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Database of segmentations and 
surface models of bones of the 
entire lower body created from 
cadaver Ct scans
Maximilian C. M. Fischer  

the range of applications of digital surface models of the bones in science and industry is wide. three-
dimensional reconstructions of bones are used in biomechanics, biomedical engineering, medical 
image processing, orthopedics, traumatology, radiology, patient education, anatomy, anthropometry, 
forensic anthropology, ergonomics, usability and human factors engineering, or accident and injury 
analysis and prevention. No open access database or repository of skeletal surface models of the full 
lower extremities exists. therefore, the objective of this publication was to provide access to consistent 
complete bone models of the pelvis and lower limbs of multiple subjects, including biometric data. 
Segmentations and surface models of the bones of the lower extremities of more than twenty subjects 
were created from open access postmortem whole-body computed tomography scans. the database 
provides a broad range of applications by giving access to the data of the complete process chain, from 
the raw medical imaging data through the segmentations to the surface models.

Background & Summary
The field of application of digital bone models is broad. Three-dimensional (3D) reconstructions of bones 
are used in biomechanics, biomedical engineering and medical image processing for musculoskeletal model-
ling1,2, finite element analyses3, statistical shape modelling4–6 or 3D reconstruction from sparse imaging data, 
such as radiographs7,8 or EOS images9. 3D reconstructions of the bones are used in orthopedics, traumatology 
or radiology for the development of implants10–14, surgical instruments15,16 or procedures, for diagnosis and 
decision-making17,18, preoperative planning19,20 and navigational guidance during computer assisted surgery8,21, 
the evaluation of outcome22, surgery simulation23, surgical education and training24, especially in the context 
of personalized, patient-specific, customized or individualized medicine. The surgical guidance based on bone 
models can be virtual, augmented25 or mixed reality26, or 3D printed27,28. Further fields of application are anat-
omy and patient education29,30, morphometrics31 and anthropometry32,33, forensic anthropology34,35, ergonom-
ics, usability and human factors engineering36, accident and injury analysis and prevention37.

However, to the best of the author’s knowledge, no open access database or repository of skeletal surface 
models of the full lower extremities exists. Therefore, the objective of this study was to provide access to consist-
ent complete bone models of the pelvis and lower limbs of multiple subjects. The database is supposed to enable 
other researches to quickly develop, test and verify new methods, approaches, algorithms or proofs of concept 
without the time-consuming and labor-intensive work of data collection and curation, segmentation and recon-
struction. The database is expected to help the scientific community to facilitate research and improve the repro-
ducibility and comparability of studies by giving access to the raw medical imaging data, including the metadata 
of the subjects and the segmentations and surface models of the bones. Hence, different researchers and research 
groups can resort to the same datasets for the validation of methods and comparison of results. Different deep 
learning models for artificial intelligence-based bone reconstruction, for instance, could be benchmarked by 
applying them to the raw computed tomography (CT) data and comparing the automatic with the manual seg-
mentations of the database. The database can also be used as additional training data for existing deep learning 
models38,39.
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Methods
Source of the raw Ct data. The segmentations and models of the bones of the lower extremities were cre-
ated from anonymized postmortem CT scans of the whole body originally published by Kistler et al. in the Swiss 
Institute for Computer Assisted Surgery Medical Image Repository (smir.ch) as open access Virtual Skeleton 
Database (VSD)40. The CT datasets were provided by the forensic institutes of the universities of Bern and Zürich 
and shared under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license after 
ethical approval of the Cantonal Ethics Committee Bern41. Further information about the datasets can be found in 
the literature cited40,41. Due to ongoing difficulties in accessing the SMIR website, the author decided to reupload 
the original datasets without any changes to the open access hosting service Zenodo: https://doi.org/10.5281/
zenodo.827036442.

CAUTION. The VSD contains a few inconsistencies, such as duplicate CT datasets. The author of this publication 
is not connected to the SMIR or VSD and, therefore, not responsible for errors in the VSD. However, errors that 
the author recognized during the work with the VSD were logged and are reported in the reupload of the VSD42.

Subject selection. Twenty subjects (ten male and ten female) were selected from the VSD for the creation of 
the bone models with the objective of covering a wide age range.

The inclusion criteria were:

•	 Availability of age, body weight and body height.
•	 Integrity and completeness of the lower body’s skeletal anatomy.

The exclusion criteria were:

•	 Difference between the gender specified in the metadata and the biological sex visible in the CT data.
•	 Presence of artificial joints or bone fractures.

The average age, weight and height of the twenty subjects were 52 ± 21 years, 70 ± 13 kg and 1.7 ± 0.1 m, 
respectively. An overview of the subjects is presented in Table 1. Some subjects were processed before the inclu-
sion and exclusion criteria were defined. Ten of the subjects did not meet the criteria. These ten additional sub-
jects are also published as part of the database since they still might be useful for some applications, but they are 
tagged by a comment in the database so they can be easily identified by the user (see Table 1).

reconstruction of the osseous anatomy. The bone surfaces were semi-automatically reconstructed by 
thresholding (Fig. 1). Two hundred Hounsfield units43 were chosen as the lower threshold and the maximum 
Hounsfield unit value present in the volume data was selected as the upper threshold. Subsequently, a manual 
post-processing using the software 3D Slicer (slicer.org) with default smoothing settings was performed44. The 
bones were manually segmented at the joints if necessary. All joints were segmented. However, some segments 
contain multiple components as follows:

•	 Sacrum including the coccyx (if not fused with the sacrum)
•	 Hip bone (also called pelvic, innominate or coxal bone)
•	 Femur
•	 Patella
•	 Tibia
•	 Fibula
•	 Talus
•	 Calcaneus
•	 Tarsals, including the cuboid, navicular and three cuneiforms
•	 Metatarsals
•	 Phalanges

Separate segments were created for the left and right leg. Some segments contain small sesamoid bones if 
present. This applies to the metatarsals for all subjects but, in some cases, also to other bones, such as the femurs.

After the segmentation, the bones were reconstructed by manually closing holes present in the outer surface. 
No gap closing, hole filling or wrapping algorithms were used. The reconstructed surface models were exported 
as mesh files in the Polygon File Format (PLY) and imported into MATLAB using a conservative decimation and 
remeshing procedure (Fig. 1). The Hausdorff distance between input and output mesh was limited to 0.05 mm 
for the decimator. The adaptive remesher permitted a maximum deviation of 0.05 mm from the input mesh with 

Fig. 1 Workflow of the creation of the lower body’s bony anatomy surface models.
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a minimum and maximum edge length of 0.5 and 100 mm, respectively. The decimator and remesher are plugins 
of the software OpenFlipper (openflipper.org)45.

CAUTION. Each reconstruction of anatomical structures from medical images is subject to cumulative spa-
tial errors arising from each step of the process chain. While the section “Technical Validation” should give an 
impression of the error that can be expected from the workflow described, users of the database should take into 
account the risk of larger reconstruction errors depending on the application intended.

The bone models of each subject can be visualized by running the MATLAB or Python examples. One sub-
ject is presented in Fig. 2. The 3D reconstructions were created by the author as a private side project between 
2017 and 2022. Parts of the database containing fewer subjects and only the pelvis and femurs were published 
previously as part of other studies of the author46,47. This research received no specific grant from any funding 
agency in the public, commercial or not-for-profit sectors.

Analysis of the surface models stored as MAT files. The database was searched for duplicate subjects 
using a two-stage registration process. Each pelvis was transformed into an automatically detected pelvic coor-
dinate system based on the anterior pelvic plane using the iterative tangential plane method46. Subsequently, 
the sacrum of each subject was registered to the sacra of all other subjects using a rigid iterative closest points 
algorithm. Lower outliers of the root mean square error between the two registered sacra were examined. One 
duplicate subject was identified, excluded from the database and replaced by another subject.

ID Age [years] Sex Weight [kg] Height [m] Comment

Twenty complete subjects

002 78 F 75 1.62

006 51 F 90 1.77

010 45 F 54 1.65

014 30 F 65 1.65

015 81 M 78 1.75

016 95 F 60 1.52

017 19 F 59 1.7

019 56 M 68 1.7

023 74 M 86 1.82

z001 76 M 87 1.8

z004 65 M 82.3 1.77

z009 25 M 74 1.75

z019 58 M 71.3 1.81

z023 47 F 61 1.66

z027 37 F 51.5 1.69

z035 30 F 50.45 1.68 Duplicate of VSD z030.

z042 61 F 53.4 1.69

z046 38 M 72 1.8

z056 26 M 81.8 1.87

z062 43 M 76.95 1.77

Ten additional incomplete or inconsistent subjects

z013 41 F 56.3 1.65 Duplicate of VSD z024 with conflicting metadata. Intraosseous access in the 
left tibia.

z036 62 M Duplicate of VSD z029. Missing body weight and height.

z049 34 M 87 1.79 Difference between the gender specified in the metadata and biological sex 
visible in the CT data.

z050 84 M 73.4 1.67 Duplicate of VSD z011. Hinged TKR of the right knee joint.

z055 73 M 73 1.73 Duplicate of VSD z026 with conflicting weight information in the metadata.

z057 75 M Missing body weight and height.

z061 39 F 37.4 1.8 Right phalanges are cut off.

z063 72 F 80.2 1.72 Spinal fusion of L4-L5-S1. THR of the left and right hip joint. TKR of the right 
knee joint.

z064 69 M Missing body weight and height.

z066 48 M Metacarpals are cut off and phalanges are missing. Metal artifacts. Missing 
body weight and height.

Table 1. Twenty complete subjects of the database and ten additional incomplete or inconsistent subjects. “Sex” 
refers to the biological sex visible in the CT data. THR = total hip replacement, TKR = total knee replacement.
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Fig. 2 Surface models of the lower body’s osseous anatomy of subject 002.
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Each bone model of all subjects was visually reviewed for internal cavities connected to the outer surface or 
connections between the inner and outer surface, and corrections were performed if necessary. The mesh topol-
ogy was checked for the following errors using MATLAB:

•	 Duplicate, non-manifold and unreferenced vertices.
•	 Boundary, non-manifold and conflictingly oriented edges.
•	 Duplicate and degenerated faces.
•	 Self-intersections and intersections with adjacent bones.

The errors were corrected if present.
The volume enclosed by the outer surface of the bone models was calculated and is presented in Table 2. The 

values were compared with those from literature. However, caution must be applied since different definitions 
and measurement methods of the bone volume exist. Studies reporting the trabecular or cortical volume of the 
bones were not considered. The values of the bone volume correspond to those observed in previous studies48–51.

Data records
As mentioned above, a mirror of the complete VSD as hosted originally by Kistler et al. at smir.ch is available at 
Zenodo: https://doi.org/10.5281/zenodo.827036442.

The CT volume data, segmentations, reconstructions and raw PLY mesh files of the subjects of Table 1 are acces-
sible via Zenodo: https://doi.org/10.5281/zenodo.830244852. The files of each subject are linked by a project file, 
called MRML scene file, that can be opened with the open-source medical imaging software 3D Slicer (slicer.org).

The post-processed mesh files of the subjects of Table 1 are stored as MATLAB MAT files, released as Git 
repository at https://github.com/MCM-Fischer/VSDFullBodyBoneModels and versioned via Zenodo: https://
doi.org/10.5281/zenodo.831673053. The use of the MAT files is explained by examples for MATLAB and Python 
in the Git repository.

technical Validation
The VSD also contains CT data of the European Spine Phantom that was introduced by Kalender et al. in 199554. 
The CT phantom data was used to evaluate the reconstruction process described above. After the creation of the 
surface model of the phantom, landmarks and areas were manually selected on the surface model of the phan-
tom. Planes or cylinders were fitted to the areas selected to calculate the geometric parameters of the phantom. 
The errors between the reconstructed and the reference values of the geometric parameters reported in the pub-
lication by Kalender et al. are presented in Table 3. The mean error was 0.2 ± 0.4 mm and the mean absolute error 
was 0.4 ± 0.2 mm. This agrees well with accuracies reported in literature for 3D bone reconstruction using CT. 

Bone name

Volume [cm3]

All 20 subjects 10 male subjects 10 female subjects

Min. Mean ± SD Median (IQR) Max. Min. Mean ± SD
Median 
(IQR) Max. Min. Mean ± SD

Median 
(IQR) Max.

Sacrum 159 203 ± 27 198 (35) 258 159 209 ± 27 216 (42) 242 159 198 ± 27 193 (29) 258

Hip_R 256 328 ± 56 313 (90) 454 299 365 ± 52 383 (83) 454 256 290 ± 28 293 (39) 340

Hip_L 239 328 ± 55 313 (91) 448 299 364 ± 50 382 (81) 448 239 292 ± 31 291 (50) 336

Femur_R 382 533 ± 113 545 (214) 772 550 626 ± 66 633 (94) 772 382 440 ± 57 418 (59) 540

Femur_L 369 535 ± 114 547 (210) 762 556 632 ± 57 634 (46) 762 369 438 ± 55 423 (64) 538

Patella_R 11 19 ± 5 19 (7) 31 19 23 ± 4 22 (6) 31 11 15 ± 2 15 (3) 18

Patella_L 12 19 ± 5 19 (7) 32 19 23 ± 4 22 (4) 32 12 16 ± 3 16 (4) 20

Tibia_R 235 334 ± 74 354 (135) 484 355 396 ± 39 395 (47) 484 235 271 ± 37 261 (41) 352

Tibia_L 237 337 ± 73 354 (139) 479 353 399 ± 36 404 (32) 479 237 276 ± 38 264 (39) 358

Fibula_R 40 62 ± 16 63 (21) 104 62 73 ± 13 70 (13) 104 40 50 ± 8 48 (12) 66

Fibula_L 38 61 ± 15 60 (20) 104 59 71 ± 13 66 (10) 104 38 51 ± 9 48 (12) 68

Talus_R 26 37 ± 9 36 (17) 54 35 44 ± 6 46 (9) 54 26 30 ± 5 29 (5) 43

Talus_L 25 38 ± 9 35 (16) 54 35 45 ± 6 45 (5) 54 25 31 ± 6 30 (4) 47

Calcaneus_R 51 70 ± 14 69 (24) 102 62 80 ± 11 81 (7) 102 51 59 ± 8 57 (11) 78

Calcaneus_L 49 70 ± 14 69 (22) 99 62 80 ± 10 82 (8) 99 49 60 ± 9 59 (13) 77

Tarsals_R 31 43 ± 9 44 (16) 60 42 51 ± 6 49 (9) 60 31 36 ± 6 34 (7) 50

Tarsals_L 29 44 ± 10 43 (17) 62 40 51 ± 6 50 (8) 62 29 36 ± 7 35 (6) 52

Metatarsals_R 37 49 ± 10 48 (17) 67 44 57 ± 6 56 (5) 67 37 41 ± 4 39 (5) 51

Metatarsals_L 35 49 ± 9 48 (17) 66 44 57 ± 5 56 (3) 66 35 41 ± 4 39 (4) 51

Phalanges_R 12 16 ± 3 15 (5) 23 14 18 ± 3 18 (3) 23 12 13 ± 1 13 (1) 16

Phalanges_L 12 16 ± 3 15 (5) 25 13 18 ± 3 18 (2) 25 12 13 ± 1 13 (2) 16

Table 2. Volume enclosed by the outer surface of the bone models of the twenty complete subjects of Table 1. 
R = right, L = left.
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Lalone et al. reported a mean error of 0.4 ± 0.3 mm for the cortical bone of the upper extremities55, Wang et al.  
reported a mean error of 0.5 ± 0.2 mm for machined bone specimens from the femur and tibia56 and van den 
Broeck et al. reported a mean absolute error of 0.5 ± 0.2 mm for the tibia57.

Code availability
The code used to create and analyze the datasets is openly accessible via https://github.com/MCM-Fischer/
VSDFullBodyBoneModels and versioned at Zenondo: https://doi.org/10.5281/zenodo.831673053.
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