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Next-Generation Intensity-
Duration-Frequency Curves  
for Diverse Land across the 
Continental United States
Hongxiang Yan  1 ✉, Zhuoran Duan1,2, Mark S. Wigmosta1,2, Ning Sun  1, 
Ethan D. Gutmann3, Bert Kruyt3 & Jeffrey R. arnold4

the current methods for designing hydrological infrastructure rely on precipitation-based intensity-
duration-frequency curves. However, they cannot accurately predict flooding caused by snowmelt 
or rain-on-snow events, potentially leading to underdesigned infrastructure and property damage. 
to address these issues, next-generation intensity-duration-frequency (NG-IDF) curves have been 
developed for the open condition, characterizing water available for runoff from rainfall, snowmelt, 
and rain-on-snow. However, they lack consideration of land use land cover (LULC) factors, which 
can significantly affect runoff processes. We address this limitation by expanding open area NG-
IDF dataset to include eight vegetated LULCs over the continental United States, including forest 
(deciduous, evergreen, mixed), shrub, grass, pasture, crop, and wetland. This NG-IDF 2.0 dataset offers 
a comprehensive analysis of hydrological extreme events and their associated drivers under different 
LULCs at a continental scale. It will serve as a useful resource for improving standard design practices 
and aiding in the assessment of infrastructure design risks. additionally, it provides useful insights into 
how changes in LULC impact flooding magnitude, mechanisms, timing, and snow water supply.

Background & Summary
Hydrological extreme events, such as floods and droughts, have a significant impact on human society and 
the natural environment1–4. In the western United States, over 50% of the water supply comes from moun-
tain snowmelt5–7. Insufficient winter snowpack can result in water shortages and environmental strains during 
dry summer months8–11, whereas deep snowpack accompanied by warm temperatures and rain can result in 
rapid melting and consequent rain-on-snow (ROS) flooding. Without appropriate mitigative measures, these 
floods can cause extensive damage to infrastructure and property12–14. An instance of such a flood occurred in 
Yellowstone National Park in 2022, which forced the park’s closure for the first time in 34 years and may cost 
more than $1 billion for rebuilding damaged bridges and roads15.

At present, there is a lack of a consistent and systematic hydrological design approach for snow-dominated 
regions of the United States16–18. Local design manuals require or recommend the use of precipitation-based 
intensity-duration-frequency (PREC-IDF) curves, such as the National Oceanic and Atmospheric 
Administration Atlas 1419. However, the PREC-IDF method implicitly assumes that precipitation is in the form 
of rain and immediately available for the rainfall-runoff process, which can result in significant underestima-
tion of flooding caused by snowmelt or ROS events (i.e., underdesign)7,20–22. For instance, the infrastructure in 
Yellowstone National Park was not constructed to withstand ROS flooding23. To address this need, Yan, et al.20 
proposed next-generation IDF (NG-IDF) curves, which enhances the PREC-IDF approach for hydrological 
design in regions dominated by both rainfall and snow. The NG-IDF curves characterize the water available 
for runoff (W) from rainfall, snowmelt, and ROS events. Yan, et al.24 compared extreme events estimated from 
NG-IDF with those from PREC-IDF, using observed precipitation and snow water equivalent (SWE) data from 
almost 400 Snowpack Telemetry (SNOTEL) stations across the western United States. They discovered that 
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around 70% of these stations were subject to underdesign when using the PREC-IDF method, leading to under-
estimations of floods up to 324%. To expand the use of NG-IDF curves from SNOTEL stations to ungauged sites, 
Sun, et al.25 employed a validated physics-based hydrological model, the Distributed Hydrology Soil Vegetation 
Model (DHSVM)26–28, to develop NG-IDF curves under open condition across the continental United States 
(CONUS) at a 1/16° (~6 km) resolution (>200,000 sites).

Despite these advancements, NG-IDF research to date has been applied to open condition without account-
ing for the influence of land use land cover (LULC) on W such as canopy interception and interactions with 
snow, etc. For instance, forest canopy can enhance peak SWE levels and prolong the duration of snowpack29, 
consequently leading to an elevation in the occurrence of ROS events30. The W response to LULC is specific to 
each location and influenced by the local climate and vegetation conditions. Furthermore, at a particular loca-
tion, the W response may vary from year to year based on the prevailing meteorological conditions. For water 
resources planning under nonstationarity, changes in LULC, such as deforestation, have the potential to increase 
peak SWE and subsequently summer water supply29,31,32. However, they can also contribute to more intense 
occurrences of flooding33,34.

To address this gap and build upon the work of Sun, et al.25, we have extended the NG-IDF datasets from 
open condition to include eight vegetated LULCs over the CONUS, namely deciduous forest, evergreen forest, 
mixed forest, shrub, grass, pasture, crop, and wetland. These LULCs were chosen in alignment with the National 
Land Cover Database (NLCD)35 and National Resource Conservation Service (NRCS) Technical Release 55 
(TR-55)36. The updated NG-IDF (NG-IDF 2.0) datasets cover more than 200,000 sites across the CONUS with 
a resolution of approximately 6 km. The NG-IDF 2.0 dataset spans the years 1951–2013 and includes a total of 
nine LULCs, including eight vegetated LULCs and the open condition. For each LULC, the datasets encompass 
daily time series data of W and SWE. They provide comprehensive information on hydrological extreme events 
and their associated hydrometeorological drivers. This information also proves useful in assessing the risk of 
infrastructure design and examining the impact of changes in LULC on the annual peak SWE, which is an indi-
cator of potential summer water supply.

Methods
Water available for runoff modeling. Figure 1 illustrates the methodology used to create NG-IDF 2.0 
datasets for nine different LULCs across the CONUS. In this study, we adopt an approach where we assume a 
uniform LULC (i.e., 100% canopy fractional coverage) across the entire CONUS area, instead of representing 
the actual variation of LULC across the landscape. For each specific LULC, we separately estimate the time series 
of W. This approach is better suited for planning evaluations, by facilitating comparisons across locations. For 
instance, comparisons of W for the same locations with different LULCs will reveal the effects of LULC change on 
W (e.g., deforestations vs. afforestation), and cross-location comparisons will yield insights into the climate con-
trol on W under different LULC conditions. In this study, DHSVM is utilized to simulate the interaction between 
rainfall/snowfall and canopy at the point scale. The model incorporates a two-layer canopy model, an overstory 
canopy snow model, and a two-layer below-canopy energy and mass balance snowpack model. Comprehensive 
documentation of DHSVM can be found in numerous literature sources26–28,37, and as such, we only provide brief 
model descriptions here.

With the presence of a canopy, throughfall (TF) is generated when canopy interception storage exceeds the 
maximum interception storage capacity of overstory and understory, respectively. The model first calculates 
intercepted rainfall and snowfall by overstory if present. Maximum canopy interception of rain and snow is 
determined as a function of leaf area index (LAI). The water intercepted by the canopy is subject to evapotran-
spiration (ET). Potential evaporation is first calculated and represents the maximum rate at which water can be 

Fig. 1 Diagram depicting the methodology used to generate NG-IDF 2.0 datasets for nine different LULCs 
across the CONUS and their resulting representation.
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removed from the canopy. Water intercepted by the overstory is removed from the wet fraction at the potential 
rate, while transpiration from the dry fraction is modeled using the Penman-Monteith approach. The understory 
ET is then calculated as the difference between the potential evaporation and calculated overstory ET (both wet 
and dry fractions). When a ground snowpack is present, excess snowfall and rainfall after interception combined 
with the mass release and drip from the overstory will contribute energy and mass to the ground snowpack. The 
snowpack model is a two-layer snow model with a thin surface layer and a lower pack layer. Energy balance at 
the snow surface layer is driven by net radiation, sensible and latent heat, and advected heat by rain. The surface 
layer receives attenuated shortwave radiation below the overstory and direct shortwave radiation in the open. 
Energy and mass exchange between the surface layer and the pack layer occurs only via the exchange of meltwa-
ter. Any liquid water remaining in the pack layer above its liquid water-holding capacity is released into the soil.

When simulating the open area condition without a canopy, W is estimated using mass balance as described 
by Sun, et al.25:

= − ∆ +Open area: W P SWE S (1)

where P is precipitation, ∆SWE is the change in ground SWE, and S indicates condensation (positive) or evapo-
ration/sublimation (negative) of the snowpack. Taking into account the canopy impact on runoff, W under the 
canopy is estimated using:

Under canopy: W TF SWE S (2)= − ∆ +

where TF is the throughfall after canopy rain/snow interception, subsequent evaporation/sublimation, and in 
the case of snow, melt and mass release through sloughing. TF explicitly quantifies the initial abstraction of veg-
etation, in contrast to P used for the open condition.

DHSVM input and parameterization. DHSVM is set up to model runoff processes at the point scale, 
covering the period from 1950 to 2013 with a 3-hour time resolution. The simulations are carried out on grid cells 
that correspond to the center of the Livneh 1/16° meteorological grid38. DHSVM’s meteorological inputs consist 
of 3-hourly precipitation, air temperature, wind speed, relative humidity, as well as downward shortwave and 
longwave radiation. The 3-hourly meteorological forcing data were generated by disaggregating the daily Livneh 
meteorological data38 using the Mountain Microclimate Simulation Model39. For ground snow processes, we used 
the same, validated regionalized snow parameters documented in Sun, et al.25 for modeling ground snow accu-
mulation and melt (Supplementary Table 1). Specifically, they used the k-means clustering technique based on 
the grid-level winter (November–March) precipitation, air temperature, and wind speed to classify the CONUS 
into five homogenous regions for snow parameterization: C1-Alpine, C2-Maritime, C3-Southern, C4-Northern, 
and C5-Interior (Fig. 1).

For a given LULC type, canopy parameters such as monthly LAI and height can be high variably across 
the CONUS, let alone account for dynamic vegetation and LULC changes due to human activities. To facil-
itate cross-location comparisons, we use the developed five clusters across the CONUS to represent the spa-
tial variability of canopy parameters, and uniform canopy parameters are employed within each cluster. The 
cluster-specific canopy parameters represent the average canopy condition over the cluster, determined by aver-
aging the LAI and canopy height measurements obtained from locations within the cluster. Further details about 
data sources are described in the following paragraph.

A series of datasets are utilized to determine canopy parameters in each cluster. First, the latest 2016 NLCD 
dataset35 and the Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) Existing 
Vegetation Height (EVH) database40,41 are used in tandem to determine the canopy height for each of the eight 
vegetated LULCs at a 30-m resolution across the CONUS. Second, LAI values are obtained from combining field 
measurements and remotely sensed products, including the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Version 6 LAI products MCD15A2H42, North American Carbon Program Terrestrial Ecosystem 
Research and Regional Analysis-Pacific Northwest (NACP TERRA-PNW) Forest Plant Traits43, and A Global 
Database of Field-observed Leaf Area Index in Woody Plant Species (LAI_WOODY_PLANTS_1231)44. 
The NACP TERRA-PNW datasets provide LAI measurements for overstory trees in Oregon and Northern 
California, while the LAI_WOODY_PLANTS_1231 datasets provide global measurements of overstory and 
understory LAI from 1,216 locations based on literature sources published between 1932 and 2011. Specifically, 
we use the 8-day, 500-m MODIS data to characterize the spatial variability and sub-seasonal changes of LAI; 
field data is chosen over MODIS to derive the maximum LAI values, because MODIS tends to underestimate 
LAI values at a local scale45,46. In line with the NLCD land cover classification, the forest types (deciduous, ever-
green, mixed) and wetland land cover categories exhibit both overstory trees and understory vegetation, whereas 
the shrub, grass, pasture, and crop land cover categories exclusively feature understory vegetation. For example, 
Table 1 shows the cluster-average parameter values of maximum LAI and height for overstory and understory 
of deciduous forest, as well as the monthly LAI ratios to the maximum LAI values. Canopy parameter values for 
the other seven LULCs are presented in Supplementary Tables 2–8.

NG-IDF curves. We aggregated the 3-hourly W time series to create NG-IDF curves for selected durations 
ranging from 24 to 72 hours due to the absence of diurnal variability in the input precipitation data. For each dura-
tion, we determined the water year and calendar year annual maximum (AM) W and followed the NOAA Atlas 
1419 to fit a generalized extreme value (GEV) distribution to the 1951–2013 AM W datasets based on L-moments 
statistics47, excluding the first year to avoid initial condition uncertainty. We used the same GEV distribution to 
compare frequency estimates across durations and locations. We tested the stationarity assumption of the AM 
W data using the nonparametric Mann-Kendall test48,49 and provided trends for statistically significant cases at 
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the 95% confidence level. For significant trends, we detrended the AM W time series using Sen’s slope50 while 
maintaining the time series average. In total, we created four NG-IDF curves for each location and LULC, using 
1) water year AM W, 2) detrended water year AM W, 3) calendar year AM W, and 4) detrended calendar year AM 
W for average recurrence interval (ARIs) of 2, 5, 10, 25, 50, 100, and 500 years. A Monte Carlo (MC) simulation 
method19,47 was used to consider sample data uncertainty in frequency analysis. After estimating the parameters 
of GEV distribution using the L-moments statistics, a total of 1,000 MC synthetic data sets were generated with 
the same record length. We then fitted GEV distribution to each MC synthetic data set using the L-moments 
statistics and estimated the associated values of the selected ARIs. Therefore, a total of 1,000 ensemble members 
were generated to quantify the uncertainties associated with NG-IDF curves. We provided the 90% confidence 
intervals using the 5% and 95% quantiles of the ensemble members. To provide a reference for comparison, we 
utilized the same methodology to create PREC-IDF curves with water year AM P and calendar year AM P. All 
trend and MC analyses were performed using the “trend”51 and “lmom”52 package in R, an open-source software 
environment.

Driving mechanism and seasonality. The driving mechanism of W was identified for each location, 
duration, and LULC. The classification of the driving mechanism was based on the P/TF and ∆SWE, as per Sun,  
et al.25, and included three categories:

 1) Rainfall only, which refers to precipitation or throughfall on snow-free ground;
 2) Snowmelt only, which refers to decreasing SWE with no concurrent precipitation or throughfall; and
 3) ROS, which refers to decreasing SWE with concurrent precipitation or throughfall. To further refine the 

focus on flood potential, a ROS event was defined as having at least 10 mm of precipitation or throughfall 
per day falling on a snowpack with at least 10 mm SWE over the selected duration. Additionally, the sum of 
rain and snowmelt had to contain at least 20% snowmelt13,25,53,54.

Precipitation was used for open area while throughfall was used for vegetated LULCs. In addition to the AM 
W time series, the AM Rain, AM Melt, and AM ROS time series were also provided for each location, and design 
events were constructed using the same approach as described above. For each location, the driving mecha-
nism that produced the largest design event was identified as the dominant mechanism of hydrological extreme 
events. The degree of seasonality exhibited by AM W at different durations and LULCs was quantified using 
circular statistics to calculate the seasonality index (SI) and mean date (MD). While the mathematical details of 
circular statistics have been extensively covered in previous literature55–57, interested readers may refer to Sun, 
et al.25 for more information. The SI is a value between 0 and 1, with higher values indicating a greater degree of 
seasonality, while the MD provides insight into the average timing of AM W events.

Data Records
The NG-IDF 2.0 datasets covering the CONUS are publicly available in ASCII format through nine Zenodo 
repositories. These repositories host the datasets for various land cover types, including: (1) Evergreen forest58. 
(2) Deciduous forest59. (3) Mixed forest60. (4) Grassland61. (5) Crop62. (6) Open area63. (7) Pasture64. (8) Shrub65. 
(9) Wetland66. All repositories follow identical data structures, and Table 2 presents a summary of the data struc-
tures, data files, and variables specifically for the evergreen forest as an illustrative example.

Canopy Parameter

Cluster

C1-Alpine C2-Maritime C3-Southern C4-Northern C5-Interior

Overstory Max LAI 4.5 5.3 4.9 5.2 5.5

Understory Max LAI 0.5 1.6 1.2 0.7 0.4

Overstory Height (m) 16.1 21.2 19.0 18.9 21.0

Understory Height (m) 0.5 0.9 0.7 0.5 0.4

Monthly 
LAI Ratio 
to Max LAI

January 0.10 0.27 0.19 0.22 0.21

February 0.12 0.32 0.24 0.23 0.25

March 0.19 0.41 0.33 0.32 0.34

April 0.26 0.67 0.63 0.43 0.55

May 0.57 0.99 0.96 0.68 0.80

June 1.00 0.97 1.00 0.94 0.97

July 0.91 1.00 0.97 1.00 1.00

August 0.74 1.00 0.84 0.97 0.95

September 0.55 0.82 0.70 0.79 0.84

October 0.23 0.67 0.51 0.49 0.57

November 0.18 0.35 0.27 0.27 0.28

December 0.11 0.26 0.19 0.22 0.22

Table 1. Cluster canopy parameters of deciduous forest developed for the CONUS runs.
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technical Validation
Due to the absence of data for direct NG-IDF curve evaluation, the evaluation focuses on W, which serves as 
the source data for deriving NG-IDF curves. Our specific focus was on evaluating the model’s simulated daily 
SWE, which is a key variable used in the W calculation besides precipitation data from the climate dataset. 
Currently, the NRCS SNOTEL network provides daily SWE measurements under open condition at approx-
imately 800 stations in the western United States. To ensure quality, SNOTEL data was subject to a rigorous 
three-stage quality control filter20 and is subsequently corrected for snowfall undercatch27. The resulting data 
set, called bias-corrected quality-controlled (BCQC) SNOTEL data, can be accessed at https://climate.pnnl.gov
/?category=Hydrology. Sun, et al.25 provided a detailed description of the comprehensive validation of DHSVM 
SWE simulation against SNOTEL data, and only a brief overview is presented here. Briefly, they selected 246 
SNOTEL stations that shared the longest common period (2007–2013) of BCQC daily SWE records and eval-
uated the SWE simulation skill using three metrics: Nash-Sutcliffe Efficiency (NSE), bias in mean annual peak 
SWE (PEAK.ERR), and bias in the timing of peak SWE (PDATE.ERR). The results indicated that NSE of daily 
SWE was greater than 0.6 at 75% of the stations, absolute PEAK.ERR was less than or equal to 25% at 67% of 
the stations, and absolute PDATE.ERR was less than or equal to 14 days at 67% of the stations. These findings 
suggest that the calibrated DHSVM is capable of replicating the observed SWE dynamics at most of the stations 
using the regionalized snow parameters and can support large-domain hydrological applications. For more 
information, readers are directed to Sun, et al.25.

However, the data availability is rather limited for under-canopy SWE and most are short-term, discontin-
uous, point-scale measurements. Previous studies27,28,67–71 have extensively validated the ability of DHSVM to 
simulate snow and streamflow in various vegetated watersheds across the CONUS. For instance, in an exten-
sive evaluation of 30 hydrological models, Beckers, et al.69 determined that DHSVM was the most suitable for 
hydrological modeling in forested environments. Du, et al.67 demonstrated that DHSVM effectively replicates 
the dynamics of snowpack, soil water content, and streamflow patterns in the forested Mica Creek Experimental 
Watershed in northern Idaho. Cristea, et al.70 confirmed that DHSVM accurately reproduces the dynamics 
of snow and streamflow in the forested Tuolumne basin of the Sierra Nevada, California. Sun, et al.28 further 
improved the DHSVM canopy model by incorporating canopy gap structure and verified its high accuracy in 

Main Folder Naming Convention Data File Description*

/24-h_time_series/

daily time series from 1950/1/1 to 2013/12/30

data_[lat]_[lon] e.g., 
data_25.15625_−80.71875

Data Dimension: 23,375 (R) × 4 
(C). C1: W; C2: P; C3: TF; C4: 
SWE, all in mm.

/AM_time_series_[Year]/e.g., /AM_time_series_CY/

AM series with durations of 24 h, 48 h, and 72 h driven by different 
mechanisms from CY 1950–2013, including melt, rain, ROS, TF, and W. AM 
SWE series is also included.

[duration]_AM_time_series/
[mechanism]/data_[lat]_[lon] 
e.g., 24-h_AM_time_series/W/
data_25.15625_−80.71875

Data Dimension: 64 (R) × 4 (C) 
C1: Year; C2: Month; C3: Day; 
C4: AM value in mm.

/d_AM_time_series_[Year]/e.g., /d_AM_time_series_CY/

Detrended AM series with durations of 24 h, 48 h, and 72 h driven by 
different mechanisms from CY 1951-2013.

[duration]_AM_time_series/
[mechanism]/data_[lat]_[lon] 
e.g., 24-h_AM_time_series/W/
data_25.15625_−80.71875

Data Dimension: 63 (R) × 4 (C) 
C1: Year; C2: Month; C3: Day; 
C4: AM value in mm.

/IDF_curves_[Year]/e.g., /IDF_curves_CY/

IDF values and their 90% confidence intervals with durations of 24 h, 48 h, 
and 72 h driven by different mechanisms from 1951-2013, including melt, 
rain, ROS, TF, and W. Dominant mechanism and mean W and SWE dates 
from seasonality analysis are also included.

[duration]_[mechanism] e.g., 24-h_W

Data Dimension: 207,173 
(R) × 9 (C) C1: Latitude; C2: 
Longitude; C3-C9: IDF values 
with ARIs of 2, 5, 10, 25, 50, 100, 
and 500 years, in mm.

/IDF_curves_[Year]_detrend/e.g., /IDF_curves_CY_detrend/

IDF values and their 90% confidence intervals using detrended AM data 
with durations of 24 h, 48 h, and 72 h driven by different mechanisms from 
1951-2013.

[duration]_[mechanism] e.g., 24-h_W

Data Dimension: 207,173 
(R) × 9 (C) C1: Latitude; C2: 
Longitude; C3-C9: IDF values 
with ARIs of 2, 5, 10, 25, 50, 100, 
and 500 years, in mm.

/trend_results_[year] e.g., /trend_results_CY/

Sen’s slope of Mann-Kendall trend in AM series with different mechanisms 
in 1951-2013.

[duration]_[mechanism] e.g., 24-h_W
Data Dimension: 207,173 
(R) × 3 (C) C1: Latitude; C2: 
Longitude; C3: Sen’s slope in 
mm/yr.

Table 2. Description of the NG-IDF 2.0 datasets for evergreen forest. *Note: In “Data Description”, 
C = column, R = Row. C[i] indicates the ith column of a data file.

https://doi.org/10.1038/s41597-023-02680-4
https://climate.pnnl.gov/?category=Hydrology
https://climate.pnnl.gov/?category=Hydrology


6Scientific Data |          (2023) 10:863  | https://doi.org/10.1038/s41597-023-02680-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

simulating snow under various canopy conditions, ranging from open to dense forest to canopy gaps, using field 
data from the University of Idaho Experimental Forest near Moscow, Idaho.

Usage Notes
The NG-IDF 2.0 datasets provided in Table 2 are readily applicable for diverse hydrological applications across 
the CONUS without requiring further modifications. We present five data usage applications here as shown in 
Fig. 2, but our choices are not exhaustive.

 1. Assess design risk with the use of standard PREC-IDF curves. To conduct hydrological design and analyses, 
users can obtain information on the magnitude of extreme W events and their associated P events for each 
LULC at any desired location (Fig. 2a,b,c).

 2. Plan various scenarios of LULC change and assess their effects on water supply and the risk of flooding. 
Effective management of water resources requires careful planning for changes in LULC, which takes into 
account potential impact on both water supply and the risk of flooding. Here the NG-IDF 2.0 datasets that 
provide insights into the potential effects of LULC change on both snow water supply and flood risk are 
essential for effective LULC planning and sustainable water management (Fig. 2e,h,i).

 3. Offer physical insights into changes in runoff timing and mechanisms resulting from modifications in LULC. 
The NG-IDF datasets offer runoff mechanisms (such as rain, snowmelt, and ROS) for each W event and 
seasonality for every LULC, allowing users to not only quantify changes in extreme W events but also 
comprehend the reasons for these changes (Fig. 2d,f). Moreover, the classification of the dominant runoff 
mechanism enables the development of mixed populations in the frequency of W events72,73.

 4. Enhance the standard hydrological design method by quantifying the spatial heterogeneity in LULC initial 
abstractions. The TR-55, which is a commonly used IDF design method, employs a fixed ratio across the 

Fig. 2 Example uses of NG-IDF datasets for nine LULCs, illustrated with calendar year AM data.
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CONUS to represent canopy initial abstraction regardless of LULC variations. The NG-IDF 2.0 datasets 
can systematically investigate the canopy initial abstraction ratio for nine LULCs across the CONUS, 
providing an opportunity to enhance runoff prediction accuracy when using the standard IDF design 
method (Fig. 2g).

 5. Provide spatial runoff data for to support downstream modeling applications, such as flood inundation 
modeling. In addition to integrating with rainfall-runoff models like TR-55 for assessing flood risk in 
hydrological design, the 6 km W datasets can be employed as inputs for hydrodynamic models like Rapid 
Infrastructure Flood Tool (RIFT)74 to enhance the accuracy of flood depth predictions (Fig. 2a), particu-
larly for events triggered by snowmelt or ROS flooding, thus improving the existing Federal Emergency 
Management Agency (FEMA) Special Flood Hazard Area (SFHA) maps75.

Finally, it is important to acknowledge that the datasets are derived from a singular canopy condition, rep-
resenting the average of a cluster. If the local canopy features vary significantly from this cluster average, the 
resulting information will differ. Moving forward, our intention is to create a cloud NG-IDF computing tool that 
allows users to input their specific local canopy attributes, enabling the generation of NG-IDF curves for any 
canopy condition related to each LUCL.

Code availability
The DHSVM source code is available at https://github.com/pnnl/DHSVM-PNNL Source codes that are used to 
develop and analyze the data are available at https://github.com/hydro-yan/NG-IDF The BCQC SNOTEL data 
are available at https://climate.pnnl.gov/?category=Hydrology.
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