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Coaxial monitoring of the Direct Energy Deposition (DED) machines enables a real-time material 
deposition study. Coaxial-images contain substantial melt-pool information and incorporate situational 
information including the sparks’ intensity, numbers, etc. Recent studies have shown that melt-pool 
observations correlate directly with machine parameters and artifact properties. therefore, the melt-
pool information not only can assist in measuring the machine’s working condition and determining 
machine operation parameters’ reliability but also facilitates the deposition characteristics studies like 
print’s regime and dimensions. this information is gathered during the fabrication and can be expanded 
to perform various process studies and fault registration. this paper utilizes the Optomec DED machine 
to fabricate single-track prints with multiple process parameters, while a coaxial camera records the 
deposition. Each deposited track is then cut perpendicular to the print’s direction to facilitate process 
parameters correlation study with actual geometrical deposition measured using a microscope. the 
coaxial images taken during fabrication, along with their process parameters, cross-cut measurements, 
and a developed image-processing toolbox, are presented alongside this paper to empower future 
research directions.

Background & Summary
Metal additive manufacturing, also known as 3D printing, is a process that involves building up layers 
of metal material to create a physical object. It offers several benefits over traditional manufacturing meth-
ods, including the ability to produce complex shapes and the potential for reduced material waste. However, 
the adoption of metal additive manufacturing in the industry has been limited due to the lack of reliable 
process-structure-property relationships, which makes it difficult to predict how a part will perform based on 
the manufacturing process used to produce the part1.

One specific metal additive manufacturing process is laser-directed energy deposition (L-DED), which 
involves using a laser beam to melt and deposit metal material in a controlled manner2. While L-DED has gained 
attention in recent years, it is still not as reliable and repeatable as traditional manufacturing tools. This could hin-
der its industry adoption since manufacturers must consistently produce high-precision parts to meet customer 
demands. Due to the intricate physics of the laser-material interaction and the cyclic thermal loading that takes 
place during metal additive manufacturing, various issues may arise, including residual stresses, porosity, inferior 
dimensional accuracy, and impaired mechanical properties3–5. These problems may be caused by a variety of fac-
tors, including the process parameters used during the manufacturing process and the material being employed. 
Residual stresses, for instance, may be caused by the difference in thermal expansion between the laser-heated 
material and the cooler surrounding material, while porosity may be caused by a lack of fusion between the layers 
of material. Poor dimensional accuracy may be caused by a variety of factors, including temperature variations, 
material shrinkage, and laser beam focus. Impaired mechanical properties may be caused by the formation of 
defects in the material structure during the manufacturing process. To optimize the process parameters and pro-
duce high-quality parts, it is necessary to fully grasp the process-structure-property relationship (PSP), which 
refers to how the manufacturing process affects the structure and properties of the resulting part4.
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The process of fabricating parts using laser-directed energy deposition (L-DED) is governed by numerous 
process parameters, including laser power, laser scan speed, and powder feed rate. To study the effects of these 
process parameters on the microstructure and physical properties of samples and determine optimal conditions 
for manufacturing larger builds, single-track deposits/prints are often utilized in metal additive manufacturing 
due to their simplicity6–8. By fully understanding the effects of these process parameters on the resulting parts, 
researchers and manufacturers can optimize the L-DED process to produce high-quality parts consistently.

By examining data obtained from online monitoring sensors, researchers have discovered correlations 
between various process parameters, including laser power, scanning speed, powder feed rate, and melt-pool 
dimensions through the application of observations and statistical methods. This information can be utilized 
to optimize the L-DED process and enhance the reliability and repeatability of metal additive manufacturing.

In the field of metal additive manufacturing, researchers have studied the effects of various process param-
eters on the melt-pool width, temperature, and track height. For example, Bi et al. found that laser power had a 
minimal effect on track height but a strong influence on width9, while Ocylok et al. determined that laser power 
had the strongest correlation to the melt-pool size and that powder feed rate had a minimal impact on melt-pool 
size10.

Melt-pool data has been increasingly used for defect detection and prediction, leading researchers to com-
bine microstructure analysis and melt-pool dimension measurement with online monitoring. High-speed cam-
eras11,12 and Inline coherent imaging13 are among the recent examples of correlating melt-pool observations to 
balling, keyhole porosity, and print continuity information achieved from post-processing microstructure analy-
sis. To detect errors, Clijsters et al. employed a thermal CMOS camera and a photodiode to capture near-infrared 
(NIR) melt-pool areas and intensities14.

A variety of non-contact measurement methods have become increasingly popular among researchers for 
capturing the thermal history and melt-pool temperatures of L-DED and other metal AM processes. These 
methods include optical tomography, high-speed cameras, photo-acoustic imaging, and infrared pyrome-
ters12–19 Part quality could be determined by the temperature distribution in the melt-pool18. As part of the ther-
mographic inspection, Marshall et al. utilized a dual-wavelength pyrometer and an in-chamber infrared camera 
to observe the melt-pool temperature and the part’s temperature history15.

Given the significance of having real time observation of DED additive manufacturing process, in this article, 
a dataset20 of various coaxial observations from experiments with different process parameters during the DED 
fabrication process described in the methodology paper21 is structured. Alongside the coaxial camera data, each 
printed track was cut to achieve cross-sectional images representing how the resulting print was for various pro-
cess parameters. This dataset can be utilized to further study the melt pool dynamics and parameter transitions.

Methods
Data collection. In this work, 328 single scan track (SST) samples were printed, with varying laser power, 
scanning speed, and powder feed rate. The goal was to understand how these process parameters influence the 
morphologies of SSTs. The laser power, print speed, and powder feed rate were tested within the ranges of 200–
500 W, 10–1000 mm/s, and 0.25–15 g/min, respectively, as shown in Table 1. To ensure stable and defect-free 
prints, the process parameter combinations were carefully chosen based on empirical selection, keeping the linear 
energy density between 40 and 100 J/mm.

The SSTs’ fabrication was carried out using an Optomec LENS MTS 500 printer. This advanced printer is 
equipped with a two-powder feeder hopper, a CNC control system, and a deposition head capable of reaching a 
maximum laser power of 500 W, operating at a center wavelength of 1070 nm.

The fabrication process takes place in a fully inert controlled chamber, where a 76.2 mm × 101.6 mm × 8 mm 
SS 316 L substrate is used. The process involves continuously blowing SS316 powder through four lateral nozzles 
while simultaneously ejecting argon gas to precisely direct the extrusion to the focal point of the high-powered 
laser. This ensures the shielding of the deposited metal from contamination and oxidation. This DED experi-
mental setup is shown in Fig. 1. For the sample fabrication, Stainless Steel 316 L powder from CARPENTER 
ADDITIVE, with a diameter range of 45–106 µm, was utilized. The chemical composition of the powder is 
presented in Table 2.

After printing the single scan track samples are printed, they undergo a series of processing steps to pre-
pare them for microstructure analysis. In this step, the sectioning machine, mounting machine, and polishing 
machine from Allied High-Tech Products, Inc., specifically models TechCut 5x™, TechPress 3™, and MetPrep 
3™, respectively, are employed.

First, the samples are sectioned perpendicularly to the scan direction by an aluminum oxide blade oper-
ating at 3000 rpm. Sectioned samples are then rinsed with ethyl alcohol, dried with compressed air, and then 
mounted into a 30 mm cylinder using graphite-based conductive powder. This provides a good edge retention 
and hardness for SEM usage. The molds with the SS316L cross-sections of interest are then polished with 1200 

Process Parameter Test Range

Laser Power (W) 200–500

Print Speed (mm/min) 10–1000

Powder feed rate (g/min) 0.25–15

Argon shielding gas flow (L/min) 30

Argon carrier gas flow (L/min) 4

Table 1. Process parameter values used in the experiments.
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Grit Silicone Carbide paper and etched using Marble’s reagent etching solution for 45 s. This ensures a better 
visualization of the cross-section’s microstructure and macrostructure when inspected. This process is summa-
rized in Fig. 2.

After sectioning and etching, the samples’ cross-sections are examined using an optical Olympus BH-2 
Microscope, with a magnification of 5X. Using the microscope, a picture as the one shown in Fig. 3 is taken. 
Each picture is then labeled with a unique name tag that is pre-defined for every cross-section, encompassing the 
part number, track number, and the assigned letter for identification purposes. To measure the three geometrical 
attributes of interest, namely, the track width (W), depth (D), and height (H), the pictures are loaded onto the 
suggested application, AM-scope, where they are measured in pixels and stored in an Excel file. This process 
results in an Excel file with the section’s number, process parameters, and measured dimensions.

Data pre-processing. The acquired denoised data from the coaxial camera, during the DED fabrication 
process, shows both the melt-pool geometries and signatures, along with sparks, residual powders, and random 
reflections from the print bed. However, because this study is solely focused on the melt-pool features, it is nec-
essary to distinguish its signatures and eliminate the surrounding information and noise within the images. For 
example, a multi-frame denoise is used to remove the spark path. For every two adjacent frames, the pixels at the 
same location of every two adjacent frames are compared. The minimum value is picked to be the final denoise 
image. A configurable noise detection and elimination program is also developed. This program allows full con-
trol over all the steps taken for image processing by getting all the required assumptions as inputs. Figure 4 depicts 
the denoising algorithm flowchart. Starting from the top, once images are located and loaded, a local maxima 
filter with an adjustable filter size is applied to achieve the Deviation Map (DeMap). Once the effect of the DeMap 
is applied, a tunable hard thresholding is applied to achieve a binary image. The resulting binary image might 
consist of islands due to a strong presence of sparks, noise, or reflection. Therefore, by region growing method, 
the largest continuous region is distinguished and kept as the melt-pool.

Deviation Map (DeMap). The DeMap represents regions containing an intensity gradient that is correlated 
with the region’s temperature map. Since the DeMap and how it is applied for denoising can result in various 
meaningful information, multiple approaches are implemented in the image processing code.

The DeMap alone can provide meaningful information to pinpoint regions with fluctuating intensity and 
temperature. When analyzing the DeMap, it is possible to separate the background from the melt-pool core to 
keep the temperature-varying regions, such as solidifying regions. The solidifying section can be further used 
to analyze the time of glass transition, rate of cooling, and many other aspects that rely on observations linked 
to after-melt events.

Fig. 1 The experiment setup for the Coaxial camera.
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On the other hand, the addition or subtraction of the DeMap from the raw image can result in the segrega-
tion of various melt-pool aspects. Subtraction of the DeMap from the raw data helps eliminate fluctuating tem-
perature signatures and noise, which allows localization of the laser beam core and stable melt-pool core. Using 
the acquired melt-pool core readings, one can determine not only laser power and its penetration into the build 
plate but also the printing regime and quality of the deposition. On the other hand, the addition of the DeMap 
to raw data can illustrate the varying temperature maps effect. This in turn generates an outer-bound melt-pool 
geometries analysis. Despite indicating unwanted noise, this method also assists in the melt-pool’s outer bound-
ary detection. A melt-pool’s outer boundary contributes significantly to the analysis of the print’s resulting track 
geometry, and the detection of sparks, and unwanted anomalies.

Therefore, the program is designed to incorporate all three methods mentioned above with configurable 
parameter input. To make the code more generalizable, all the assumptions and constants needed for image pro-
cessing and information extraction are parameterized. Therefore, depending on the task, even with a different 
setup, camera, and input properties, hyperparameter analysis, and tuning have been made customizable and 
easily accessible.

Ellipse fitting. The size of the melt-pool and various geometrical information about melt-pool can be further 
used to study the undergoing print and fabrication quality and in general print’s dynamic. Therefore, as suggested 
by literature22,23, the closest geometrical form to represent a melt-pool is using an ellipse. To that end, it is neces-
sary to find the best ellipse that fits the melt-pool and achieve the key parameters. Each ellipse can be defined by 
five hyperparameters as longest (a) and shortest (b) diagonal, X and Y coordinates of the center, and orientation 
(θ). The ellipse model is depicted in Fig. 5. Two approaches are implemented for the parameter estimation, naive 
and grid search which will be discussed in detail.

Naïve approach. In the naïve step, the normalized second central moments of the region are calculated. 
Then, based on the calculated moments, the ellipse with similar normalized second central moments is chosen as 

Fig. 2 Illustration of sample processing steps.

Fig. 3 Definition of D, W, and H for the cross-section data.
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an approximated geometry. Therefore, with a relatively fast calculation, an acceptable ellipse is achieved. To step 
further and fine-tune the ellipse to fit best into the melt-pool, a grid search algorithm is implemented.

Grid search (GS) approach. The grid search approach, although requires a significant processing time, is 
guaranteed to achieve the local minima and converge to the best available solution. To accelerate the search and 
narrow down the search domain, for each parameter, the rough estimations achieved by the normalized second 
central moments approach are used. Therefore, the GS iterates only over a small range of possible candidates. 
Also, to fasten the search, for each parameter, a step size is defined to skip very close iterations. The scope of the 
search for each parameter and the corresponding step size is tunable bypassing the upper, and lower hand flexi-
bility, and step size for each parameter to the search algorithm.

Once the search scopes are defined, for each set of possible parameters, starting from the largest diagonal sets, 
an ellipse mask is generated. Then, by comparing the generated mask and the input image, the cross-correlation 
of the two is calculated. The largest diagonal which achieves a +97% cross-correlation value would be picked as 
the best fit. The GS algorithm pseudo-code is illustrated in Table 3.

Dataset creation. Once the evaluation of the geometrical parameters is done, the calculated values are then 
stored as a database file with the appropriate name tag based on the image processing hyper-parameters. The for-
mat of the name tag is made by hyper-parameter abbreviation with the corresponding value, as shown in the Fig. 6.

Fig. 4 Resulting images from each step taken by the pre-processing algorithm.

Fig. 5 Illustration of the ellipse model used for melt-pool representation. X0 and Y0 are the ellipse center 
coordinates. A and B are the longest and the shortest ellipse diagonal respectively. θ is the ellipse’s tilt.
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Fig. 6 Dataset generation naming policy.

Fig. 7 Dataset file structure tree.

Table 3. Grid Search algorithm flowchart to find the best elliptical fit.

Element Mo N C Cr Mn Ni Si P S

wt% 2 0.1 0.03 16–18 2 10–14 1 0.045 0.03

Table 2. Metal powder properties.
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Data Records
The structure of the dataset folder, deposited in Scientific Data Bank, a general-purpose data repository20 is 
shown in Fig. 7. The database consists of four main sections, a main Excel file, coaxial images, crosscut images, 
and an image processing toolbox.

First is an Excel file in which all the parameters for each SST are stored. Each data sample in the Excel file 
includes printing process parameters, and the cross-section measurements (height, width, and depth). Figure 8 
depicts the Excel file headers.

Second, In the coaxial images folder, under each SST sample name tag, the raw images and corresponding 
denoise images are included as a zip file. The coaxial images follow a name code as prim *_**.npy. which * is the 
placeholder for the image’s index during the recording and ** is the machine time in seconds which is obtained 
by the python library time. time. The format of the raw images is.npy. It can be accessed by using the Python 
library Numpy load function. The samples raw images from tag number 0000 to 0056 are 8-bit RGB images with 
shapes as (800, 800, 3). Starting from sample number 0057, the raw images are saved as 16-bit grayscale images 
with shapes as (800, 800, 1). The denoising methods used for this database will be discussed in the code availa-
bility section. The denoised images are saved as 8-bit grayscale JPEG images.

Third, crosscut images obtained by expert researchers are stored. These images were measured in height/
width/depth bases. The format of crosscut images is *.tiff which also includes measurement information by 
AM-scope application.

Last, is the image processing toolbox folder which includes all the functions and codes developed for process-
ing this database and generating outputs.

Fig. 8 Excel file structure.

Fig. 9 Laser power validation.

RPM gram/min (±0.2)

0.5 0.7

1 1.7

2 2.7

3 4

4 5.7

5 6.6

6 7.9

7 9.2

8 10.5

10 14.1

12 17

14 18.9

15 20.1

Table 4. Powder feed rate from RPM to g/min.
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technical Validation
As described in the previous sections, the experiments are conducted on the DED system with different process 
parameters. In this section, dataset validation for process parameters, melt-pool coaxial images, and single-track 
cross-section are performed.

Validation of process parameters. In the experiments, three process parameters, namely laser power, 
scanning speed, and powder feed rate, are changed in the experiments and the rest are kept constant, For the 
laser power, the Macken Instrument analog thermopile laser power meter, 100–500 W YAG&CO2 is used to 
calibrate the laser power, as shown in Fig. 9. The laser power is measured with the setting of 100, 200, 300, 400, 
and 500 W(Max). Based on the validation measurement, the tolerance of laser power of DED is confirmed within 
±5%. The scanning speed of DED is validated by timing the movement of 100 mm. The scanning speed tolerance 
is within ±1%.

The unit of powder feed rate is RPM in this dataset. The relation to the gram/min is shown in Table 4.

Validation of coaxial images. The coaxial camera for this study is mounted on the feeder’s head directly 
above the laser hit point. To ensure the reliability and repeatability of the experiment, camera focus, and calibra-
tion are necessary. Therefore, to calibrate the camera, first, the machine with the disarmed laser is moved above 
the print bed at the same height as a normal print would take place. Then, by manually adjusting the camera lens, 
the focal point is moved to achieve the clearest output. Thereafter, to calibrate the camera, a calibration sheet is 
placed underneath the feeder and a few pictures are taken, as shown in Fig. 10. For the coaxial camera, we have 
verified our calibration results by comparing our actual measurements against the sensor resolution reported. 
We used rulers in different directions to obtain observable resolution as reported our pixel-to-real scale meas-
urement shows 1 mm = 220 pixels. This number matches with the sensor resolution of 4.5 µm/pixel reported by 

Fig. 10 Coaxial camera calibration scale.

Fig. 11 Microscope calibration ruler.
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the manufacturer (FLIR). Using the pixel conversion value, it is possible to convert the observed deposited track 
width with the actual deposition to make sure the transformation and observations are in line.

Validation of single-track cross-section images. Once the fabrication is done, using a destructive 
approach, every single track is cut perpendicular to the print direction to obtain a cross-sectional observation. 
These observations are crucial in understanding the actual print outcome and quality. To make sure the obser-
vations are reliable and accurate, first, a name tag system was implemented to track each specimen and corre-
sponding information. Then the Olympus BH-2 Microscope is calibrated by the manufacturer’s recommendation 
procedure. A calibration ruler is used to find the real dimension of each pixel under 5X magnification, as shown 
in Fig. 11. The pixel-to-real scale for the microscope is 1 mm = 1202 pixels. Then the height, depth, and width of 
the melt-pool are measured by expert researchers, as described in previous sections.

Usage Notes
For this study, each track might contain various parameters and printing conditions. At the transition point, 
where the machine is adjusting to the new set of parameters, for a brief time, the process undergoes a transition. 
This could be acceleration to adjust the speed or a lag in feed rate due to the feeder pump inertia. This transition 
was captured by the coaxial camera and can alone be a great opportunity to get deeper and analyze the effect. 
However, to correlate the process parameters and coaxial observations to the print’s regime and SST’s geometry, 
it is necessary to observe the steady-state fabrication. Therefore, to make sure the observed data is free of any 
transition, the user can drop the first and last 15% of the data corresponding to each track.

It is worth mentioning the dataset contains experiments with various fabrication speeds. Therefore, the 
faster the print speed is, the shorter the fabrication time gets. With a fixed frame rate per second data acquisi-
tion, the number of images per experiment varies. To address this unbalanced number of images available per 

Keyword description
Default 
Value Data type

Inp_image Input image for analysis [] 2D-array of type 
float32

save_figs
Saving figure outputs as a separate file.
0: no figures will be saved separately
1: All the mid-process steps’ figures will be saved separately

0 1 × 1, Boolean

filter_size Definition for the filter size used in the image processing to calculate the DeMap. 10 1 × 1, integer

multiplier Definition for the multiplication value used in the image processing algorithm to apply 
DeMap. 5 1 × 1, Float32

threshold
Definition for the threshold value used in the image processing steps.
Depending on the algorithm selected, appropriate values vary. For cases of addition 
higher values of threshold are suggested while in the case of DeMap alone, very small 
values are useful.

0.3 1 × 1, Float32 ∈[0, 1]

raw_out
The raw output flag is used to determine if the user needs the final image to be built from 
the processed data, or the raw input image.
0: Processed and binary image is cropped and returned
1: Raw image is cropped and returned

0 1 × 1, Boolean

sample_plot

Sample plot flag is used to activate mid-stage steps illustrations. After each step, the data 
is stored and plotted for the user to show the effect of the steps taken on the input image.
0: Turning off the mid-stage plots
1: Turning on the mid-stage prints
(It is worth mentioning that this feature is developed for debugging and fine-tuning 
purposes and for the actual run and database processing this must be turned off to allow 
multicore processing capabilities)

0 1 × 1, Boolean

substract_flag

The subtraction flag is used to pick the algorithm used in image processing. There are 
3 available methods: 0: Using an addition formula to apply the DeMap over the input 
image.
1: Using a subtraction formula to apply the DeMap over the input image.
2: Using the DeMap as the base

0 1 × 1, Float32 ∈{0, 
1, 2}

file_name The file name value is used to name the output files if there is one requested. ‘’ String Array

folder
The folder address is used to clarify the location in which the output file if there is one 
requested be saved.
In the specified location, a folder by the name: resulting_images is created to store the 
resulting images

‘’ String Array

extend_const
An extension constant is used as to how big the resulting image dimensions will be. Once 
the melt-pool core coordinates are measured, an output image with pixel dimensions, 
with double this value centered at melt-pool core coordinates is generated.

128 1 × 1, Integer

skip_brut

Skip brute force flag is used to determine which estimation algorithm to use for the ellipse 
approximation.
0: Using the brute force method after a fast estimation model to fine-tune the parameters 
found
1: Using the faster model based on normalized second central moments to estimate the 
ellipse parameters

0 1 × 1, Float32 ∈{0, 1}

brut_opts
Placeholder used to pass the brute force algorithm hyperparameters.
[upper_range_x, lower_range_x, upper_range_y, lower_range_y, upper_range_a, lower_
range_a, upper_range_b, lower_range_b, tetha_step, step_x, step_y, step_a, step_b]

[] 1 × 13, Float32

Table 5. Image processing function input description.
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experiment, it would be a reasonable attempt to randomly sample a fixed number of images from each folder to 
make sure each experiment will have the same number of data points.

Although the co-axial images are not timestamped, it is possible to register them in the time and tool path 
coordinates using the process parameters. As all the images are taken with the same frame rate, known printing 
speed for each track, and known track length it would be possible to calculate each frame’s time and location to 
create a spatiotemporal link .

Code availability
The source codes used for data generation and initial image processing for melt-pool detection and geometrical 
analysis are also available along with the data. These codes can serve as a useful tool for future integration. The 
descriptions of the inputs and outputs of the used image processing function are summarized in Tables 5, 6, 
respectively.
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