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Chromosome-level genome 
assembly of the northern Pacific 
seastar Asterias amurensis
Yanlin Wang   1, Yixin Wang1, Yujia Yang1, Gang Ni1, Yulong Li2 ✉ & Muyan Chen1 ✉

Asterias amurensis has attracted widespread concern because of its population outbreaks, which has 
impacted fisheries and aquaculture, as well as disrupting local ecosystems. A high-quality reference 
genome is necessary to better investigate mechanisms of outbreak and adaptive changes. Combining 
PacBio HiFi and Hi-C sequencing data, we generated a chromosome-level A. amurensis genome with 
a size of 491.53 Mb. The contig N50 and scaffold N50 were 8.05 and 23.75 Mb, respectively. The result 
of BUSCO analysis revealed a completeness score of 98.85%. A total of 16,531 protein-coding genes 
were predicted in the genome, of which 94.63% were functionally annotated. The high-quality genome 
assembly resulting from this study will provide a valuable genetic resource for future research on the 
mechanism of population outbreaks and invasion ecology.

Background & Summary
Asterias amurensis (class: Asteroidea), also known as the northern Pacific seastar, is widely distributed in the 
northwest and northeast Pacific, native to the coast of Alaska1, China2, Japan3, Korea4, and Russia5. As a benthic 
echinoderm with distinct evolutionary classification6, its reproduction mode includes not only dioecious but 
also asexual reproduction by arm regeneration7,8. Females have high fecundity and can annually spawn ~20 
million eggs3. The planktonic stage of larva can last for seven weeks or several months, which enables them to 
rapidly spread in a suitable environment9,10. A. amurensis is located at the highest trophic level among the ben-
thic invertebrates as a voracious and efficient generalist predator11, which has been reported to impact a variety 
of infaunal taxa, especially commercial bivalves12–14. And it has even been associated with the decline of some 
fish species15.

In the early 1980s, free-spawning starfish A. amurensis were first spotted in southeast Tasmania of Australia, 
possibly introduced from central Japan through ship ballast water3. Since their first detection, this starfish has 
successfully established populations in a short period and gradually expanded to Victoria16–18. As one of the 
most successful invasive species, A. amurensis became a significant threat to native assemblages, marine com-
mercial species, and has damaged native ecosystems in Australia13,19. Thus, this starfish was listed as one of the 
high-priority marine pests in Australia20. Although its invasive range is limited in Australia21 so far, A. amurensis 
will likely continue to expand due to its high fecundity, wide environmental tolerance, and long larval dura-
tion22, even invading the Southern Ocean23. However, due to the lack of genomic information in A. amurensis, 
genetic changes associated with invasive lineages remain unknown16,24.

Periodic and massive outbreaks of A. amurensis populations have been reported in several countries, includ-
ing Australia, China, and Japan, which have significantly impacted fishery and mariculture grounds, as well as 
destroyed the original ecological balance, leading to serious economic losses25–27. Unfortunately, no effective 
bio-control method has been reported for this pest up to now. To provide warning information for possible 
outbreaks of A. amurensis, early detection technologies have been developed based on targeting rRNA28 and the 
mitochondrial cytochrome c oxidase subunit I (COI) gene21,29,30. However, the mechanism of aggregation and 
outbreak is complex and unclear. Relevant studies require the support of a high-quality genome assembly, which 
may help to identify species-specific factors associated with aggregating starfish31.
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In the present study, a de novo assembled chromosome-level A. amurensis genome was prepared using PacBio 
HiFi and Hi-C sequencing data. The final genome size was 491.53 Mb with scaffold N50 of 23.75 Mb. Using three 
approaches for gene structure annotation, we identified a total of 16,531 protein-coding genes, of which 15,643 
genes were functionally annotated with at least one public database. A high-quality reference genome for A. 
amurensis will be a useful genomic resource to explore both the mechanism of population outbreak and the 
genetic basis underlying adaptive change during the invasion process. Meanwhile, the A. amurensis genome 
will be a noteworthy addition to the existing suite of Asteroidea genomes for future cell, developmental and 
evolutionary biology research.

Methods
Sample collection.  All samples used in this study were from a male adult A. amurensis collected by diving in 
Qingdao, Shandong Province, China (36°03′04″N, 120°21′26″E) in November 2022. Fresh gonad tissue from the 
base of the arm was excised and washed with phosphate buffered saline (PBS, 1X). It was then immediately fro-
zen in liquid nitrogen and transferred to −80 °C for storage. High quality DNA was extracted from gonad using 
DNeasy Blood & Tissue Kit (Qiagen, Germany) for long-read and short-read whole genome sequencing. To aid 
in structural annotation, nine tissues including gonad, body wall, madreporite, spine, mouth, stomach, muscle, 
podia, and eye spot were used for transcriptome sequencing. All tissues were isolated separately with scissors 
and forceps, and then treated in the same way as the gonad collection. Total RNA was extracted using the TRIzol 
reagent (Vazyme, China).

Sequencing.  For long-read sequencing, high molecular weight genomic DNA (gDNA) was fragmented to 
approximately 15 kb to construct a PacBio HiFi library. The sequencing library was generated using the SMRTbell 
Express Template Prep kit 2.0 (Pacific Biosciences, USA), following the manufacturer’s recommendations, as 
described in the previous study32. The library was finally sequenced with circular consensus sequencing (CCS) 
mode on the PacBio Sequel II system using a single 8 M cell. After filtering out the low-quality reads and sequence 
adapters, a total of 11.15 Gb CCS data were obtained with a mean length of 12.51 kb (Table 1).

For short-read whole genome sequencing, gDNA was fragmented into approximately 350 bp for library con-
struction. The library was sequenced on DNBSEQ-T7 platform to generate 150 bp paired-end (PE150) reads. 
After filtering out low-quality reads including reads shorter than 100 bp, reads that contained >10% “N”, and 

Libraries Insert size (bp) Clean data (Gb) Reads number Read length (bp) Sequence coverage (X)

BGI reads 350 112.58 377,205,535 150 229.04

PacBio reads 15,000 11.15 890,929 12,511 (mean) 22.68

RNA-seq 350 13.47 45,079,838 150 —

Total — 137.20 423,176,302 — 251.72

Table 1.  Statistical analysis of sequencing reads from BGI, Illumina and PacBio.

Type Data

Raw paired reads 350,304,882

Raw Base(bp) 105,091,464,600

Clean Base(bp) 102,748,760,698

Effective Rate(%) 99.77

Q20(%) 97.32

Q30(%) 92.33

GC Content(%) 39.18

Table 2.  Statistical analysis of sequencing data from Hi-C.

Type Contig (bp) Scaffold (bp)

Total Number 90 22

Total Length 491,503,102 491,537,102

Average Length 5,461,145 22,342,596

Max Length 28,598,918 38,009,675

N50 Length 8,054,564 23,750,475

N50 Number 19 9

N90 Length 3,441,115 15,767,093

N90 Number 54 19

Table 3.  Assembly statistics of A. amurensis genome.
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reads that contained >50% low-quality bases (Phred score ≤10), the clean data generated was 112.58 Gb, which 
covered ~229X of the genome (Table 1).

The chromosome conformation capture (Hi-C) technique was employed to assemble a chromosome-level 
genome. The fresh gonad was crosslinked using formaldehyde solution and digested with four-cutter restriction 
enzyme (DpnII). The ends of the restriction fragments were labeled with biotinylated nucleotides, and then 
the ligated DNA was sheared into fragments from 300 bp to 700 bp in length for Hi-C library construction. The 
resulting library was quantified with the Q-PCR method and sequenced with the DNBSEQ-T7 platform. After 
removing adapters and low-quality short reads, a total of 102.75 Gb (209.04 × coverage) of clean data was gener-
ated, with Q20 = 97.32% and Q30 = 92.33% (Table 2).

For transcriptome sequencing, total RNA of nine tissues from the same starfish was extracted and equally 
pooled for cDNA library construction. The resulting library was constructed by NEBNext® Ultra™ RNA Library 
Prep Kit (NEB, USA) according to the manufacturer’s instructions and sequenced on Illumina NovaSeq6000 
system, finally generating 13.47 Gb clean data to help genome structure annotation.

Genome assembly.  Based on PaciBio HiFi reads, Hifiasm (v0.18.4)33 was applied for de novo assembly of 
primary contigs with default parameters. Haplotypic and heterozygous duplication was removed using purge_
dups (v1.2.6)34 with the parameter of cutoffs ‘-l 5 -m 18 -u 54’. A primary assembly was generated, consisting of 90 
contigs spanning 491.50 Mb. N50 and the maximum contig length were 8.05 and 28.59 Mb, respectively (Table 3).

We further scaffolded the contigs using Hi-C sequencing data to obtain a high-quality chromosome-scale 
genome. Juicer (v1.6)35 was applied for raw sequence data analysis and then 3D-DNA (v190716)36 was used to 
anchor contigs into chromosomes. The assembly was further corrected manually according to the Hi-C heatmap 
using JuiceboxGUI (v1.11.08)37, a visualization system for Hi-C contact maps. The final genome consisted of 22 
chromosomes with lengths ranging from 13.43 to 38.00 Mb, and the N50 was 23.75 Mb (Table 3, Fig. 1, Fig. 2). 
Previous karyotype analysis38 of A. amurensis indicated that it had a diploid chromosome number of 44, which 
was consistent with our results.

Annotation of repetitive elements.  The Extensive de novo TE Annotator (EDTA, v2.0.0)39 and 
RepeatModeler (v2.0.3)40 were utilized to build repetitive sequence libraries for A. amurensis genome. We com-
bined these two libraries as a final comprehensive repeat library for repeat annotation. Then, RepeatMasker 
(v4.1.2)41 was used to predict and classify repetitive elements of A. amurensis genome. Overall, sequences consti-
tuting 48.69% of the assembled genome were identified as repeats, of which the most abundant repetitive element 
was long terminal repeats (LTR, 19.63%), followed by DNA transposons (18.20%) (Table 4, Fig. 2).

Fig. 1  Genome-wide heatmap of Hi-C interactions among 22 chromosomes in A. amurensis. The scale bar 
represents the interaction frequency of Hi-C links.
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Noncoding RNA (ncRNA) annotation.  Ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) were 
predicted by Barrnap (v0.9, https://github.com/tseemann/barrnap) and tRNAscan-SE (v2.0.11)42 with default 
parameters, respectively. Based on an alignment with Rfam database (v14.8)43, Infernal (v1.1.4)44 was used to 
annotate other ncRNAs, including small nuclear RNAs (snRNAs) and microRNAs (miRNAs). In total, we identi-
fied 37 miRNAs, 14,926 tRNAs, 415 rRNAs, and 202 snRNAs in A. amurensis genome (Table 5, Fig. 2).

Gene prediction and functional annotation.  We used three approaches for predictions of gene struc-
tures, including de novo, homology-based, and RNA-seq-based prediction. Augustus (v3.4.0)45, GlimmerHMM 

Chr010 10

20

30

Chr02

0

10

20

30
Chr03

0

10

20

C
hr04

0

10

20

C
hr

05

0

10

20

Ch
r0

6

0

10

20

Chr0
7

0

10

20

Chr08

0

10

20

Chr09

0

1020Chr10

010

20

Chr11 0

10

20

Chr12

0

10

20

Chr13

0

10

20

C
hr14

0

10

20

C
hr15

0

10

C
hr

16

0

10

Ch
r1

7
0

10

Chr
18

0

10

Chr19

0

10

Chr20

0

10

Chr21

0

10

Chr22

0

10

Fig. 2  Circos plot of genomic features in A. amurensis genome. The tracks from outside to inside indicate: (1) 
length of 22 chromosomes (Mb), (2) distribution of GC content with a window of 1 Mb, (3) distribution of 
repeat elements with a window of 1 Mb, (4) distribution of ncRNAs with a window of 1 Mb, and (5) distribution 
of protein-coding genes with a window of 1 Mb.

Type Count Length (bp) % of Genome

Dispersed repeats

DNA transposons 747,789 89,432,495 18.20

Retroelements

LTR 597,681 96,479,749 19.63

LINE 2,928 1,233,195 0.25

DIRS 416 206,153 0.04

Penelope 2,072 791,234 0.16

Unclassified 118,869 45,699,346 9.30

Tandem repeats
Simple repeats 82,117 4,897,016 1.00

Low complexity 11,639 592,691 0.12

Total 1,563,511 239,331,879 48.69

Table 4.  Classification of repetitive sequences in A. amurensis genome.

https://doi.org/10.1038/s41597-023-02688-w
https://github.com/tseemann/barrnap


5Scientific Data |          (2023) 10:767  | https://doi.org/10.1038/s41597-023-02688-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

(v3.0.4)46, GeneMark (v4.69)47, SNAP (version 2006-07-28)48, and BRAKER2 (v2.1.6)49 were utilized for de novo 
gene model prediction and they were performed with default parameters. For homology-based prediction, we 
downloaded protein sequences of the crown-of-thorns starfish Acanthaster sp. (https://ftp.ncbi.nlm.nih.gov/
genomes/all/GCF/001/949/145/GCF_001949145.1_OKI-Apl_1.0/), sea urchin Strongylocentrotus purpuratus 
(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/002/235/GCF_000002235.5_Spur_5.0/), and sea cucum-
ber Apostichopus japonicus (https://ftp.ncbi.nlm.nih.gov/genomes/genbank/invertebrate/Apostichopus_japon-
icus/latest_assembly_versions/GCA_002754855.1_ASM275485v1/) from National Center for Biotechnology 
Information (NCBI) as references and used MetaEuk (version aa7ac2eb7334405ad57d50d78361e3dcd61bb27a)50 
with default parameters to predict gene structures. For RNA-seq-based prediction, we firstly mapped short RNA 
reads to reference genome using HISAT2 (v2.2.1)51 with the parameter ‘-dta’ and then assembled transcripts using 
StringTie (v2.2.1)52. Meanwhile, the Program to Assemble Spliced Alignments (PASA, v2.4.1) pipeline (https://
github.com/PASApipeline/PASApipeline) was used to identify possible coding regions based on de novo tran-
scriptome assembled by Trinity (v2.14.0)53 with default parameters. Then, EvidenceModeler (EVM, v1.1.1)54 and 
Funannotate (v1.8.14) pipeline (https://github.com/nextgenusfs/funannotate) were applied for combining pre-
dicted results from three strategies and removal of low-quality gene annotations. Based on the RNA-seq data of 
A. amurensis from this study, adult stomach tissue55, and bipinnaria larval16 from other studies, PASA (v2.4.1) 
was applied for the update of untranslated regions (UTRs). The general annotation pipeline applied in the present 
study was shown in Fig. 3. As a result, a total of 16,531 protein-coding genes were predicted and the average gene 
length was 17,803.19 bp, with an average coding sequence (CDS) length of 1,885.87 bp and average exon number 
of 10.07 (Table 6). Among them, 12,736 (77.04%) genes were supported by evidence from all three strategies 

Type Copy number Average length(bp) Total length(bp) % of genome

miRNA 37 85.62 3,168 0.0006445

tRNA 14,926 72.28 1,078,878 0.2194907

rRNA

28 S 42 2,241.43 94,140 0.0191522

18 S 22 1,813.00 39,886 0.0081145

5.8 S 22 117.00 2,574 0.0005237

5 S 329 99.19 32,633 0.0066390

snRNA

CD-box 54 98.24 5,305 0.0010793

HACA-box 27 171.41 4,628 0.0009415

scaRNA 1 94 94 0.0000191

splicing 120 142.28 17,073 0.0034734

Table 5.  Classification of ncRNAs in A. amurensis genome.
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Fig. 3  The general annotation pipeline of repetitive elements, ncRNAs, and protein-coding genes.
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(Fig. 4). We also counted the density of genes on different chromosomes with a window of 1 Mb in length (Fig. 5) 
and simply compared gene length, CDS length, exon length, intron length and exon number per gene of A. 
amurensis and other species used in homology-based predictions (Fig. 6). The 1 Mb region with the largest num-
ber of annotated genes were from the end of chromosome 18 (Fig. 5).

Functional annotations were accomplished using Funannotate pipeline, based on databases including 
Clusters of Orthologous Groups of Proteins (COG)56, eggNOG57, Gene Ontology (GO)58, Interpro59, Kyoto 
Encyclopedia of Genes and Genomes (KEGG)60, NCBI non-redundant protein (Nr), Pfam61, and Swiss-Prot62. 
The results showed that 15,643 protein sequences (94.63%) were annotated with at least one public database 
(Table 7, Fig. 7).

Comparative genomic analysis.  The longest protein sequences of A. amurensis and other five asteroid 
species including Acanthaster sp.63, Asterias rubens64, Patiria miniata65, Plazaster borealis66, and Zoroaster cf. 
ophiactis67 were utilized to identify orthologous groups using OrthoFinder (v2.5.5)68 with the parameters ‘-S 
diamond’, and the sea urchin Lytechinus variegatus69 was selected as an outgroup. A total of 5,315 single-copy 
orthogroups were obtained for subsequent phylogenetic analysis. Based on multiple sequence alignments of the 
single-copy orthogroups using MAFFT (v7.520)70, IQ-TREE (v2.2.3)71 was applied for construction of the species 
trees with the parameters ‘-m MFP -bb 1000’ and the best model of GTR + F + I + R4. Predictably, A. amurensis 
was most closely related to A. rubens and P. borealis from the family Asteriidae (Fig. 8). Then, divergence times 
were estimated using MCMCTREE in PAML (v4.9i)72 based on the divergence time (A. amurensis vs L. variega-
tus: 461.1.5-600.0 million years ago) extracted from TIMETREE (http://www.timetree.org/). The expansion and 
contraction of gene families were analyzed by Computational Analysis of gene Family Evolution (CAFE, v5.0.0)73 

Gene set
Gene 
Number

Gene length 
(bp)

CDS length 
(bp)

Average intron 
length (bp)

Average exon 
length (bp)

Exon per 
gene

De novo

Augustus 20,742 12,558.23 1,743.97 1,466.01 208.19 8.38

GlimmerHMM 59,965 7,146.75 847.98 2,106.12 197.82 4.29

GeneMark 22,312 9,008.46 1,587.86 1,172.18 216.61 7.33

SNAP 25,901 26,508.15 2,030.64 2,200.07 167.47 12.13

BRAKER2 24,353 10,549.42 1,702.42 1,848.07 206.99 8.22

RNA-seq
PASA 14,250 14,259.92 1,315.87 1,970.86 298.97 7.15

HISAT2 & 
StringTie 15,047 21,787.79 1,922.51 2,005.33 383.69 12.26

Homology

A. planci 10,063 11,124.46 1,309.15 2,680.73 282.37 4.66

A. japonicus 6,200 5,562.53 956.09 2,715.86 355.90 2.67

S. purpuratus 7,265 6,095.00 1,106.24 2,621.27 382.42 2.90

Final 16,531 17,803.19 1,885.87 1,743.54 283.00 10.07

Table 6.  Statistical results of the gene structure annotation in A. amurensis genome.
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De novo RNA-seq
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Fig. 4  Venn diagram of gene structure prediction from de novo, homology-based and RNA-seq-based 
strategies.
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with a p-value of 0.05. The results revealed that 197 and 482 gene families were expanded and contracted in A. 
amurensis, respectively (Fig. 8).

Data Records
The PacBio, BGI, RNA-seq, and Hi-C sequencing data have been deposited in the NCBI Sequence Read 
Archive (SRA) database under the accession numbers of SRR2490211474, SRR2483113975, SRR2487150176, and 
SRR2483531877. The final chromosome assembly has been deposited in GenBank with assembly accession num-
ber GCA_032118995.178. The genome annotation files are available in the Figshare database79.

Fig. 5  Number of genes on 22 chromosomes with a window of 1 Mb. The scale bar represents the density of 
genes.

Fig. 6  Comparisons of CDS length, exon length, exon number per gene, gene length and intron length among 
A. amurensis and other relative species.
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Technical Validation
Nucleic acid quality.  The concentration and quality of DNA were evaluated using Nanodrop 2000 spec-
trophotometer (Thermo Fisher Scientific, USA) and agarose gel electrophoresis, respectively. RNA integrity was 
assessed using Agilent 2100 Bioanalyzer (Agilent Technologies, USA).

Genome assembly and annotation quality evaluation.  The quality of the final chromosome-level 
genome assembly was assessed using four methods as follows. Firstly, we mapped clean PE150 reads from whole 
genome sequencing to A. amurensis genome using BWA-MEM (v0.7.17)80 and calculated the mapping rate 
using samtools (v1.9)81, resulting in a genome coverage rate of 99.95% and a mapping rate of 99.61%. Secondly, 
the results of Benchmarking Universal Single-Copy Orthologs (BUSCO, v5.2.2)82 analysis based on 954 genes 
of metazoa_odb10 database indicated that 951 (99.69%) core metazoan genes were detected in A. amuren-
sis genome, consisting of 943 (98.85%) complete and 8 (0.84%) fragmented genes (Table 8). Thirdly, the Core 
Eukaryotic Genes Mapping Approach (CEGMA, v2.5)83 based on 248 core eukaryotic genes showed that 236 
(95.16%) genes were identified in the final genome assembly. Finally, meryl (v1.3)84 was used to generate k-mer 
counts based on paired-end reads generated by whole genome sequencing, and Merqury (v1.3)84 was utilized to 
estimate the consensus quality value (QV) of A. amurensis genome, resulting in a QV of 48.51. The results from 
the four methods above revealed the high accuracy and completeness of the final genome assembly.

Database Number Percent(%)

Total 16,531 —

COG 13,657 82.61

EggNOG 14,245 86.17

GO 10,373 62.75

InterPro 14,060 85.05

KEGG 8,254 49.93

Pfam 12,640 76.46

Swiss-Prot 13,376 80.91

Nr 15,551 94.07

Annotated 156,43 94.63

Unannotated 888 5.37

Table 7.  Summary of the functional gene annotation in A. amurensis genome.

Fig. 7  Upset plot and Venn diagram of functional annotation for protein-coding genes based on different 
databases, including InterPro, KEGG, Nr, Pfam, and Swiss-Prot.
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Code availability
No custom code was utilized in this study. Data processing was performed by relevant pipelines and software 
according to the manual and protocols and the version as well as useful parameters have been described in the 
Methods section. The default parameters as developers suggested were used in those pipelines and software of 
which parameters were not specifically mentioned in this work.
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