
the resultant equations with functional group contributions is displayed in Table 1.

From all of the potential models created in Table 1, the most suitable for use is that which has a comparatively 
high number of compounds within the dataset and yet also as high as possible R2. Combining these two aspects 
ensures the chosen model will have both wide applicability for a range of compounds and a good degree of cor-
relation, i.e., good predictive ability. Based on the data in Table 1 the most suitable model to meet these criteria 
is that based on abdomen skin with only the epidermis permeated and in a diluted donor solution at 31–35 °C. 
Under these conditions the number of compounds and coefficient of determination are both comparatively 
reasonable (from within the ranges displayed in Table 1), thus this model was selected as the most suitable. As 
before, the total number of compounds was separated into a training set (to derive Eq. 2) with associated coeffi-
cients of determination and root mean square error (RMSE) values for both the training and subsequent test sets.

= − . + . × − . × − . ×
+ × − . × + . ×
+ . × + . × − . × − . ×

= = . = .

= = . = . (2)

Kp n n n
n n n

n n n n

n R

n R

log 4 916 0 168( aromatic) 0 176( amide) 1 143( amine)
0( bromine) 1 521( carboxylic acid) 0 616( chlorine)
0 601( ether) 0 145( ester) 0 512( hydroxyl) 0 131( ketone)

Training set: 29, 0 7125, RMSE 0 71

Test set: 7, 0 8931, RMSE 0 49
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This model could be simplified even further by removing the bromine contribution as with a value of zero it is 
unnecessary for inclusion. Figure 1 displays the relationship between the predicted and experimental logKp val-
ues for the 36 compounds analysed using Eq. 2 based upon HuskinDB logarithmic Kp values expressed in cm/s.

Discussion
As visualised in Fig. 1, there is a clear correlation between the predicted logKp values and those found experi-
mentally from HuskinDB, confirming the relationship between the functional groups present in a compound 
and their influence on permeation. Even though the dataset for Eq. 2 was far smaller than that for Eq. 1, Eq. 2 
still included a range of compounds that included all of the functional groups under investigation. The R2 value 
obtained with the training set, and even more importantly the test set, indicate that this model is far superior 
to Eq. 1 from the far larger dataset. In comparison with our previously proposed model24 that utilised phys-
icochemical data for each compound, the model presented in Eq. 2 can be considered superior (despite the 
smaller dataset) based upon the higher R2 values (0.7125 and 0.8931 vs. 0.5042 and 0.5057) and lower RMSE 
values (0.71 and 0.49 vs. 0.73 and 0.84) for the training and test sets respectively. Statistical significance using a 
two-tailed t-distribution for the training and test sets in Eq. 2 was further confirmed whereby ρ was calculated to 
be 8.7 × 10−9 (n = 29) and 1.3 × 10−3 (n = 7) respectively, i.e. far smaller than the standard accepted limit of 0.05.

Skin Source Skin Type Donor Conc. Exp. Temp. (°C) No. of cmpds R2 Equation

Breast Epidermis Diluted 36–40 9 0.9639 LogKp = −8.572 + 0.399 (Aromatic) + 2.426 (Ester) - 0.474 
(Ether) - 2.071 (Hydroxyl)

Breast Epidermis + Dermis Saturated 36–40 6 0.7874 LogKp = −6.618 + 0.217 (Bromine) + 0.123 (Chlorine)

Breast Epidermis + Dermis Diluted 20–25 4 0.9703 LogKp = −4.226 - 0.040 (Chlorine)

Breast Epidermis + Dermis Diluted 31–35 20 0.5810
LogKp = −6.878 - 0.739 (Aromatic) + 0.548 (Amide) + 0.651 
(Amine) + 1.451 (Carboxylic acid) - 0.325 (Ether) + 1.030 
(Hydroxyl) - 1.037 (Ketone)

Breast Epidermis + Dermis Diluted 36–40 5 1.0000 LogKp = −5.243 - 0.253 (Chlorine) + 0.441 (Ester) + 0 (Ether) 
- 1.187 (Hydroxyl) + 0.826 (Ketone)

Abdomen Epidermis Saturated 20–25 10 N/A LogKp = −7.850

Abdomen Epidermis Saturated 26–30 8 0.6325 LogKp = −5.645 - 0.046 (Ester) - 0.958 (Ether)

Abdomen Epidermis Diluted 20–25 36 0.6757
LogKp = −4.840 + 0.392 (Aromatic) - 1.654 (Amide) - 0.095 
(Amine) + 0.424 (Bromine) + 0.266 (Chlorine) - 0.173 
(Ester) - 0.975 (Hydroxyl) - 0.243 (Ketone)

Abdomen Epidermis Diluted 26–30 2 N/A LogKp = −6.351

Abdomen Epidermis Diluted 31–35 36 0.7466
LogKp = −4.925 + 0.245 (Aromatic) - 0.054 (Amide) - 1.184 
(Amine) - 1.582 (Carboxylic acid) + 0.589 (Chlorine) + 0.089 
(Ester) + 0.537 (Ether) - 0.509 (Hydroxyl) - 0.019 (Ketone)

Abdomen Epidermis Diluted 36–40 43 0.5094
LogKp = −6.618 + 0.484 (Aromatic) + 0.966 (Amide) - 0.041 
(Amine) - 0.252 (Carboxylic acid) + 0.850 (Chlorine) - 0.010 
(Ester) - 0.665 (Ether) - 0.197 (Hydroxyl) −1.195 (Ketone)

Abdomen Dermis Saturated 20–25 8 N/A LogKp = −6.674

Abdomen Dermis Diluted 20–25 16 0.8849 LogKp = −4.625 + 1.796 (Ester) + 0.021 (Ether) - 0.291 
(Hydroxyl) - 1.542 (Ketone)

Abdomen Dermis Diluted 31–35 6 0.4186 LogKp = −5.528 - 0.283 (Aromatic)

Abdomen Epidermis + Dermis Saturated 26–30 4 N/A LogKp = −8.632

Abdomen Epidermis + Dermis Diluted 20–25 4 N/A LogKp = −6.063 (Hydroxyl)

Abdomen Epidermis + Dermis Diluted 26–30 8 0.8446 LogKp = −5.672 + 0.093 (Aromatic) - 0.660 (Amide) + 0.155 
(Amine) + 0.422 (Carboxylic acid) - 0.603 (Hydroxyl)

Abdomen Epidermis + Dermis Diluted 31–35 45 0.2794
LogKp = −6.271 - 0.529 (Aromatic) - 0.148 (Amide) - 0.176 
(Amine) + 1.136 (Carboxylic acid) + 0.221 (Chlorine) - 2.561 
(Ester) + 0.426 (Ether) - 0.203 (Hydroxyl) - 0.665 (Ketone)

Abdomen Epidermis + Dermis Diluted 36–40 14 0.9661 LogKp = −5.007 + 0.478 (Ester) - 1.423 (Hydroxyl) + 0.925 
(Ketone)

Abdomen Stratum corneum Diluted 26–30 3 0.2500 LogKp = −5.562 - 0.395 (Amide)

Abdomen Stratum corneum Diluted 31–35 3 1.0000 LogKp = −6.201 - 0.687 (Amide) + 0.357 (Hydroxyl)

Thigh Epidermis Diluted 31–35 3 1.0000 LogKp = −8.667 + 0.394 (Aromatic) + 0.488 (Amide)

Thigh Epidermis Diluted 36–40 3 1.0000 LogKp = −5.503 + 0.129 (Ether) - 1.989 (Hydroxyl)

Thigh Epidermis + Dermis Diluted 20–25 5 N/A LogKp = −4.896

Thigh Epidermis + Dermis Diluted 26–30 17 0.8838
LogKp = −5.260 - 0.080 (Aromatic) + 0.240 (Amide) - 0.376 
(Amine) - 0.181 (Chlorine) - 2.674 (Ester) + 0.119 (Ether) - 
0.245 (Hydroxyl)

Thigh Epidermis + Dermis Diluted 31–35 3 0.5127 LogKp = −7.490 + 0.097 (Hydroxyl)

Thigh Epidermis + Dermis Diluted 36–ss40 21 0.3755 LogKp = −3.997 - 0.094 (Aromatic) - 1.469 (Amine)) + 0.576 
(Ester) - 1.052 (Hydroxyl)

Table 1. QSPR models for skin permeability (logKp) prediction using data extracted from HuskinDB based 
upon the ten most commonly encountered functional groups within the compounds analysed. Where a group 
has no contribution to the equation it has been excluded from the final equation listed.
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As this is the first model of its kind (using functional groups to predict permeation) there are limita-
tions in appropriate models for comparison. Figure 1 includes a baseline model produced using a combi-
nation of the permeation values extracted from HuskinDB and the average permeation value from all of 
the HuskinDB data used (−6.14), presented as a horizontal relationship compared with the far more linear 
relationships observed for the training and test datasets. To further corroborate the findings, RMSE values 
for both training and test datasets were calculated using mean baseline models. For the training set used 
in Eq. 1 (n = 144) and Eq. 2 (n = 29) the mean baseline models provided RMSE values of 1.07 and 1.31 
respectively, far higher than those calculated from the equations themselves. This indicates that using the 
models will provide a better prediction of permeation compared with simply taking an average value from 
the dataset.

Furthermore, this model is also more suitable than those published by others, such as the well-known ‘Potts 
and Guy’ model5 (R2 = 0.67) or the United States Environmental Protection Agency DERMWIN™ model27 
(R2 = 0.66), both based on partition coefficient and molecular weight data, as opposed to functional group data. 
The same set of compounds as those used in the training and test sets for Eq. 2 were then analysed using the 
‘Potts and Guy’ model5 and the DERMWIN™ model (log Kp (cm/h) = −2.80 + 0.66 logKow - 0.0056 MW)27. 
For both models an R2 of 0.504 was calculated for the training sets and 0.737 and 0.738 for the test sets, i.e. all 
four values were lower than obtained for Eq. 2. Both models also exhibited higher RMSE values of 1.23 and 
1.17 for the training sets with 1.15 and 1.10 for the test sets respectively, i.e. higher than obtained for Eq. 2. 
Even when compared alongside a far more complex QSAR model based on substructural molecular fragments 
that considers types of bonds (single/double/triple)28, our model performed well with a higher test set R2 value 
(0.893 vs. 0.630). Furthermore, the aforementioned publication does not specify the exact values of the separate 
contributions. For example, our ‘constant’ contribution in Eq. 2 is defined as −4.916 (similar to their value of 
approximately −5) yet their exact values for each fragment contribution are not provided. Their lack of inclusion 
of specific values does not facilitate the same level of usefulness for readers to facilitate permeation calculation 
that our approach provides.

Therefore, we propose that our model could be used to predict permeation for any compound that contains 
one or more functional groups within the compound and no other physicochemical information is required. 
From a practical perspective, it is envisaged that the model can be applied very simply by a researcher once they 
have identified the chemical composition of their compound under investigation. From this point they can then 
use the model to calculate the overall contribution for the groups and insert that into the equation to achieve a 
predicted permeation value, as summarised for a model compound (cytarabine) in Fig. 2.

Using the model in this way transforms the theoretical concept to a practical and useful tool for research-
ers to use when wishing to predict permeation, i.e., taking a dataset, transforming it into a model and then 
confirming its suitability for predictive purposes. It could be argued that there are limits on the range of 
compounds that can be predicted from such equations, for example only for those with similar molecular 
mass or lipophilicity ranges to those in the dataset. At this time, it is not possible to confirm how far beyond 
the included range of properties the model would be reliable thus reasonable caution should be taken when 
extending beyond such limits. Furthermore, the authors acknowledge the limited size of the dataset (which 
can introduce stochastic effects), and that larger datasets would provide access to more sophisticated models 
such as random forests. In summary, this approach dramatically simplifies mathematical prediction whilst 
also ensuring the obtained values are human-relevant and therefore offers an exciting way forward for simple, 
yet precise, permeability prediction for a wide variety of compounds.
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Fig. 1 Predicted (from Eq. 2), experimental (HuskinDB) and baseline model logKp values (cm/s) for the 
training and test sets.
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Methods
All Kp values (cm/s) analysed in the study were considered as logKp values from within the HuskinDB database29, 
expressed as logarithmic (logKp) values as this is standard procedure. logKp values were analysed with the ten 
most commonly encountered functional groups in the dataset: amide, amine, aromatic, bromine, carboxylic 
acid, chlorine, ester, ether, hydroxyl and ketone.

Our goal was to fit a multiple regression model of the form30:

= + + + …y a a x a x a x0 1 1 2 2 3 3  or = + ∑ =y a a x( )j
n

j j0 1  to the data available,

Fig. 2 An example of how the mathematical model can be applied for a given compound using Eq. 2, illustrated 
using a compound from within HuskinDB (cytarabine) to highlight the correlation between the experimental 
and predicted values.
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where a0 is the best estimate of logKp if no information about the functional groups is present or they have no 
effect (equivalent to the intercept of a simple regression model) and aj are the parameters relating to each prop-
erty, the amount that is added or subtracted to estimate logKp due to the presence of each functional group of 
type j present in the molecule of interest. y is logKp for the molecule and xj the number of functional groups j 
present in the molecule.

This is done by minimising the quantity q, which is the sum of the deviation between observed and predicted 
values of logKp squared:

∑ ∑=





−






+










= =

q y a a x
i

m

i
j

n

j ij
1

0
1

2

It can be shown that the values of aj that optimise this expression, when expressed in matrix form, are:

a X X X Y( ) ( )T T1
= . .

−

where a is a column vector containing the n + 1 fitted parameters a0, a1, …. an
Y is a column vector containing the m observed values of logKp
X is matrix with m rows and n + 1 columns. Each row containing the number of each of the n functional 

groups present, with the first column being filled with 1’s as there is no data associated with the a0 term (it is 1 
a0, rather than x0 a0).

XT is the same matrix transposed so it has m columns and n + 1 rows. This is required, to allow the matrices 
to be multiplied.

Once the estimates for the parameters a0, a1 … had been determined a method was required to test the 
goodness of fit, whether the parameter is statistically different to it being zero or whether incorporating a term 
associated with a specific functional group gives anything significant to the model. This is done, in two ways. 
Firstly, an ANOVA table was constructed which tests the hypothesis that all the fitted values are equal to zero by 
calculating the F statistic and its associated probability. Using the same matrix notation as above, it can be shown 
that the maximum likelihood estimate for the standard deviation in the fitted values of y is:

�σ = −Y Y a X Y
m

T T T

and the fitted parameter is considered not significantly different to zero if:

∣ ∣
∣ ∣

a t
m c

m nj m n
jj�< . σ

−−

where cjj is the jth diagonal element of the square matrix (XT.X)−1 used in fitting the regression parameters and 
tm−n is the t statistic on m−n degrees of freedom at the required level of significance. This analytical approach 
seemed suitable as it has been previously applied to a wide variety of applications31–35. Having determined a 
method for fitting the regression parameters and then assessing their significance, the next task was to determine 
the most appropriate parameters to include in the model. For this we adopted the ‘top down’ approach whereby 
a regression model was fitted using all possible parameters and the least significant was then removed (or each 
parameter that is not significantly different to zero removed in turn) and a model with one fewer parameter fit-
ted. This process was repeated until all the parameters included in the model were significantly different to zero 
at the required level.

Two approaches were adopted for creation of an optimised model using different subsets of data. Firstly, 
180 compounds from the dataset were included for analysis (after removal of extreme outliers and unusual 
functional groups). Secondly, as with our previous study24, four experimental variables: skin source (breast/ 
abdomen/ thigh), skin layer used (epidermis/ dermis/ epidermis + dermis/ stratum corneum), concentration of 
donor solution (neat/diluted) and donor solution temperature (20–25/26–30/31–35/36–40 °C) were considered. 
As before, these four variables included a total of 96 scenarios yet only 27 were analysed (i.e., where n > 1), with 
71 compounds from the 253 in total excluded as they did not fulfil the requirement to have at least one specified 
experimental variable. It should be noted that some of the remaining compounds were sometimes considered 
in more than one scenario where multiple logKp values were provided under different experimental variables.

Multiple linear regression analysis (using Microsoft Excel (Data Analysis), Microsoft 365®) with the ten 
functional groups created models with their associated coefficients of determination (R2). Data was divided ran-
domly into training (80%) and test (20%) sets using the training set to form an equation for each model which 
was then reviewed using the associated test set. The decision to use an 80:20 split was chosen to follow that used 
in our previous work, which itself was selected based on supporting literature35. For comparative analysis with 
existing models all calculated logP/logKow and MW values were extracted from (www.molinspiration.com36) 
for consistency.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper. Literature 
data used in the paper was extracted from HuskinDB (drug-design.de) which has been presented in this journal 
as ‘HuskinDB, a database for skin permeation of xenobiotics’23.
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