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Stemness signature and targeted 
therapeutic drugs identification for 
triple Negative Breast Cancer
Samina Gul, Jianyu Pang, Hongjun Yuan, Yongzhi Chen, Qian yu, Hui Wang & Wenru tang   ✉

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and carries the 
worst prognosis, characterized by the lack of progesterone, estrogen, and HER2 gene expression. 
This study aimed to analyze cancer stemness-related gene signature to determine patients’ risk 
stratification and prognosis feature with TNBC. Here one-class logistic regression (OCLR) algorithm 
was applied to compute the stemness index of TNBC patients. Cox and LASSO regression analysis was 
performed on stemness-index related genes to establish 16 genes-based prognostic signature, and 
their predictive performance was verified in TCGA and METABERIC merged data cohort. We diagnosed 
the expression level of prognostic genes signature in the tumor immune microenvironment, analyzed 
the TNBC scRNA-seq GSE176078 dataset, and further validated the expression level of prognostic 
genes using the HPA database. Finally, the small molecular compounds targeted at the anti-tumor 
effect of predictive genes were screened by molecular docking; this novel stemness-based prognostic 
genes signature study could facilitate the prognosis of patients with TNBC and thus provide a feasible 
therapeutic target for TNBC.

Introduction
Breast cancer has placed second on the list of common diseases worldwide, according to the World Health 
Organization (WHO) reports1. Every year women are diagnosed with approximately 268,600 new cases of inva-
sive breast cancer, and about 41,760 women will die from breast cancer estimated by the American Cancer 
Society. Breast cancer is the sixth leading cause of cancer-related deaths among Chinese women, and approxi-
mately 11% of all breast cancers worldwide occur in China2. Breast cancer is among one of the most common 
cancer and, in China, is approximately more than twice the global incidence rate and is the sixth leading cause 
of cancer-related death3. TNBC triple-negative breast cancer is regarded as aggressive among all the subtypes. 
It lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth receptor2 and 
has an elevated risk of recurrence, metastasis, and higher histologic grade compared to other subtypes4. Patients 
with TNBC, when compared with patients with hormone receptor (HR)-positive breast cancer, experienced a 
dramatic increase in death within two years of diagnosis and worse overall survival, according to the data pre-
sented to National Comprehensive Cancer Network centers (NCCN) in 20125. Each year approximately 15–20% 
of the more than one million breast cancer patients with TNBC are diagnosed worldwide6. No targeted therapies 
are available for TNBCs, unlike endocrine therapy for PR+ ER+ and HER2+ patients. Therefore, to improve 
the survival rate of TNBC, patient detection of potential markers and therapeutic targets need to be explored.

There is growing evidence that cancer stem cells have been studied in many solid tumors, including lung 
cancer7, ovarian cancer8, Hepatic carcinoma9–11, and pancreatic carcinoma11, colon7, and play an essential role 
in different human malignancies. Cancer stems cell research has revealed the unique function of cancer stem 
cells defines a specific cell type that possesses the main properties of self-renewal, differentiation potential, 
multi-lineage, and proliferation. The term stemness refers to the degree to which cancer stem cell contains these 
functional properties12. Accumulated evidence has also found that cancer stem cells play an essential role in 
cancer metastasis, differentiation13, and elimination of cancer stem cells will suppress the growth and recurrence 
of breast cancer14. Therefore, investigating the cancer stem cell in TNBC may improve the clinical results. The 
identification of reliable tumor markers will significantly impact TNBC prognosis and treatment. Cancer stem 
cells are a robust heterogeneous population and the cellular sources of unlimited growth and recurrence of 
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malignant tumors. Cancer stem cells play critical roles in breast cancer growth, metastasis, and drug resistance15.  
The advanced understanding of the molecular mechanisms of CSCs in TNBC provides suitable disease manage-
ment in the future. Accumulated evidence has revealed mRNAsi-related signature in different cancers, including 
lung squamous cell carcinoma, glioma, hepatocellular carcinoma, triple-negative breast cancer, and colorectal 
cancer16. However, there are few studies on the stemness index in TNBC. Therefore, findings of the stemness 
index’s application value in TNBC are critical to improving diagnosis and treatment.

The messenger RNA (mRNA) expression-based stemness index (mRNAsi) is used to quantify the unique 
characteristics of CSCs; Malta et al. developed a scoring system using one class logistic regression (OCLR) 
machine learning algorithm as a robust method to quantify the cancer stemness17. Here in this work, we explored 
the role of stemness index in 127 patients with TNBC to calculate the mRNAsi of TNBC samples using one 
class logistic regression algorithm, counted the stemness index and immune score for 127 TNBC samples, and 
analyzed the association between immune infiltration and mRNAsi. Then, we identified the stemness-related 
DEG into high and low mRNAsi groups and performed functional enrichment analysis to reveal the potential 
functions of these genes in the progression and pathogenesis of TNBC. Then, we classified the TNBC patients 
into two stemness subtypes using the consensus clustering method based on these DEGs. A novel prognostic 
risk model including sixteen genes (BMP4, CCBE1, CELSR3, CT83, CXCL11, EGR2, GLDC, GPRC5C, TRO, 
STMN2, SCGB2A2, RUNDC3B, PROS1, PCDHGA3, IL1RL1, UGT2B11) was established by COX and LASSO 
regression analysis, and its predictive performance was verified in external validation cohort. We constructed 
a nomogram for patients with TNBC for potential clinical application. We analyzed the TIME map for prog-
nostic genes, analyzed single-cell RNA sequencing (scRNA-seq) data and explored (TIME) the tumor immune 
microenvironment, analyzed the fate of cells, and explored the expression of sixteen genes in different cell types. 
Besides, we further validated the expression levels of prognostic genes using the HPA database. Finally, molecu-
lar docking research was performed on sixteen genes to screen anti-stemness compounds.

Results
Correlation between mRNAsi and clinical characteristics of TNBC patients. This work was per-
formed according to the flow chart, which presents the overall construction scheme of the stemness index and 
stemness prognostic signature displayed in (Fig. 1). To explore the correlation between mRNAsi and clinical 
characteristics of TNBC, we calculated the stemness index and immune score of 127 TNBC patients using the 
OCLR and ESTIMATE algorithms. We then ranked patients to investigate the relationship between mRNAsi and 
clinical characteristics (Fig. 2a,b). We divided all patients into groups and then compared the mRNAsi expression 
in various clinical features according to the clinical characteristics. Association analysis showed that mRNAsi 
did not significantly differ by age (Fig. 2c), and mRNAsi were significantly high in clinical stage I/II (p = 0.042) 
(Fig. 2d). We found that the value of mRNAsi in the survival group was insignificantly higher than that in the 
group that died (Fig. 2e). There were no significant differences in the immune scores by age, clinical stage, or 
survival groups (Fig. 2f–h).

Correlation, differential and functional enrichment analysis between mRNAsi groups and tumor 
microenvironment. To explore the correlation between mRNAsi and immune infiltration, we applied the 
ssGSEA method to quantify the enrichment of 28 immune-related signatures to reflect the immune activity. The 
result showed that in the low-mRNAsi group, the immune activity was higher than that in the high-mRNAsi 
group (Fig. 3a). ESTIMATE and CIBERSORT algorithms explored the tumor microenvironment, and we found 

Fig. 1 Work flow of current work.

https://doi.org/10.1038/s41597-023-02709-8


3Scientific Data |          (2023) 10:815  | https://doi.org/10.1038/s41597-023-02709-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

that mRNAsi was significantly negatively correlated with the immune score, stromal score, and ESTIMATE score 
(p < 0.01), which indicated that the immune cell infiltration levels decrease with elevated TNBC stemness (Fig. 3b–d).  
We also detected the immune infiltration using the CIBERSORT algorithm to quantify the abundances of the 
22 immune cell types in the two mRNAsi groups. We found that the mRNAsi was significantly positively corre-
lated with T cell follicular helper cells, T cell CD4 memory activated, and M1 macrophages and was significantly 
negatively correlated with naive B cells, mast cells resting, and Eosinophil (Fig. 3e). There were no significant 
differences between samples grouped by the median mRNAsi value to explore the differences in the functional 
annotation and pathway enrichment analysis between the groups categorized by mRNAsi. For more reasonable 
grouping, we reclassified 127 TNBC patients into the high-mRNAsi group (n = 85) or the low-mRNAsi group 
(n = 42). We obtained an optimal cutoff of mRNAsi = 0.47 based on the results of the “survminer” analysis (Fig. 3f).  
We then analyzed the differential expression and identified 2228 DEGs from the intersection of mRNAsi groups 
and TNBC (Fig. 3g). To investigate the possible biological functions of these DEGs, we performed DAVID. 
According to the results of the functional enrichment analysis, we found mitotic nuclear division, regulation of 
mitotic nuclear division, cell−cell adhesion via plasma−membrane adhesion molecules, mitotic sister chromatid 
segregation, chromosome segregation, sister chromatid segregation, organelle fission nuclear division enriched 
biological processes. Cellular components, including chromosomal region, chromosome centromeric region, col-
lagen−containing extracellular matrix and molecular functions, including glycosaminoglycan binding, extracel-
lular matrix structural constituent, receptor-ligand activity, signaling receptor activator activity (Fig. 3h); and 30 
enriched KEGG pathways, including the PI3K-Akt signaling pathway, TGF-β signaling pathway, MAPK signaling 
pathway (Fig. 3i). These results suggest that these DEGs are associated with the cancer signaling pathway and may 
regulate cancer progression. To check whether the mRNAsi significantly related to overall survival in TNBC, we 
conducted the K-M analysis, and the results showed that the patients with high mRNAsi scores showed poor over-
all survival status (Fig. 3j).

Identification of TNBC stemness subtypes and exploration of tumor microenvironment. We 
utilized an unsupervised consensus clustering method to construct a novel classification of TNBC in the TCGA 
cohort to analyze the association between mRNAsi and TNBC subtypes. Therefore, 127 patients with TNBC 
were classified into two stemness subgroups (Fig. 4a), including stemness subtype I (67 patients, 53.7%) and 
stemness subtype II (60 patients, 47.2%). The demographic information between the two subtypes is shown in 
(Supplementary Table S1); according to the consensus heatmap and consensus CDF curve, the intergroup con-
nections were the lowest, and the intragroup connections were the highest when k = 2 (Supplementary Fig. 1a,b; 
and Supplementary Table S2). We performed differential expression analysis in stemness subtypes and explored 
the molecular pathways associated with the stemness subtypes using GSVA. Finally, we identified 30 significantly 
enriched pathways positively related to the stemness subtype I (Fig. 4b). The results revealed that stemness sub-
type I tumors were primarily associated with tumorigenesis NOTCH-signaling, PI3K_AKT_MTOR-signaling, 
and WNT_BETA_CATENIN- signaling. We utilized ESTIMATE and CIBERSORT algorithms to elucidate differ-
ent immune infiltration in two different stemness subtypes, as shown in (Fig. 4c–e); stromal score, immune score, 
and ESTIMATE score all appeared to be lower in stemness subtype I compared with stemness subtype II. Somatic 
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Fig. 2 The correlation between mRNAsi and clinical characteristics in TNBC patients (N = 127). (a) The 
general diagram of the association between mRNAsi and the clinical features and mRNAsi score were shown 
on the y-axis (b) The general diagram of the association between the immune score and the clinical features, 
immune score were shown on the y-axis (c–e) The Boxplots of mRNAsi score for TNBC patients stratified by 
clinical features. (f–h) The boxplot of the immune score and clinical features of TNBC patients. Significance  
P values were calculated by the Wilcoxon rank sum test.
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mutation analysis revealed that TMB was significantly higher in the stemness subtype I (p = 0.0028, as shown in 
Fig. 4f). In general, the more efficacious treatment with an immune checkpoint inhibitor possible with the higher 
the TMB. Subsequently, CIBERSORT illustrates the immune cell infiltration abundances in TNBC. Immune 
infiltration including B cell naïve, CD4+ cell subsets, monocytes, and Mast cells significantly more enriched in 
stemness subtype II and CD4+ memory activated cell, T cell follicular helper, T cell regulatory, Macrophages M0, 
Macrophages M1 significantly more enriched in stemness subtype I (Fig. 4i). We also explored the expression 
level of six immune checkpoint genes, including (CD80, CD84, CD274, CTLA4, PDCD1, and PDCD1LG2) in 
stemness subtypes. We found that the stemness subtype I have a higher immune checkpoint expression level than 
stemness subtype II, as shown in (Supplementary Fig. 2a–d) but only significant in CD80, CD84 (Fig. 4g,h). These 
results suggest that stemness subtypes show different responses to immunotherapy and stemness subtype I am 
more immunogenic than stemness subtype II, and patients in stemness subtype I might show a better response 
to immunotherapy.

Construction and validation of stemness related to an independent prognostic signature 
for TNBC. We constructed a mRNAsi-related prognostic signature based on 2228 DEGs to predict TNBC 
prognosis. We used METABERIC and TCGA-BRCA merged datasets and extracted 447 TNBC samples, split 
into Train (sample; 298) and Test (sample; 149). We trained 2228 DEGs on 298 TNBC samples as a training 
cohort and identified 47 genes related to TNBC prognosis (p < 0.05) using univariate Cox regression analysis. 
We reduced this number to 16 genes using LASSO regression analysis (Supplementary Fig. 3a,b). Then, we used 
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Fig. 3 Correlation of mRNAsi with TIME different patterns of TNBC patients, different functional enrichment 
analyses, and survival outcomes between mRNAsi groups. (a) Based on the ssGSEA immune signature 
the mRNAsi of TNBC patients were categorized into two subgroups low and high group based. Red color 
indicates a high mRNAsi group and green color indicates a low mRNAsi group, the expression of an estimate, 
stromal, and immune, mRNAsi groups in the immune signature were indicated by red and blue color, red 
shows upregulation, and blue shows downregulation (b–d) Correlation between mRNAsi, the immune score, 
stromal score, and ESTIMATE score based on ESTIMATE algorithm. The blue line is the regression line of 
mRNAsi and other scores. (e) Comparisons of the abundances of 22 immune cells in 2 mRNAsi groups by 
CIBERSORT algorithm. *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001. (f) mRNAsi were divided into 
two groups, high and low based on survminer analysis determined 0.47 as the optimal grouping, with value of 
high mRNAsi group (N = 85) and low mRNAsi group (N = 42). (g) The heatmap reflects the expression levels 
of DEGs between high and low mRNAsi groups. (h-i) The GO and KEGG functional annotation analysis of the 
DEGs. (j) KM survival analysis showed the different survival status between mRNAsi groups green color shows 
low mRNAsi and the red color shows high mRNAsi group with a p-value of 0.041. Significance P values were 
calculated by the Wilcoxon rank sum test.
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these 16 genes including (BMP4, CCBE1, CELSR3, CT83, CXCL11, EGR2, GLDC, GPRC5C, TRO, STMN2, 
SCGB2A2, RUNDC3B, PROS1, PCDHGA3, IL1RL1, UGT2B11) build prognosis risk signature. Among them, 
CT83, CXCL11, EGR2, GLDC, PROS1, TRO, and UGT2B11 were associated with decreased risk with HR < 1, 
while the other genes were related to an increased risk with HR > 1. The prognostic formula to calculate the risk 
score of each sample is as follows: Risk score = Coef (genes) × Exp (genes); Exp represents the gene expression 
level, and Coef represents the LASSO coefficient of the target gene. The risk scores of TNBC patients in 298 
training datasets and 149 test datasets as validation cohorts were calculated, and the optimal cutoff values of the 
risk score in the training and test datasets were 1.7 and 1.8, respectively. TNBC patients in the Train dataset were 
divided into high-risk (n = 149) and low-risk (n = 149) groups according to the median value. The association 
between the risk score and survival information is exhibited in (Fig. 5a). In the Train cohort, the patients in the 
low-risk group had significantly longer overall survival times (p < 0.0001, HR = 4, 95%CI: 2.8 − 5.8; Fig. 5b). 
The AUC was 0.705 for the 1-year survival, 0.715 for the 3-year survival, 0.706 for the 5-year survival, and 0.672 
for the 7-year survival (Fig. 5c), indicating that the signature has high precision. We used the same method to 
assign 149 test cohorts to low-risk groups (n = 75) or high-risk groups (n = 74). In the test cohort, patients in the 
low-risk group had lower death rates and longer survival times (p = 0.0033, HR = 2.3, 95% CI: 1.44–3.7; Fig. 5d). 
The AUC of the test cohort, 0.753 for the 1-year survival, 0.688 for the 3-year survival, 0.667 for the 5-year sur-
vival, and 0.646 for the 7-year survival, also indicated that the model has predictive power (Fig. 5e). We used Cox 
regression analysis to check the independent predictive ability of the TNBC prognostic model. The univariate 
Cox analysis demonstrated that the risk score and age were prognostic factors (p = 7.62e−14, HR = 4.039, 95%CI: 
2.801−5.824), and the multivariate Cox analysis demonstrated that the risk score was an independent factor for 
TNBC (p = 6.25e−12, HR = 3.810, 95%CI: 2.602−5.579; Supplementary Fig. 4a,b). We plotted the expression 
level of sixteen genes between the two risk subgroups (Fig. 5f) and found that ten genes were highly expressed in 
the high-risk group, suggesting that they may regulate TNBC progression. We used the prognostic signature to 
establish a nomogram (Supplementary Fig. 5a). The calibration curves were used to compare the actual proba-
bilities of survival and predicated survival rates for the 1-year, 3-year, and 5-year survival, indicating a significant 
correlation between the actual survival rate and the survival rate predicted by the nomogram (Fig. 5g). This sug-
gests that the nomogram has a great predictive value in the prognosis of patients with TNBC.
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B TM
B

b

c d e f
g h

i

Fig. 4 Identification of the two stemness subtypes, different TIME pattern, TMB, and immune checkpoint 
patterns between stemness subtype I shown by yellow color (N = 67) and stemness subtype II shown by blue 
color (N = 60) (a) The heatmap of the expression pattern of DEGs between the two stemness subtypes, immune 
scores, and mRNAsi groups. Red color indicates upregulation and blue color indicates downregulation (b). 
GSVA heatmap showed 33 differentially enriched pathways between the 2 stemness subtypes. Yellow color 
indicates upregulation and blue color indicates downregulation (c–e) Comparisons of the immune score, 
stromal score, and ESTIMATE score in stemness subtype I and II by ESTIMATE algorithm. Significance P 
values were calculated using Student’s T. test (f) TMB difference between the stemness subtypes I (N = 67) and 
II (N = 60). Significance P values were calculated by the Wilcoxon rank sum test. (g-h) The expression levels of 
CD86 and CD80 in the stemness subtypes I (N = 60) are shown by blue color and II by purple color (N = 60). 
(i) Comparisons of the abundances of 22 immune cells in the stemness subtypes I (N = 60) and II (N = 60) by 
CIBERSORT algorithm *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001.
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Small molecular compounds docking of prognostic genes. In this work, we identify drugs targeted 
to prognostic genes using screening of the CTD database, Autodock molecular docking, and drug toxicology 
studies. Octreotide binds tightly to BMP4 (Fig. 6a), upregulates BMP4 mRNA expression, and their simulated 
binding energy for molecular docking was −8.32 (kcal/mol). The results of the molecular docking analysis indi-
cated Calcitriol binds tightly to CXCL11 (Fig. 6b) and regulates the mRNA expression with binding energy for 
molecular docking was −11.47 (kcal/mol). Cyclosporine stood out with an optimal docking binding energy of – 
11.03 (kcal/mol) with an increase in mRNA expression of ILIRL1 (Fig. 6c). Emodin decreases mRNA expression 
of CELSR3 with −5.94 (kcal/mol) binding energy (Fig. 6d). Among the small molecule compound, Cyclosporine 
stood out with optimal binding energy of – 62.3 (kcal/mol) and increased EGR2 mRNA expression (Fig. 6e). 
Raloxifene Hydrochloride efficiently increases mRNA expression of PCDHGA3 with a simulated binding energy 
of −7.22 (kcal/mol) (Fig. 6f). Abrine and Coumarin stood out with an optimal docking binding energy of − 
6.55 and −6.5 (kcal/mol) with an increase in mRNA expression of GLDC, respectively (Fig. 6g,h). Triptonide 
enhanced mRNA expression of SCGB2A2 with optimal docking energy was −9.17 (kcal/mol) (Fig. 6i). Rotenone 
exhibited a docking binding energy of −6.37 (kcal/mol), enhancing the mRNA expression of TRO (Fig. 6j). 
Finally, in screening for small molecule compounds that upregulate UGT2B11 mRNA, obeticholic acid molecular 
docking binding energy was − 7.99 (kcal/mol) (Fig. 6k). In summary, we have selected ten small molecular com-
pounds that are beneficial for improving the worse prognosis caused by sixteen genes, providing new research 
ideas for targeted therapy of TNBC.

Exploration of the mRNA and protein expression levels of sixteen signature genes. To explore 
the clinical significance of the 16 stemness-related genes in the model used clinical specimens from the HPA 
database, HPA analysis showed that the protein levels CCBE1, CELSR3, CXCL11, GLDC, GPRC5C, PROS1, 
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Fig. 5 Construction and validation of an independent prognostic signature. (a) Risk score distribution (the 
high-risk group was shown by red color and low risk was shown by green color), survival status (dead were 
shown by red color and green indicates alive), and signature gene expression in the TCGA (N = 127) and 
METABRIC (N = 320) merged data cohort (N = 447) divided into training cohort (N = 298) and testing cohort 
(N = 149) red color shows upregulation and green shows downregulation. (b) The KM curves of the merged 
training cohort (N = 298) were divided into a low-risk group have green color (N = 149) and a high-risk group 
have red color (N = 149). (c) The ROC curve of merged training cohort, low (N = 149), high (N = 149) risk 
group. 1-year area under was shown by yellow color, 3 years by green color, 5 years by blue and 7 years by red 
color. (d) The KM curve of the merged testing cohort (N = 147) was divided into a low-risk group (N = 75) 
and a high-risk group (N = 74). (e) The ROC curve of the merged testing cohort is low (N = 75) and high 
(N = 74) risk group. (f) The heatmap for the connections between the risk groups and clinical characteristics 
and sixteen genes upregulation were shown by red color and downregulation were shown by green color (g) The 
Nomogram calibration curves to predict the 1-, 3-,  and 5-year survival. 1 year represented by blue color, 3 years 
by green color, and 5 years by red color.
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PCDHGA3, RUNDC3B were shown in Breast cancer tissues compared to normal Breast tissue and BMP4, CT83, 
TRO, STMN2, SCGB2A2, EGR2, IL1RL1, UGT2B11 were not found in database. It was discovered that to the 
TNBC stemness index, five genes related, including RUNDC3B, PROS1, PCDHGA3, CCBE1, and GPRC5C, 
were downregulated in cancer tissue compared to normal Breast tissue, and GLDC, CXCL11, and CELSR3 were 
up-regulated in breast cancer tissue compared to normal tissue as shown in (Supplementary Fig. 6).

Prognostic genes expression in TIME explored scRNA sequencing data. The tumor immune 
microenvironment of 10 patients with TNBC was resolved after single-cell RNA sequencing data were ana-
lyzed according to the standard workflow of Seurat. A total of 21 different types of cell clusters were annotated 
(Fig. 7a,b): Cancer Cell (WFDC2, SAA1, SCGB2A2), Endothelial Cell (PLVAP, ACKR1, VWF), Epithelial Cell 
(CLDN3, MUCL1, TFF3), Exhausted CD8 + T Cell (CD8A, CD8B, CXCR6), Fibroblast (DCN, APOD, LUM), 
Granulosa Cell (SPP1), Leydig Cell (ASPH, SERPINE1, PFN2), M1 Macrophage (CXCL9, CXCL10, CXCL2), M2 
Macrophage (SEPP1, F13A1, FOLR2), Memory T Cell (TRAC, TRBC2), Mesenchymal Cell (RGS5, NDUFA4L2), 
MKI67+ Progenitor Cell (MKI67, RRM2, UBE2C), Naive B Cell (MS4A1, CD79B, BANK1), Natural Killer (NK) 
Cell (GNLY, TRDC, NKG7), Natural Killer T (NKT) Cell (RGCC, DNAJB1, DNAJA1), Neutrophil (S100A8, 
S100P, PI3), Plasma Cell (IGKV3-15, IGKC, IGHG1), Plasmacytoid Dendritic Cell (LILRA4, PLD4, NPC2), 
Regulatory T (Treg) Cell (BATF, TNFRSF18, TNFRSF1B), T Helper Cell (IL7R, CCR7, CD40LG), Tumor 
Associate Macrophage(TAM) (FCN1, VCAN, EREG).

Subsequently, the expression differences of 16 genes in 21 different immune cells were observed (Fig. 7c,d). 
BMP4 is highly expressed in Epithelial and Fibroblast cells, and CCBE1 shows high expression in Leydig 
Cells. CELSR3 is expressed in Epithelial Cells, CT83 is highly expressed in Cancer cells, Epithelial cells, and 
Neutrophils, and CXCL11 is expressed in Fibroblast and M1 Macrophages. EGR2 is highly expressed in Cancer, 
Epithelial Cell, Fibroblast, M1 Microphage, and Natural killer T cells. RUNDC3B is expressed in Epithelial 
Cells. GLDC is expressed in Neutrophils, and GPRC5C is highly expressed in Epithelial and Mesenchymal cells. 
PROS1 is highly expressed in Cancer Cells, Endothelial Cells, Fibroblasts, and M1 Macrophages, and; SCGB2A2 
is highly expressed in Cancer Cells, Epithelial Cells, and Granulosa, TRO is expressed in Fibroblasts. IL1RL1, 
PCDHGA3, STMN2, and UGT2B11 showed no expression with tumor microenvironment components. As 
the target genes showed high expression in epithelial cells among all cells, we used Monocle for pseudotime 
trajectory analysis for Epithelial cells (Fig. 8a). The results showed that epithelial cells were divided into six 
Differentiation states (Fig. 8b) and the top of ten markers of each state (Fig. 8c); we checked the sixteen genes 
expression among six differentiation states of the epithelial cells (Fig. 8d) we found that state six showed higher 
infiltration among all the states by CIBERSORT algorithm (Fig. 8e) which may be related to tumor-promoting. 
GSEA analysis showed that State Six has significantly upregulated Glyoxylate and dicarboxylate metabolism, 
Cysteine and methionine metabolism, and Pyruvate metabolism (Fig. 8f), indicating that state six mainly 
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Fig. 6 The docking results of proteins encoded by prognostic genes with small molecular compounds. The 
docking results of BMP4 with Octreotide (a). The docking results of CXCL11 with Calcitriol (b). The docking 
results of ILIRL1with Cyclosporine (c).The docking results of CELSR3 with Emodin (d). The docking results 
of EGR2 with Cyclosporine (e). The docking results of GLDC with Abrine (g) and Coumarin (h).The docking 
results of PCDHGA3 with Raloxifene Hydrochloride (f). The docking results of SCGB2A2 with Triptonide (i). 
The docking results of TRO with Rotenone (j). The docking results of UGT2B11 with Obeticholic acid (k).
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participates in EMT epithelial-mesenchymal transition, mounting evidence showed that EMT acts as a driver 
during cancer metastasis in different cancer types.

Discussion
According to recent studies, cancer stem cells play critical roles in cancer growth, metastasis, and therapy resist-
ance18,19. It suggests the role of the cancer stemness index in TNBC should be further investigated. In this work, 
we used a series of bioinformatics algorithms to identify the TNBC stem cell-related prognostic gene signature, 
and we performed targeted drug screening of the prognostic genes signature to propose a therapeutic approach 
that regulates poor prognosis. In this research, we applied the OCLR machine-learning algorithm proposed 
by Malta et al. Combined with the PCBC dataset, calculated the mRNAsi score for each patient with TNBC. 
Based on the median mRNAsi value, we divided the patients into high and low mRNAsi groups. We found a 
notable negative correlation between mRNAsi and the TNBC immune score. The ssGSEA results showed that 
the low-mRNAsi group has significantly higher immune activity. This indicates that high mRNAsi is closely 
associated with a low abundance of immune cells, suggesting that CSCs may promote TNBC development by 
weakened immune cells’ abilities. We found that high mRNAsi have poor survival compared to low mRNAsi 
used KM analysis. We redefined the mRNAsi high and low groups based on survminer analysis and functional 
enrichment analysis. We found that DEGs are closely related to mitotic nuclear division, regulation of mitotic 
nuclear division, and enriched in cancer-promoting pathways, including the PI3K-Akt signaling pathway, 
TGF-β signaling pathway, MAPK signaling pathway, suggesting that the CSCs may regulate cancer progression. 
Using consensus clustering, we classified patients into two stemness subgroups, stemness subtype I and stemness 
subtype II. Stemness subtype II has higher enrichment of immune cells and immune infiltration compared to 
stemness subtype I. The expression level of CD80, CD86, and the TMB value was higher in subtype I compared 
to subtype II. This suggests that we could choose different clinical treatments based on stemness characteris-
tics for patients with TNBC. In the present work, we identified 16 genes, including(BMP4, CCBE1, CELSR3, 
CT83, CXCL11, EGR2, GLDC, GPRC5C, TRO, STMN2, SCGB2A2, RUNDC3B, PROS1, PCDHGA3, IL1RL1, 
UGT2B11) related to TNBC stemness index prognostic signature and constructed a prognostic risk model. 
KM plot and a ROC curve indicated that the patients in the low-risk group had significantly longer overall sur-
vival times compared to the high-risk group. Furthermore, we constructed a nomogram for TNBC patients for 
potential clinical application. In this prognostic signature, STMN2, SCGB2A2, RUNDC3B, PCDHGA3, IL1RL1, 
BMP4, CCBE1, CELSR3, and GPRC5C were highly expressed in the high-risk group, and HR >1, suggesting the 
initiation and migration of TNBC.

a b

dc

Fig. 7 Single-cell analysis of 16 genes. (a) 21 different cell populations in the tumor immune microenvironment 
in patients with TNBC (N = 10) (b) Marker gene of 21 different cells. The purple color shows higher expression 
of marker genes and the green color shows low expression (c) Feature Plot of 16 genes in 21 cells blue color 
shows high expression and light blue shows low expression. (d) Vln Plot with 16 genes in 21 cells.
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Accumulated evidence suggests that 16 genes play a tumorigenic role in several cancers; BMP4 is vital in 
the progression of malignant melanoma, promotes melanoma cell invasion and migration, and acts as a tumor 
suppressor in breast cancer20,21. High expression of CCBE1, a novel potential biomarker to predict CRC patients’ 
prognosis, contributes to the aggressiveness and poor prognosis in Colorectal Cancer patients22. Xuefeng et al. 
verified CELSR3 as a potential biomarker for the prognosis of Hepatocellular carcinoma patients, with high 
expression of CELSR3 mRNA involved in cancer progression23. Chen Chen et al. verified that CT83 is the most 
specific gene for triple-negative breast cancer, and its high expression is associated with worse overall survival 
in breast cancer24. A high level of RBP-JK is significantly related to high CXCL11 expression, a risk factor for the 
poor overall survival of colon cancer patients verified by Mengjie et al. GLDC abnormal expression is observed 
in multiple cancer; its aberrant activation correlates with poorer survival in lung cancer patients25. Xueyan 
Zhang et al. verified that PCDHGA3 is associated with cell proliferation and expressed in Follicular lymphoma 
irrespective of B Cell Lymphoma2 status and grading26. PROS1 is a tumor-derived functional ligand for Tyro3 
that protects cancer cells from acute apoptosis induced by staurosporine and supports cancer cell survival; it also 
acts as a tumor metastasis inhibitor27,28. EGR1/2 is involved in cell growth and apoptosis in different types of can-
cer and could inhibit tumor development, including Papillary Thyroid Carcinoma Cell Growth29. RUNDC3B, 
a methylation hotspot, may be a valuable biomarker for diagnosis and prognosis in lymphoid malignancies30. 
Iman et al. investigated SCGB2A2 immunostaining in bone marrow as a tool to investigate early Bone marrow 
micrometastases in breast cancer31. Mingrui Shao et al. identified that β-catenin/TCF mediated the transcription 
of STMN2, which promotes EMT and cell proliferation in pancreatic cancer. TRO plays an essential role in the 
development of Osteosarcoma and may be a significant potential biomarker and prognostic factor32.

Fig. 8 Pseudotime analysis of epithelial cells. (a) pseudotime of epithelial cell, (b) Epithelial cells divided 
into six differentiation states, state 1 was shown pink, state 2 was shown yellow, state 3 was shown dark green, 
state 4 by light green, state 5 blue, and state 6 light purple (c) Heatmap shows the top of 10 markers in six 
differentiation states, low expression of genes was shown purple and higher expression was shown yellow  
(d) Jitter plot showing sixteen genes expression in six differentiation states of epithelial cells (e) differentiation 
state six infiltration ratio queue by CIBERSORT algorithm (f) GSVA (KEGG term) analyzes state six of 
differentiation states, the right panel shows p-value and enrichment score.
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The tumor microenvironment comprises fibroblasts, immune cells, endothelial cells, adipocytes, cytokines, 
and growth factors; the tumor immune microenvironment plays a key role in tumor growth, metastasis, thera-
peutic resistance, and maintenance of stemness13,16. Among 16 prognostic genes, CT83, CXCL11, EGR2, GLDC, 
PROS1, TRO, UGT2B11 were associated with low risk group with HR < 1 while BMP4, CCBE1, CELSR3, 
GPRC5C, STMN2, SCGB2A2, RUNDC3B, PCDHGA3, ILIRL1 were related to high risk group with HR > 1. We 
analyzed tumor immune microenvironment TIME in TNBC by analyzing the TNBC GEO scRNA-seq dataset. 
We found low-risk prognostic genes, including CT83, and GLDC, highly expressed in Neutrophils and CXCL11, 
and EGR2 showed high expression in M1 Microphages. Neutrophils and M1 macrophages play important roles 
in killing tumor cells; in cancer, the role of neutrophils is debated. Several studies showed that elevated numbers 
of neutrophils in the tumor are associated with poor prognosis; conversely, they inhibited tumor angiogene-
sis33–35. High-risk prognostic genes BMP4, CELSR3, GPRC5C, and RUNDC3B, highly expressed in Epithelial 
Cells, CCBE1 showed expression in Leydig cells, SCGB2A2 highly expressed in Epithelial Cells and Cancer cells, 
suggesting that Epithelial cell play an important role in tumor growth and initiation. We identified the Epithelial 
cells state with six distinct differentiation fates through developmental trajectory analysis; for further mining 
the heterogeneity of epithelial cells and exploring the sixteen genes expression among six states of differentia-
tion, we found high infiltration ratio in state six and GSEA analysis showed that Glyoxylate and dicarboxylate 
metabolism, Cysteine and methionine metabolism, Pyruvate metabolism, significantly upregulated in state six, 
which play important in driving of EMT epithelial-mesenchymal transition, a driver during cancer metastasis 
in different cancer types showed that stemness genes promote EMT36,37.

In addition, the protein expression of all 16 genes in breast cancer was verified using the public HPA data-
base. RUNDC3B, PROS1, PCDHGA3, CCBE1, and GPRC5C were found to be adversely linked with the TNBC 
stemness index and to be protective risk factors in the prognosis of TNBC on the other hand, GLDC, CXCL11, 
CELSR3 were upregulated, had a favorable link with stemness index.

In this work, we conducted targeted drug screening for 16 prognostic genes intending to propose a better 
therapeutic approach that regulates poor prognosis. The drugs we found out for our genes are FDA-approved 
drugs (Octreotide, Calcitriol, Cyclosporine, Emodin, Coumarin, Raloxifene Hydrochloride, Triptonide, 
Obeticholic acid). As a small molecule compound that can efficiently bind to BMP4 to upregulate the mRNA 
expression, Octreotide showed good performance in increasing the BMP4 expression; it is a synthetic soma-
tostatin analog, a hormone with well-proven efficacy for the treatment of solid tumors, including breast, pros-
tate, colon, pancreas, and small cell lung carcinoma38. The results of the molecular docking analysis indicated 
that Calcitrial bind tightly to CXCL11; Calcitriol, [1,25(OH)2D3] is the active hormonal form of vitamin D 
and regulates the balance of serum calcium and phosphate levels, which is essential for bone mineralization. 
If Calcitriol toxicity can be effectively managed, it exerts an anti‐osteosarcoma effect39. Cyclosporine showed 
good binding energy with EGR2, inhibiting intracellular Ca2+-mediated calcineurin phosphatase activity and 
inactivating the nuclear factor of activated T-cells (NFAT) pathway in immune cells and has the potential of 
being a therapeutic approach for the inactivation of NFATc140. Abrine and Coumarin were found to have an 
affinity for GLDC. Abrine is an N (alpha)-methyl derivative of L-tryptophan, which improves the efficacy of 
immunotherapies by reducing the breakdown activity of tryptophan41. Benzopyrone is the basic structure of 
Coumarins, inhibits carbonic anhydrase, targets PI3K/AKT/MTOR signaling pathways, induces cell apoptosis 
protein activation, and inhibits tumor multidrug resistance and microtubule polymerization42. In the screened 
drug cohort, Raloxifene is a selective estrogen receptor modulator that binds to the estrogen receptor, induces 
autophagy via the activation of AMPK by sensing decreases in ATP, and promotes cell death in breast cancer 
cells43. Triptonide is a traditional Chinese herb that suppresses pancreatic cancer cell-mediated Tumor vascu-
logenic mimicry and inhibits the expression of VE-cadherin by reducing tumor cell migration and invasion44, 
showing good affinity towards SCGB2A2. Rotenone enhanced the mRNA expression of TRO, a toxic rotenoid 
compound that inhibited colon cancer cell proliferation, invasion, and migration through the PI3K/AKT path-
way and promoted apoptosis45. Emodin down-regulates the mRNA expression of CELSR3, the primary chemical 
component of anthraquinone-induced apoptosis in cancer cells through cell cycle arrest46. Finally, in screening 
for small molecule compounds that upregulate UGT2B11 mRNA, obeticholic acid, the natural FXR agonist 
also known as INT-747 or 6α-ethyl-chenodeoxycholic acid inhibits Hepatocellular carcinoma proliferation, 
migration, and invasion via interfering with the activation of IL-6/STAT3 signaling pathway47. In this work, as 
mentioned above, sixteen prognostic genes targeting ten targeted drugs, our study has proposed a novel targeted 
therapy scheme consisting of a combination of multiple drugs, might would be better unless these drugs are 
validated in experiments or clinical trial.

At the same time, this study also had some limitations. First, we only included 10 scRNA-seq TNBC patients 
from GEO, a small sample size. Secondly, the two stemness subtypes showed apparent differences in immune 
infiltration, stromal, immune, and Estimate score were higher in steaminess subtype II and TMB, and immune 
checkpoint genes expression were more elevated in steaminess subtypes I; they may show different responses to 
immunotherapy. Therefore, it must be validated in future clinical experiments. The combined therapeutic value 
of these ten targeted drugs at the cellular and animal level will be the subject of future work. Our results are not 
experimentally validated, which is what future work will need. This research analyzed the association between 
mRNAsi and clinical characteristics and immune infiltration and identified two stemness-related molecular sub-
types. We developed a stemness risk signature that can effectively predict the prognosis of patients with TNBC; 
we analyzed prognostic gene expression in normal and tumor tissue using immunohistochemistry and explored 
the predictive genes expression in TIME using the scRNA sequencing dataset and found that the high-risk 
stemness-associated genes promote EMT. Lastly, we screened drugs for the prognostic genes of risk signature, 
which led to new insights for targeted therapy.
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Methods
TNBC data source and pre-processing. In the current study, the gene expression and corresponding clin-
ical characteristic profiles of GDC TCGA Breast cancer (BRCA) with dataset ID TCGA-BRCA.htseq_counts.tsv 
with a total of 1217 samples were obtained from the University of California Santa Cruz (UCSC) Xena database 
(https://gdc.xenahubs.net) and converted the RNA-seq Counts to FPKM (fragments per kilobase of transcript per 
million mapped reads) and normalized by log2, extracted 127 samples of TNBC subtype of breast cancer for anal-
ysis. In this work, we extracted 320 samples of the TNBC subtype of breast cancer from METABRIC with gene 
expression data obtained from METABRIC (Breast Cancer) (http://www.cbioportal.org/datasets) with a total of 
2509 samples, the log2 intensity value was already associated with HUGO gene symbol as Illumina probeset to 
HUGO gene symbol mapping was already done by cBioPortal and merged with 127 TNBC sample obtained from 
TCGA-BRCA and 447 patient data with TNBC were used as validation cohort. The stem cell expression pro-
files (syn2701943) were downloaded from the Progenitor Cell Biology Consortium database (https://www.syn-
apse.org). The expression levels of 16 stemness-related genes were compared in Breast tumor tissues and normal 
tissues using Human Protein Atlas (HPA) database (https://www.proteinatlas.org/). GSE176078 has 10 TNBC 
samples downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) and cell clusters were anno-
tated with a Marker based on the SingleR package (v2.0.0) and the CellMarker database (http://117.50.127.228/
CellMarker/). Somatic mutation data was downloaded from TCGA. For molecular docking we obtained data 
from three databases, we used CTD Database (https://ctdbase.org/) to download the catalog of small molecules 
that interacted with prognostic genes and then downloaded the small molecule structures from the PubChem 
Database (https://pubchem.ncbi.nlm.nih.gov/) Next, the Uniport Database (https://www.uniprot.org) was used 
to download the biological macromolecular structures translated by the prognostic genes.

Calculation of stemness index for TNBC. In this work, we used the stem cell expression profiles 
(syn2701943) downloaded from the Progenitor Cell Biology Consortium database (https://www.synapse.org), 
and stemness signature were identified via one class logistic regression (OCLR) machine learning algorithm, 
and subsequent Spearman correlation was conducted between stemness hallmark and normalized 127 TNBC 
expression matrix to count the stemness index (mRNAsi) of each TNBC patient by scaling spearman correlation 
coefficients to be 0–1 accordingly; the higher the value, greater the tumor dedifferentiation and higher the activ-
ity of the cancer stem cells. According to the median mRNAsi, TNBC patients were placed into the high- and 
low-mRNAsi groups.

Generation of differentially expression gene and functional enrichment analysis. Based on the 
two mRNAsi groups, the “limma” function was utilized to identify the DEGs between the high and low mRNAsi 
groups. The selection criteria for DEGs were an FDR < 0.05 and |log2 fold change (FC)| > 1. Gene Ontology 
(GO) was performed for functional annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were 
performed to assess related pathways, using the “ClusterProfiler” package for functional annotation.

The exploration of (TME) tumor microenvironment infiltration and stemness index. We 
used Estimation of stromal and Immune cells in malignant Tumor tissues using Expression data (ESTIMATE) 
algorithm to characterize the TME obtained the immune scores (represent immune cell infiltration), stromal 
scores (symbolize abundance of stroma), and ESTIMATE scores (represents tumor purity) of TNBC patients 
via estimate R package, higher tumor purity, low degree of infiltration of immune cell in tumor and higher stem-
ness index, based on median immune score TNBC patients were split into high- and low-immunity groups. 
We collected a set of 28 immune-related genes48 using the R package GSVA, performed a single sample Gene 
Set Enrichment Analysis (ssGSEA) to compute the rank value of each gene from the expression profile, and 
quantified the enrichment score of each gene in each sample can be used to determine the immune cell activity. 
CIBERSORT deconvolution algorithm49 was applied to quantify the relative abundance of 22 immune cells in a 
mixed population. The CIBERSORT method provides a set of gene signatures for 22 tumor-infiltrating immune 
cell fractions, including CD4+ resting memory T cell, memory B cell and naive B cell, etc.

TNBC stemness subtypes and immune infiltration exploration. We applied an unsupervised 
Consensus clustering method to identify a novel stemness-based classification via the “ConsensusClusterPlus” 
R package. The clustering analysis was performed with 100 iterations, and 80% of sampling was used in each 
iteration. The consensus heatmap and cumulative distribution function CDF were visualized to select an optimal 
number of clusters and to explore the overall survival (OS) of different stemness subtypes Kaplan-Meier (K-M) 
curve was conducted. The gene set variation analysis (GSVA) was performed to explore Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways in different stemness subtypes using the package “GSVA” R and the 
molecular signatures database (MSigDB) (http://www.gsea-msigdb.org/) was used to download the KEGG path-
ways profile. To explore the connection between immune infiltration and the stemness subtype, we compared the 
immune score and stemness subtype and the level of immune infiltration between different subtypes. Next, we 
compared immune checkpoints in different stemness subtypes, including PDCD1, CD80, CD274, PDCD1LG2, 
CTLA4, and CD86 expression levels. We also compared the differences in the tumor mutation burden (TMB) 
values between the different stemness subtypes using somatic mutation data downloaded from TCGA. We used 
R “maftools” to calculate the tumor mutation burden.

Construction and validation of risk score model. Univariate Cox regression analysis was performed 
on DEG to identify the genes related to prognosis, and for subsequent analysis, the genes with significance were 
selected. LASSO, the least absolute shrinkage and selection operator regression analysis using the R package 
“glmnet,” was used to determine the meaningful genes in uni-Cox analysis to build the risk prognostic model 
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using the regression coefficient and normalized expression value of the characteristic gene according to this for-
mula as GeneExp1*Coef1 + GeneExp2*Coef2 + GeneExp3*Coef3 …. According to the formula the score was 
obtained, patients with TNBC were divided into the high-risk and low-risk groups by median values, the optimal 
cutoff values of the risk score in the training and validation datasets were 1.7 and 1.8, respectively, and to analyze 
overall survival in high-risk and low-risk groups, we plot Kaplan-Meier KM survival curve. We performed the 
receiver operating characteristics ROC curve drawn by the R package to verify the established model accuracy. 
METABERIC and TCGA merged data were used as a validation cohort.

Exploration of prognostic factor and Nomogram construction. We evaluated clinical character-
istics, including age and clinical stage, in combination with risk scores using Cox regression analysis to explore 
whether this risk model can independently prognosticate. Based on independent prognostic factors identified by 
Cox regression analysis, we constructed a prognostic nomogram and used calibration plots to test the predictive 
accuracy of the nomogram.

Drug screened and docking. We screened fourteen protein-coding genes for targeted drugs based on func-
tional studies of six teen prognostic genes. We used Autodock (Linux, v4.2) for molecular docking to study small 
molecule compounds interacting with prognostic genes. Firstly, we used CTD Database (https://ctdbase.org/) 
to download the catalog of small molecules that interacted with prognostic genes50 and then downloaded the 
small molecule structures from the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/)51. Next, the Uniport 
Database (https://www.uniprot.org) was used to download the biological macromolecular structures translated 
by the prognostic genes52. Finally, the small molecule with substantial interaction with the biological macromol-
ecules is determined by the lowest binding energy and is carried out according to the standard docking process. 
Moreover, PyMol (v2.6, Open-Source) visualizes the results.

Detection of gene expression. The expression levels of 16 stemness-related genes were compared in 
Breast tumor tissues and normal tissues using clinical samples from the Human Protein Atlas (HPA) database 
(https://www.proteinatlas.org/) using “HPAanalyze” R package to retrieve detail of the 16 stemness genes from 
HPA, hpaXmlGet function was used to download the corresponding XML file for the desired gene, and hpaXml-
TissueExpr function were used to extract the entire record of every staining available for both antibodies, includ-
ing clinical data, original images, and staining quantifications.

Exploration of prognostic genes in TIME using scRNA sequencing data. GSE176078 (NTNBC = 10) 
was downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) and used to analyze differences in 
expression levels of 16 genes at the single-cell level. Single-cell Count matrics were analyzed using a Seurat (v4.03) 
package using standard analysis tubes. The filtration standard of the mitochondrial genes was percent.mt < 15. 
The first 2000 Variable Features were used as the reference for data standardization. The first 20 PCs were taken 
as the inputs for UMAP nonlinear dimensionality reduction, and SNN cell clustering resolution = 0.4 was finally 
selected as the index for subsequent analysis. Subsequently, cell clusters were annotated with a Marker based 
on the SingleR package (v2.0.0) and the CellMarker database (http://117.50.127.228/CellMarker/). Pseudotime 
trajectories of epithelial cells were constructed using Monocle (v2.22.0), the algorithm uses machine learning 
techniques to use a specific set of genes as input to arranging the cells into trajectories with branch points, and 
the results are cell populations in different differentiation states, And perform functional Enrichment analysis of 
cells in different states.

Statistical analysis. R version 4.1.1 was used for all statistical analyses. The Cox regression analysis was 
applied to calculate the connection between survival outcomes and gene expression. The log-rank test was used 
to calibrate the difference in the survival analysis with p < 0.05 indicated statistically significant.

Data availability
The data that support the current work are available from GDC TCGA Breast Cancer (BRCA) (https://gdc.
xenahubs.net) with dataset ID TCGA-BRCA.htseq_counts.tsv with a total of 1217 samples and extracted 127 
samples of TNBC subtype of breast cancer for our analysis. The data used for validation in this article were 
obtained from METABRIC (Breast Cancer, Nature 2012 & Nat Commun 2016) (http://www.cbioportal.org/
datasets) with a total of 2509 samples and we extracted 320 samples of TNBC subtype of breast cancer for our 
analysis and merged 320 samples with 127 TNBC sample obtained from TCGA-BRCA and used 447 patient data 
with TNBC as validation cohort, The data we have generated through this study can be found on figshare53. The 
stem cell expression profiles (syn2701943) were downloaded from the 91 Progenitor Cell Biology Consortium 
database (https://www.synapse.org)54 and the scRNA-seq dataset obtained from Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo/) with the accession number GSE176078 (nTNBC = 10)55.

Code availability
The analysis results associated with this paper is available on Github (https://github.com/saminagul12345/
breast_cancer) and the R code used in the analysis of the data is available on Github (https://github.com/
saminagul12345/breast_cancer).
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