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OIMHS: an Optical Coherence 
tomography Image Dataset 
Based on Macular Hole Manual 
Segmentation
Xin Ye1, Shucheng He  1, Xiaxing Zhong2, Jiafeng Yu1, Shangchao Yang2, Yingjiao Shen1, 
Yiqi Chen1, Yaqi Wang3, Xingru Huang4 ✉ & Lijun Shen1 ✉

Macular holes, one of the most common macular diseases, require timely treatment. the morphological 
changes on optical coherence tomography (OCt) images provided an opportunity for direct 
observation of the disease, and accurate segmentation was needed to identify and quantify the 
lesions. Developments of such algorithms had been obstructed by a lack of high-quality datasets (the 
OCt images and the corresponding gold standard macular hole segmentation labels), especially for 
supervised learning-based segmentation algorithms. In such context, we established a large OCt image 
macular hole segmentation (OIMHS) dataset with 3859 B-scan images of 119 patients, and each image 
provided four segmentation labels: retina, macular hole, intraretinal cysts, and choroid. this dataset 
offered an excellent opportunity for investigating the accuracy and reliability of different segmentation 
algorithms for macular holes and a new research insight into the further development of clinical 
research for macular diseases, which included the retina, lesions, and choroid in quantitative analyses.

Background & Summary
A macular hole (MH) is a full-thickness defect of retinal tissue in the fovea of the macula, which can seriously 
threaten the visual acuity of patients1. The overall incidence of MH is approximately 7.8 per 100, 000 individuals 
per year2, with a 64% increased risk in females compared to males3. The pathogenesis of MH is not fully clarified, 
but it is believed to be caused by vitreous traction4. Vitrectomy, combined with the internal limiting membrane 
(ILM) peeling, has been shown to be an effective treatment for MH5. A preoperative morphological evaluation 
of MH and its adjacent structures is beneficial to the selection of the appropriate treatment method and accurate 
prediction of surgical outcomes.

Optical coherence tomography (OCT), as a non-invasive optical imaging technique, has been rapidly devel-
oped during the last decades6. OCT has strong tissue penetration, contains stereoscopic imaging, and provides 
more details of the lesions, thereby supporting the quantification of the lesions directly7. Based on OCT images, 
researchers have proposed a number of predictors of MH surgical efficacy8. However, most of these parameters 
are diameters of MH or intraretinal cysts (IRC), which cannot be used to fully describe the three-dimensional 
structure of MH. Besides, the measurement process of these parameters is usually implemented manually, which 
is time-consuming and vulnerable to inter-and intra-measurement errors.

Accurate segmentation of the morphological patterns is crucial for the quantification of the severity of MH, 
which is helpful in providing imaging biomarkers for the prediction of treatment outcomes. With the introduc-
tion of artificial intelligence (AI) to the field of ophthalmology, various AI-based, fully automated models have 
been developed for lesion segmentation on OCT images, especially for supervised learning-based segmentation 
algorithms. However, developing an AI-based retinopathy segmentation model requires plenty of annotated 
retinal images. The training of those models requires large datasets with ground truth segmentation9. Manual 
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segmentation by a trained ophthalmologist is the most reliable and is considered as the ground truth segmenta-
tion. However, this arduous task is highly time-consuming. Furthermore, the scarcity of public datasets hinders 
model development. In the currently published database, the OCT data sets are few, and most of the publicly 
available datasets are those of fundus color photos10. These publicly available OCT data sets are summarized in 
Table 1.

There are some limitations of these datasets. First, those datasets with segmentations are mainly for 
age-related macular degeneration (AMD) and diabetic retinopathy (DR), and there are no publicly available 
data sets for MH segmentation. Second, most publicly available OCT image datasets are without segmentation 
of lesions, and it is very challenging to manually delineate the morphological features of MH. Thirdly, the dearth 
of datasets assessing the quality of OCT images threatens the accuracy of segmentation techniques. Conducting 
incorporating assessment of OCT image quality is necessary for improving the performance of segmentation 
algorithms.

Based on these concerns, we established a large OCT dataset with 3859 images, including manual segmen-
tation of the retina, MH, IRC, and choroid. The segmentation was performed by 3 junior ophthalmologists and 
corrected by 1 expert ophthalmologist. In addition, the quality of OCT images was evaluated from one objective 
perspective (i.e., low signal strength) and two subjective perspectives (i.e., signal shield and image blur). Besides 
the OCT images, this study also provided text data regarding a patient’s status, such as age, sex, and the classifi-
cation of macular holes, which could support diagnosis, medical concept extraction, clinical decision, and risk 
assessment. Thus, these OCT image data and text data might be conducive to future research on multimodal 
data. In addition, this dataset can be applicable to the development of a variety of AI-based image segmentation 
models to facilitate the development of MH and other disease-related clinical studies.

Methods
Data collection. This retrospective research received approval from the Ethics Committee of Zhejiang 
Provincial People’s Hospital (QT2023024) and adhered to the tenets of the Declaration of Helsinki. Informed 
consent was obtained from each patient. A total of 3859 OCT images from 125 eyes of 119 MH patients, who were 
diagnosed with MH at Zhejiang Provincial People’s Hospital from January 2017 to January 2022, were collected 
(Fig. 1a). The demographics of the participants were shown in the uploaded Excel file.

OCT volume scans were performed in all patients using the SD-OCT system (Spectralis HRA OCT, 
Heidelberg Engineering, Heidelberg, Germany). The images were all collected by experienced ophthalmolo-
gists. During the scan, the patient was in a sitting position, his/her lower jaw was placed on the jaw brace, and, if 
necessary, dilated pupils were performed. The scanning procedure required the patient to have a good fixation 
to ensure that the scanning range was centered on the fovea. Eyes with the following conditions were excluded 
from this study: (1) previous vitreoretinal surgery; (2) severe vitreoretinal diseases other than MH, such as reti-
nal detachment, high myopic maculopathy, proliferative diabetic retinopathy, retinal artery and vein occlusion, 
retinitis pigmentosa, central serous chorioretinopathy, glaucoma, retinitis, optic nerve diseases, etc.

Image annotation: Manually delineation for lesion atlas on the OCt images. The OCT image 
segmentation annotation group consisted of 3 junior ophthalmologists and 1 expert ophthalmologist (with more 
than 10 years of working experience). Firstly, the 3 junior ophthalmologists made the initial annotation of all the 
images. Secondly, the expert ophthalmologist reviewed and corrected all the annotated images. Figure 1 shows 
the whole workflow of the segmentation annotation process.

During the first step of the initial annotation (Fig. 1b), 3 junior ophthalmologists all used Clip Studio Paint 
software to manually delineate four anatomical structures (i.e., retina, MH, IRC, and choroid). A short note on 
the use of Clip Studio Paint software in marking annotations was shown in Supplementary Figure S1. Following 
were the annotation protocols: (1) The retina was defined as a tissue between the ILM and the retinal pigment 

Author Year Number of B-scans Disease Dataset type

Fang et al.16 2012 51 AMD, and healthy eyes Denoised images

Chiu et al.17 2012 220 AMD Segmented images of retinal pigment epithelium 
(RPE), RPE drusen complex, and total retina

Golabbakhsh et al.18 2013 44 VarIoUs retinal diseases Original images

Fang et al.19 2013 195 Healthy eyes Denoised and interpolated images

Farsiu et al.20 2014 38400 AMD, and healthy eyes Segmented images of RPE, RPE drusen complex, and 
total retina.

Srinivasan.21 2014 3231 DR, AMD, and healthy eyes Images labeled with disease

Chiu et al.22 2015 110 DR Segmented images of intraretinal fluid (IRF)

Rashno et al.23 2017 600 AMD Segmented images of IRF and subretinal fluid (SRF).

Kermany et al.24 2018 109312 DR, AMD, and healthy eyes Images labeled with disease

Lu et al.25 2019 750 DR, AMD, and healthy eyes Segmented images of IRF, SRF, and pigment epithelial 
detachment (PED).

Maetschke et al.26 2019 1100 Glaucoma Images labeled with disease

Gholami.27 2020 470 DR, AMD, MH, Central serous 
retinopathy, and healthy eyes Images labeled with disease

Table 1. Summarization of publicly available OCT datasets.
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epithelium (RPE). (2) MH was defined as a full-thickness defect of retinal tissue in the fovea of the macula, 
accompanied by exposure to RPE, and presented a low reflex consistent with the vitreous cavity. To determine 
the inner surface of MH, the annotator first identified the inner surface of the retina on both sides of MH and 
then bridged the two surfaces to form the inner surface of MH11. (3) IRCs were defined as cystoid spaces with 
low reflexes compared to peripheral retinal tissue. The small IRC away from the MH should be annotated with 
caution. (4) The choroid is defined as the tissue between the Bruch’s membrane and the sclera. In some images 
with poor quality, the morphology of tissue on OCT images is incomplete due to noise, shadow artifacts, and 
other reasons. To minimize false positive annotations and ensure the accuracy of segmentation, junior ophthal-
mologists were instructed not to modify the annotated pixels solely for the purpose of preserving the original 
continuity of the anatomic structure. The final OCT image segmentation ground truth was a four-color image, 
with red pixels representing MH, pink pixels representing IRC, blue pixels representing retina, and green pixels 
representing choroid.

During the second step, all the initial annotated images completed by junior ophthalmologists were reviewed 
by an expert ophthalmologist who evaluated and scored the quality of annotations and made correspond-
ing decisions (Fig. 1c). The quality of annotations would be scored from 0–2, based on specific scoring crite-
ria. Images in which the four anatomical structures were accurately labeled and segmented were scored as 2  
(Fig. 2a3,b3,c3,d3). These annotated images did not need further modification. Images in which the four 
anatomical structures were accurately labeled but segmented with a few mistakes would be scored as 1 
(Fig. 2a2,b2,c2,d2). These annotated images were modified by the expert ophthalmologist using Clip Studio 
Paint software. Images in which the four anatomical structures were mislabeled and segmented with a wide 
of mistakes were scored as 0 (Fig. 2a1,b1,c1,d1). These annotated images would be re-annotated by the junior 
ophthalmologists before the second review by the expert ophthalmologist. During the annotation procession, 
the expert ophthalmologist would provide junior ophthalmologists with instruction and guidance to improve 
the accuracy of segmentation.

Image quality assessment. To account for the substantial impact of various factors on the quality of OCT 
images and to ensure the usability of the dataset for diverse research applications, we assessed each image in the 

Fig. 1 Workflow for establishing the OIMHS dataset. (a) Data collection. 3859 OCT B-scan images of 119 
patients diagnosed with macular hole were collected in the Affiliated Eye Hospital of Wenzhou Medical 
University. (b) Initial annotation. 3 junior ophthalmologists manually annotated and segmented retina, 
macular hole, intraretinal cysts, and choroid in the OCT images initially. (c) Review and modification. 1 expert 
ophthalmologist reviewed and verified all the initial segmented images. (d) Image quality assessment. The 
image quality was assessed from three perspectives: low signal strength, signal shield, and image blur.
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MH dataset based on one objective image quality perspective (i.e., low signal strength) and two subjective per-
spectives (i.e., signal shield and image blur) (Fig. 1d). The quality assessment task comprised the evaluation of 
3859 images by 3 retinal specialists (each with > 5 years of experience), who utilized a 0.275 mm per pixel monitor 
positioned at a viewing distance of approximately 30 cm. Any disagreement was adjudicated by the expert retina 
specialist with over 10 years of work experience. Before we requested their gradings of the images, a generic qual-
ity gradation scale (see Table 2) was developed. The scale consisted of three components that together formed a 
three-bit binary number, generating the following possible grading levels: 000, 001, 010, 011, 100, 101, 110, and 
111. Each three-digit set represented an element, with the value of one indicating the agreement between the 
principal description and the image, and the value of zero representing disagreement. The use of an image quality 
gradation provided a systematic approach to the investigation of the robustness of an algorithm under varying 
image quality conditions.

Data records
The OIMHS dataset was uploaded in the form of a zipped file to Figshare12. The unzipped file was organized 
into 1 folder and 2 Microsoft Office Excel lists, named “Images”, “Quality Assessment. xlsx”, and “Demographics 
of the participants”, respectively. In the “Images” folder, there were 125 subfolders, and each subfolder contains 
all the images from one individual eye and was named “n”, where “n” represented the ID of an eye. Images were 
named “n.png”, where “n” meant the number of images. Each image was made up of two parts. The left part was 
an original OCT image, while the right part was the corresponding ground truth image. In the file “Quality 
Assessment.xlsx”, there were 5 columns. The first column indicated the ID of an eye. The second column indi-
cated the image name. The third column indicated the low signal strength. The fourth column indicated the sig-
nal shield. The last column indicated the image blur. The image quality gradation was either 1 (i.e., good quality) 
or 0 (i.e., poor quality). In the file “Demographics of the participants”, there were 6 columns. The first column 
indicated the patient ID. The second column indicated the eye ID. The third column indicated the eye category. 
The fourth column indicated the age of the patient. The fifth column indicated the sex of the patient and the last 
column indicated the macular hole stage.

Fig. 2 Examples of different scores for the initial annotation. Left column: annotated images with a quality 
score of 0. middle column: annotated images with a quality score of 1. Right column: annotated images with 
a quality of 2. The top line list annotated images with different scores for MH annotation; The second line list 
annotated images with different scores for IRC annotation; The third line list annotated images with different 
scores for retina annotation; The bottom-line list annotated images with different scores for choroid annotation.

Quality perspectives Low signal strength Signal shield Image blur

Grading bits 0/1-- - 0/1 - --0/1

Principle description Signal strength ≤ 15 Total or partial loss of 
retinal and choroid signal

Image has noticeable blur appeared 
in retina, MH, IRC, and choroid

Table 2. Quality gradation scale.
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technical Validation
Dataset characteristics. There were 3859 OCT images and their corresponding ground truth images in the 
dataset. There were 220 images with a resolution of 384 × 496 pixels, 3002 images with a resolution of 512 × 496 
pixels, and 637 images with a resolution of 768 × 496 pixels. The key features of the database were summarized 
in Table 3. These images were from 125 eyes of 119 patients, with 89 females and 30 males. The mean age of the 
patients was 64.1 years, with a standard deviation of 11.5 years. All the subjects were Asian. Patients were grouped 
according to the age classification criteria provided by the World Health Organization (WHO). The result showed 
that there were two teenagers aged below 17, accounting for 0.84% of the sample, three adults aged 18 to 44, 
accounting for 3.36%, and 22 middle-aged people aged 45 to 59, accounting for 18.49%, and 92 people over 60 
years old, accounting for 77.31%. Table 4 shows the distribution of the patients with the specification of gender 
and age ranges. Based on the Gass classification, MH patients were divided into four stages, and the scatter plot 
(Fig. 3) shows the distribution of the stage and age of the MH patients.

Image quality distribution. All images were evaluated for image quality (see Fig. 4). There were 38 OCT 
images with the signal strength less than 15, accounting for 0.98% of all collected images, and the signal strength 
of the other images was all greater than 15. There were 252 OCT images with signal shields, accounting for 6.53%, 
and the other images were all without signal shields. There were 333 OCT images with image blur, accounting for 
8.63%, and the rest were all without image blur. The inclusion of some low-quality images was intended to reflect 
clinical reality and test the algorithms’ robustness.

Validation of annotation using quality score. Manual annotation is a reliable method for the estab-
lishment of the dataset. In this work, every OCT image was initially annotated by 3 junior ophthalmologists and 
then refined by 1 expert ophthalmologist. The distribution of initial manual annotation quality of all images was 
counted (Fig. 5). For the initial annotation of MH, 2131 (55.22%) images scored 2, 1535 (39.78%) images scored 1, 
and 193 (5.00%) images scored 0. For the initial annotation of IRC, 1737 (45.01%) images scored 2, 1544 (40.01%) 
images scored 1, and 578 (14.98%) images scored 0. For the initial annotation of the retina, 3280 (85.00%) scored 
2, 399 (10.34%) images scored 1, and 180 (4.67%) images scored 0. For the initial annotation of the choroid, 2315 
(59.99%) images scored 2, 1158 (30.01%) images scored 1, and 386 (10.00%) images scored 0. All the images 
with a score of 2 were directly included in the dataset, while the images with a score of 1 were modified by the 
expert ophthalmologist before being added to the database. The images with a score of 0 were re-annotated by the 

Particulars OIMHS dataset

Total number of OCT images 3859

OCT imaging devices used and number of images with different resolutions:

Heidelberg SD-OCT; image resolution: 384 × 496 pixels 220

Heidelberg SD-OCT; image resolution: 512 × 496 pixels 3002

Heidelberg SD-OCT; image resolution: 768 × 496 pixels 637

Number of ophthalmologists participated in manual annotations 4

Retina ground truth generated out of 3 manual annotations ✓

Macular hole ground truth generated out of 3 manual annotations ✓

Intraretinal cysts ground truth generated out of 3 manual annotations ✓

Choroid ground truth generated out of 3 manual annotations ✓

Images of ground truth were reviewed or modified at least once by expert ✓

Stage of macular hole decision provided by expert ✓

Table 3. Features of the OIMHS dataset.

Age range 
(Years old) Gender

Stage of Macular Hole

Total

Stage 1 Stage 2 Stage 3 Stage 4

RE* LE** RE LE RE LE RE LE

<18
Male 0 0 0 0 0 0 2 0 2

Female 0 0 0 0 0 0 0 0 0

18–44
Male 0 0 0 0 0 0 0 1 1

Female 0 0 0 0 0 0 2 0 2

45–59
Male 0 0 0 0 0 0 0 2 2

Female 0 0 0 3 3 5 8 2 21

≥60
Male 0 0 1 2 1 8 7 7 26

Female 0 1 5 5 6 11 21 22 71

Total 0 1 6 10 10 24 40 34 125

Table 4. Distribution of the type of patients in the OIMHS dataset according to gender and age ranges. 
*RE = Right Eye, **LE = Left Eye.

https://doi.org/10.1038/s41597-023-02675-1


6Scientific Data |          (2023) 10:769  | https://doi.org/10.1038/s41597-023-02675-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

junior ophthalmologists and then reviewed and modified again by the expert ophthalmologist. It took about six 
minutes to manually annotate an image. The entire image annotation process began in January 2022 and ended 
in June 2022. All images were reviewed or modified at least once by the expert ophthalmologist. Through the 
standardized annotation and reviewing process, we established an accurate and reliable OCT dataset based on 
MH Segmentation.

Validation of segmentation by evaluating the intra- and inter-consistency of the annota-
tors. To generate a sufficiently reliable dataset, 3 junior ophthalmologists performed manual segmentation of 
OCT images, and then 1 expert ophthalmologist reviewed and modified the segmentation results. In this study, 
we used intersection over union (IoU) and the dice coefficient to evaluate the intra- and inter-annotator consist-
ency of the annotators.

For intra-annotator consistency of the same annotator at different times, 20 images of the whole dataset 
were selected and extracted to form an example set based on the image quality. Three junior ophthalmolo-
gists were asked to annotate the 20 images 3 times. IoU and the dice coefficient were calculated for the 1st, 
2nd, and 3rd annotations. Mean IoU and the dice coefficient were computed for all 20 images and 3 annota-
tors. For intra-annotator variability of segmentation, the mean IoU and the dice coefficient of MH annotations 
were 0.930 ± 0.022 and 0.963 ± 0.012, respectively. The mean IoU and the dice coefficient of retina annotations 

Fig. 3 Distribution of the stage of macular hole and the age of patients.

Fig. 4 Distribution of different quality images.

Fig. 5 Quality distribution of the initial annotation for four anatomical structures.
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were 0.957 ± 0.015 and 0.978 ± 0.008, respectively. The mean IoU and the dice coefficient of intraretinal cysts 
annotations were 0.873 ± 0.046 and 0.932 ± 0.026, respectively. The mean IoU and the dice coefficient of cho-
roid annotations were 0.887 ± 0.060 and 0.939 ± 0.036, respectively. These results, presented in Fig. 6 (a) and 
Supplementary Tables S1, and S2, supported the consistency of the individual annotator in the OCT image seg-
mentation, laying the foundation for accurate annotation and replicable MH OCT image segmentation.

For inter-annotator consistency of the annotators, the error was evaluated using the first annotation of the 
same 20 images by three junior ophthalmologists. The mean IoU and the dice coefficient of MH annotations 
were 0.851 ± 0.054 and 0.919 ± 0.031, respectively. The mean IoU and the dice coefficient of retina annotations 
were 0.936 ± 0.024 and 0.967 ± 0.013, respectively. The mean IoU and the dice coefficient of intraretinal cysts 
annotations were 0.767 ± 0.067 and 0.867 ± 0.043, respectively. The mean IoU and the dice coefficient of cho-
roid annotations were 0.811 ± 0.107 and 0.891 ± 0.072, respectively. These results, presented in Fig. 6 (b) and 
Supplementary Tables S3, and S4, supported that the annotation results were close between annotators.

Validation of segmentation using the StapLe algorithm. In order to evaluate the raters’ capacity, 
the STAPLE algorithm was introduced13. The primary objective in integrating the STAPLE algorithm was to com-
prehensively assess the capacity and reliability of the four raters involved in the labeling process14,15. By leveraging 
this algorithm, we aimed to obtain a robust gold standard annotation encompassing the collective input of three 
ophthalmologists and one expert. The resulting gold standard serves as a reference point to evaluate the perfor-
mance and agreement of each rater’s annotation against a more objective and accurate measure. The STAPLE 
algorithm allowed us to reduce the variability introduced by individual raters during labeling, obtain a more 
objective and non-biased capacity reference of raters, and further obtain more accurate labels.

An in-depth statistical analysis was conducted to compare the individual raters’ annotations to the gold 
standard derived through the STAPLE algorithm. The Intersection over Union (IoU) and Dice coefficients 
metrics were utilized for this comparison. The mean IoU and the dice coefficient of MH annotations were 
0.908 ± 0.057 and 0.951 ± 0.032, respectively. The mean IoU and the dice coefficient of retina annotations 
were0.961 ± 0.025 and 0.980 ± 0.013, respectively. The mean IoU and the dice coefficient of intraretinal cysts 
annotations were0.862 ± 0.051 and 0.925 ± 0.029, respectively. The mean IoU and the dice coefficient of cho-
roid annotations were 0.893 ± 0.089 and 0.941 ± 0.053, respectively. The results were shown in Fig. 6 (c) and 
Supplementary Tables S5, and S6. These statistical comparisons shed light on each rater’s proficiency in accu-
rately delineating the macular hole region and other relevant retinal structures. These results provide a clear 
and insightful assessment of the raters’ capacity to participate in the annotation process and the accuracy of the 
segmentation, particularly in the critical macular hole region.

Fig. 6 Validation of segmentation. (a) Intra-annotator agreement analysis. The average IoU for annotation 
of the four structures was from 0.873 to 0.957. The average Dice coefficient was from 0.932 to 0.978. (b) Inter-
annotator agreement analysis. The average IoU was from 0.767 to 0.936. The average Dice coefficient was from 
0.867 to 0.967. (c) The agreement analysis between the annotators using the STAPLE algorithm. The average 
IoU was from 0.862 to 0.961. The average Dice coefficient was from 0.925 to 0.980.

https://doi.org/10.1038/s41597-023-02675-1


8Scientific Data |          (2023) 10:769  | https://doi.org/10.1038/s41597-023-02675-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Usage Notes
The whole dataset can be downloaded from the link mentioned above. Users can always split the dataset accord-
ing to their study design. Users should cite this paper in their research and acknowledge the contribution of this 
dataset in their study. Users should have received approval from their ethics committee before using this dataset.

Code availability
No novel code was used in the construction of the OIMHS dataset.
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