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Global change is predicted to induce shifts in anuran acoustic behavior, which can be studied through 
passive acoustic monitoring (PAM). Understanding changes in calling behavior requires automatic 
identification of anuran species, which is challenging due to the particular characteristics of neotropical 
soundscapes. In this paper, we introduce a large-scale multi-species dataset of anuran amphibians 
calls recorded by PAM, that comprises 27 hours of expert annotations for 42 different species from two 
Brazilian biomes. We provide open access to the dataset, including the raw recordings, experimental 
setup code, and a benchmark with a baseline model of the fine-grained categorization problem. 
Additionally, we highlight the challenges of the dataset to encourage machine learning researchers to 
solve the problem of anuran call identification towards conservation policy. All our experiments and 
resources have been made available at https://soundclim.github.io/anuraweb/.

Background & Summary
Global anthropogenic biodiversity loss is a major challenge of contemporary society1. With severe wildlife pop-
ulation declines and extinctions over the planet, monitoring and predicting species responses to global changes 
became an urgent task for conservation. Novel technologies now offer remote, non-invasive, and automated 
methods to survey and monitor biodiversity at unprecedented spatial and temporal scales2. For instance, passive 
acoustic monitoring (PAM) has been largely adopted in ecological research and is increasingly used in conser-
vation applications3. Based on acoustic sensor networks, PAM enables us to remotely and automatically record 
the vocal activity of wild animals, increasing our ability to study biological communities. However, a critical 
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bottleneck for the widespread use of this method is the need for automated techniques to retrieve biologically 
meaningful information in the huge time-series audio datasets collected by PAM. Manual inspection of these 
recordings is unattainable due to the human specialist workload when audio data collected reach the big data 
scale4.

In the last decade, the three fundamental reasons for the success of machine learning (ML) techniques have 
been the advancement in high-computing hardware, novel algorithms, and the curation of high-quality datasets 
for standardized benchmark5. As a consequence, ML has emerged as a key solution and a general accelerator 
for multiple domains in which biodiversity monitoring programs, animal ecology, and global change research 
are not an exception6,7. Particularly, the growth of ML for ecological applications now depends on the variety, 
quality, and availability of public datasets that define ML tasks for determined contexts and problems7,8. Despite 
recent efforts to curate datasets for ecological research, available data remains taxonomically and geographically 
biased9. ML has opened up exciting possibilities for research in this area10–14, but limitations in the diversity 
of existing datasets must be acknowledged. In the field of bioacoustics and PAM, datasets aimed at support-
ing acoustic identification have been developed for a limited number of taxonomic groups, mainly birds15,16, 
mosquitoes17, and mammals8,18,19. These datasets have also served as general benchmarks for the detection and 
classification of the recorded individuals into species20. Altogether, the increasing number of curated datasets 
coming from bioacoustics research generates a unique opportunity to foster the culture of open data, open 
models, and benchmarks in conservation research21. PAM has special importance in applied conservation, 
where datasets may impact the robustness of biodiversity monitoring programs that support ecological22 and 
policy-related23 decision-making.

Amphibians are one of the most endangered vertebrate groups in the world, with more than 40% of the 
species endangered to extinction24. In the tropics, amphibian communities exhibit high diversity25 and are more 
prone to extinction26 compared to other regions. To monitor these communities, researchers can take advantage 
of PAM techniques which are a non-invasive data collection that allows incorporating information from both 
rare and cryptic species, as well as from common and abundant ones. Acoustic communication has a central 
role in the reproductive behavior of anurans27. During the breeding season, males call, for example, to attract 
females, defend territories, and deter competitors28. Thus, a wide range of research relies on the identification 
and quantification of these sounds, with an increasing number of applications. However, there is a lack of open 
datasets for this highly vocal group that can support the development of ML models for PAM research.

This study introduces a large-scale annotated dataset of Neotropical anuran calls: AnuraSet. This dataset 
was compiled through a country-wide collaborative PAM program across Brazil between 2019 and 2021, and 
it is composed of 1612 1-minute annotated audio recordings, equivalent to 26.87 hours of audio. We collected 
data from four strategically selected sites in the Neotropics and generated precise annotations on the record-
ings. Subsequently, we preprocessed the data to train deep learning models, enabling us to conduct a baseline 
experiment and launch a benchmarking initiative for the automated identification of anuran calls (Fig. 1). The 
preprocessing and baseline code is released under the MIT License and all the data is under the CC0 license to 
support reproducible research. AnuraSet will potentially provide a common and realistic-scale evaluation task 
for species identification in Neotropical soundscapes. In addition, AnuraSet is a solid starting point for a com-
prehensive and accessible dataset of anuran calls and choruses. Since tropical acoustic environments are highly 
complex and manually annotated datasets are scarce, AnuraSet has the capacity to accelerate the development of 
robust machine listening models for wildlife monitoring in biodiversity hotspots. Furthermore, we summarize 
the main challenges and propose a roadmap to foster a culture of collaboration, experimentation, research, and 
exploration in ML for applied ecology. In our viewpoint, this culture is essential for advancing ML techniques 
and ecological inferences for conservation policies. In addition, the challenges posed by biodiversity acoustic 
monitoring provide a unique opportunity for exploring new avenues in the field of ML.

In summary, our contributions are (i) a collection of manually annotated PAM recordings of Neotropical 
anurans calling activity, with information on species composition (presence-absence data) and audio quality of 
the recordings; (ii) a curated, preprocessed, and in the wild acoustic dataset, with a detailed description of the 
data challenges; and (iii) baseline models for benchmarking the problem of species identification towards the 
creation of robust classifiers and the fast development of new models. Overall, our goal is to support a commu-
nity of ML researchers and conservationists who can work together to develop innovative solutions for biodi-
versity monitoring. All our experiments and resources have been made available at https://soundclim.github.io/
anuraweb/. By providing open-access resources and encouraging the exploration of new techniques, we aim to 
contribute to developing powerful tools for conservation and ecological research.

Methods
Data Collection.  Calling activity of Neotropical anuran communities was monitored from 2019 to 2021 in 
four sites located at the Cerrado (INCT17, INCT41) and Atlantic Forest (INCT20955, INCT4) biomes, known 
for their critical role as global biodiversity hotspots (Fig. 2). INCT refers to Institutos Nacionais de Ciência, 
Tecnologia e Inovação (National Institutes of Science and Technology). At the edge of the water bodies of each 
site, we installed an acoustic sensor equipped with omnidirectional microphones (SM4, Wildlife Acoustics, Inc., 
Concord, MA, USA) that were fixed on trees or wooden bases, at about 1.5 m above the ground. Each recorder 
was configured to register one min every 15 min over 24 h a day (a total of 1.6 hours per day), with a sampling rate 
of 22050 Hz and 16-bit depth resolution. Audios were recorded in stereo mode, with 10 dB and 16 dB gain on each 
channel. We considered aspects of anuran calling behavior to choose this recording schedule: a) detectability of 
pond-breeding anurans is often high, as individuals engage in calling activity from aggregations on the margins of 
the ponds where the recorders are installed, and b) 1 minute of recording every 15 minutes was the best compro-
mise between obtaining data at a high daily temporal resolution while enabling the sampling over longer periods 
(e.g. 3 to 4 months)29.
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Audio Annotation.  We developed an annotation protocol in order to build automated tools for determining 
the species recorded with PAM. We combined weak labels (temporal precision was limited to the 60 s duration) 
with strong labels (providing exact temporal segments of the audio recording where the anuran call was active). 
The weak labels were annotated by local herpetologists and bioacoustics experts and the strong labels were anno-
tated by a herpetologist over a selected subsample of all raw recordings to obtain a presence-absence dataset at the 

Fig. 1  Overview of the AnuraSet methodological workflow that encompasses the process of dataset creation 
and benchmarking.It begins with the collection of passive acoustic monitoring data from four sites in the 
Neotropics. Subsequently, we annotated the recordings with both weak and strong labels. Leveraging these 
annotations, we undertook a preprocessing of the data to construct a machine learning-compatible dataset. For 
solving the problem of anuran call identification, we frame the problem as a multilabel classification challenge, 
and to establish a baseline model, we adopted a transfer learning approach. Furthermore, we merged a specific 
task with the dataset, culminating in the creation of a benchmark.
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scale of the audio recording. All annotators had previous experience detecting anurans calls in recordings. Since 
the list of species at each study site was initially unknown, we first searched each 1-min recording of the species 
using local expert knowledge in the form of weak labels. After that, we used strong labels as they are better to 
solving the audio event classification problem30. The protocol that we developed consists of three steps specifically 
tailored for the identification of anuran calls. However, it can be easily adapted and customized for any taxon.

Step 1. Audio sampling.  To annotate audio files, train, and validate ML models, we first obtained a stratified 
sample of audio recordings from each site that was representative of both seasonal periods and daily periods 
of highest calling activity. Samples were drawn from months considering the extent of the breeding season, as 
informed by the principal investigators at each site (3–6 months), at night time (from 1 h before sunset until 1 h 
before sunrise). From these strata, we randomly selected a total of 300 to 600 files, depending on the amount of 
months informed by the researchers. These files were processed using two sequential steps, with first, inspection 
to generate weak labels (see step 2) followed by strong label annotations (step 3). In total, we selected 1612 1-min 
audio files (26.87 hours) over the four study sites.

Step 2. Weak labeling.  To identify anuran species recorded in the selected samples (420, 354, 472 and 366 files 
for INCT04, INCT17, INCT20955, INCT41, respectively), local herpetologists and bioacoustics experts (JVB, 
SD, JLMMS, AdaR) performed a visual and auditory analysis of spectrograms using Audacity ® 3.2.5 software 
(https://audacityteam.org/). Local annotators were asked to report the level of calling activity of each recorded 
anuran species based on the Amphibian Calling Index31 (Table 1), according to the species-specific calling activ-
ity level in each 1-minute audio file (weak labeling).

Step 3. Strong labeling.  To provide precise annotations within the 1-min files, we identified bouts of advertise-
ment calls and generated strong labels (step 1). Using Audacity 3.2, we conducted a detailed visual and aural 
inspection of the spectrogram to identify temporal limits (beginning and end) containing species-specific calls 
with an inter-call interval of less than 1 second. These annotations ensured fine-scale specificity (Fig. 3). For 
longer inter-call intervals, we boxed calls separately and labeled them independently. Detailed labels assigned to 
time boxes were composed of (i) the species ID, tagged with a unique 6-letter code built from the scientific name 
of each identified species (Supplementary Table 1), and (ii) the perceived quality of the recorded signal, included 
as a single letter indicating a Low (L), Medium (M), or High (H) quality (Fig. 4). To ensure consistency among 
the perceptual quality labels, we set up the following criteria: A high-quality call has a high signal-to-noise ratio, 
no overlap with other sounds, has a well-identifiable structure on the spectrogram, and can be easily visualized 
on the oscillogram. A medium-quality call can be visually identified on the spectrogram but may overlap with 
other sounds that can be difficult to identify in the oscillogram. A low-quality call shows a low signal-to-noise 
ratio, is partially masked by other sounds, appears with low intensity on the spectrogram, and cannot be easily 

Fig. 2  Data collection of calling activity of Neotropical anuran communities. (a) Geographic location of the four 
sites where the passive acoustic monitoring data was collected. Sites at the Cerrado biome, INCT17 and INCT41 
(dots), and at the Atlantic Forest biome, INCT20955 and INCT4 (squares). (b) Photograph of INCT4 monitoring site 
at the Atlantic Forest biome. (c) Details of the acoustic sensor used to record anuran calls at the edge of a water body.
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identified on the oscillogram. This information was used to promote the usability of the data and improve the 
error analysis of the learning model.

We followed a consistent annotation procedure for all the data, performed by a single trained herpetologist 
(MPTG). We used Audacity ® 3.2.5 software to visualize the spectrograms and create the labels in steps 2 and 3. 
We optimized the visualization of the acoustic signals by setting the spectrogram configuration parameters as 
follows: linear scale for frequency, the maximum frequency of 10 kHz, gain of 20 dB, range 80 dB, FFT algorithm 
with a window size of 1024, and Hann type, and standard color range to represent sound energy.

Data Preprocessing.  We framed the species identification problem as a multi-label classification task con-
sidering the common occurrence of call overlap in PAM. We applied a set of transformations over the raw audio 
files and annotations to obtain a dataset suitable for use with ML algorithms. First, reading the metadata of the 
1-minute raw audio files, we obtained samples of a 3-second fixed-length window applying a 1-second sliding 
window. This produced a two-third overlap between samples10,32. Second, we assigned a multilabel species label 
to each sample whenever a portion of a species call appeared within one of these windows. This procedure was 
applied to all calls, regardless of their quality. Third, we preprocessed each 1-minute annotated audio file using 
the scikit-maad python package33 and applied the sliding window approach described above. After trimming the 
3-second in time and the frequency limits between 1 Hz and 10000 Hz, we applied a bandwidth filter which uses 
a bandpass filter to process a 1D signal with an infinite impulse response (IIR) Butterworth filter of order 5. After 
that, we normalized the audio signal to a maximum amplitude of 0.7 decibel full-scale value (dBFS) and saved it 
as an uncompressed WAV format. Finally, we selected each 1-minute recording containing weak labels to split the 
dataset between training and test. We summed the occurrences of all species and applied an iterative stratification 
for the multi-label setting34,35 to the unbalanced proportions in the different subsets, with 70% in training and 
30% in the test. In this step, we used the 1-minute recording level to avoid data leakage (same 1-minute audio with 
samples in train and testing subsets).

Calling activity level Score Description of chorus activity

Absence 0 No anuran calls recorded

Low 1 Individual anurans can be counted and calls do not overlap

Moderate 2 Few anuran individuals that cannot be accurately counted, 
and with both separate and overlapping calls

High 3 Intense chorus, with continuous and overlapping calls from 
different individuals

Table. 1.  Levels of anuran calling activity for the weak labeling.

Fig. 3  Strong labeling process of raw data using audio and spectrogram. (a) Example of strong labeling. For 
each 1-min raw audio file sampled, the herpetologist annotator identified and selected the temporal limits of the 
advertisement call. We annotated calls using separate time selections when spaced more than 1 second apart. (b) 
Image of an individual of Boana lundii its advertisement call coded as BOALUN in the annotation process (c) A 
calling male of Boana albopunctata (BOAALB).
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Data Records
The dataset and the raw data are provided under the Public Domain Dedication license (CC0) and are depos-
ited in Zenodo36. We collected data for 42 neotropical anuran amphibian species from 12 genera and 5 families 
(Supplementary Table 1). Taxonomic nomenclature followed Frost37. A total of 16,000 time boxes equivalent 
to approximately 31 hours of cumulative duration and 27 hours of human-generated annotations was created, 
considering all individual or series of calls from these species. It is important to note that due to significant 
overlap in time boxes among different species, the cumulative duration exceeded the sum of the recording time. 
Among the collected data, approximately 20% of the 1-minute raw audio files did not contain anuran calls but 
contained soundscapes with geophonic sources like rain and wind, as well as biophonic sources such as other 
vocalizing species like insects and birds. The strong labeled annotated data was unevenly distributed across the 
sites INCT17, INCT20955, INCT41, and INCT4 at 42.5%, 33%, 13.5%, and 11%, respectively. The distribution 
of samples per species in the final dataset exhibits a long-tailed pattern, which coincides with the typical species 
diversity pattern in tropical environments (Fig. 5). This reflects the local number of registered species and their 
vocal activity levels, which depends on the regional pool of species and other contexts regarding the ecology of 
species. Additionally, we observed a high degree of variability in species composition between sites; specifically, 
only five species were detected in more than one site.

Here we provide two main data resources: (i) the raw audio files with an associated table containing annota-
tions, and (ii) the preprocessed input dataset for ML with 93378 3-second audio samples, both sharing a similar 
folder structure. The raw data was divided into separate folders per site. Inside each folder, there is a collection of 

Fig. 4  An illustrative example of the advertisement call of Physalaemus albonotatus for the three audio quality 
categories.(a) High-quality call (H) shows a high signal-to-noise ratio, no overlap with other sounds, a well-
identifiable structure on the spectrogram, and can be easily visualized on the oscillogram. (b) Medium-quality 
call (M) can be visually identified on the spectrogram but may overlap with other sounds that can be difficult 
to identify in the oscillogram. (c) Low-quality call (L) shows a low signal-to-noise ratio, is partially masked by 
other sounds, appears with low intensity on the spectrogram, and cannot be easily identified on the oscillogram.
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1-minute recordings in WAV format with self-explanatory filenames that include the site name, the date, and the 
time as follows: {site}_{date}_{time}.wav. For example, the file INCT20955_20190830_231500.wav is located in 
the folder of site INCT20955 and was obtained on 30 August 2019 at 23:15 (BRT time zone). In the same way, the 
preprocessed dataset follows the same folder and naming structure but also includes the start and final second of 
the audio segment: {site}_{date}_{time}_{start second}_{final second}.wav. Following the previous example, 
INCT20955_20190830_231500_30_33.wav means that the sample starts in the second 30 and ends at the second 
33. The dataset folder contains 2 files and one folder containing separate folders per site. The samples are WAV 
audio files with fixed 3-second lengths, obtained with 22.05 kHz sampling frequency and 16-bit depth. The two 
other files are a README file describing the structure and construction of the dataset and a metadata CSV file 
containing the labels for each sample as follows:

•	 sample_name: the unique identifier of each sample that corresponds to a unique audio file in the audio folder 
and follows the structure {site}_{date}_{hour}_{start second}_{final second}.wav. The next 5 columns were 
constructed based on this column.

•	 fname: raw audio filename extracted from a site and used by annotators to create weak labels.
•	 min_t: second where the annotation starts in a fixed window length.
•	 max_t: second where the annotation ends in a fixed window length.
•	 site: identifier of the recording site.
•	 date: datetime of the recording.
•	 subset: training or test subset.
•	 species_number: total number of species in each sample. The sum of the next 42 columns per row.
•	 {species} × 42 Binary columns of each species where 1 if some portion of the call is in the sample, 0 else. The 

42 species column names are the codes shown in Supplementary Table 1.

Technical Validation
Experimental setup.  The main goal for creating the AnuraSet is to provide a solution for the species iden-
tification problem and boost ecological inferences in PAM-based anuran monitoring programs. We frame the 
species identification problem as a multi-label classification problem using the data from all 4 sites without tem-
poral or site distinction. Following the ecological conditions of the large-scale analysis bioacoustics project32, 
we choose the F1-score as the performance classification metric using the usual 0.5 threshold. For the case of 
multi-label classification, we selected the Macro version of the F1-score to give the same importance to all species. 
To better understand the dependency between the number of samples and performance, we grouped species into 
‘‘Common’’, ‘‘frequent’’, and ‘‘rare’’ categories using the samples frequency similar to the Auto Arborist Dataset12. 
The grouping reflected the label frequency within each anuran assemblage with 2 breakdowns, where species 

Fig. 5  Frequency distribution of 3-second samples per anuran species.The long-tailed distribution is a typical 
distribution of a real-world species diversity dataset. We split species into the classes of ‘common’, ‘frequent’, 
and ‘rare’ to determine the effect of sample size on the performance of the species identification problem. 
Additionally, the occurrence of the same species in different sites is represented by different colored squares 
at the bottom of the histogram. The training and test set distributions obtained by using the split strategy are 
depicted with black and blue lines, respectively.
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with more than 10.000 samples were classified as common species, less than 5.000 samples were classified as rare 
species, and those between 5.000 and 10.000 samples were classified as frequent species.

Baseline Models.  Following the pipelines of previous studies10,32, we applied a Mel Spectrogram transfor-
mation on audio recordings using a window size of 512, a hop length of 28, and the number of mel filter banks 
of 128. Then we applied SpecAugmentation in time and frequency38 as spectrogram augmentation strategies and 
resize. The transformations and augmentations described above generated the inputs in ResNet39 family models. 
Specifically, we tested the ResNet18, ResNet50, and ResNet152. All our baseline experiments were implemented 
using the PyTorch40 framework and the torchaudio41 library which are publicly available in the repository https://
github.com/soundclim/anuraset.

Benchmark Results.  After testing the ResNet family models, we grouped the performance by species 
according to their classes of sample frequency (Table 2). The best model in all cases was the ResNet152, with a 
percentage (%) F1-score of 68.4 for the Frequent group, 56.8 for the Common, and 15.7 for the Rare classes. The 
total Macro F1-score was 37.8. This result suggested that the number of samples strongly influences the general 

Macro F1-score (%) ↑

ResNet18 ResNet50 ResNet152

Frequent 61.6 62.3 68.4

Common 52.0 53.9 56.8

Rare 14.8 9.9 15.7

All 34.9 33.2 37.8

Table. 2.  Performance of ResNet family models in F1-score percentage using all sites and species.

Fig. 6  Performance for benchmarking the species identification problem.Using the ResNet152 model, we 
evaluated the species identification problem (see section ‘Experimental Setup’) in each site. The x-axis is the 
number of samples in the logarithmic scale and the y-axis is the F1-score. Across sites, we found a positive 
relationship between samples and performance.
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performance of the models. The F1-score performance of each species in each site is reported in Fig. 6. In this 
Figure, we confirmed the challenge of learning from small samples, which is related to the problem of creating 
machine learning models using just a few samples for training, for example in Fig. 6 we can see that in less than 
1000 samples the algorithms perform percentage F1-score less than 20% in all cases. This problem is still an open 
research area in deep learning for computational bioacoustics42.

Fig. 7  Analytical challenges of the AnuraSet.(a) spectrogram showing eight different species that were recorded 
calling in less than eight seconds, highlighting the degree of co-occurrences, call overlap, and fine-grained 
identification; (b) spectrogram showing a dense chorus with a low signal-to-noise ratio and high sound 
masking. (c) spectrogram showing the richness and co-occurrence of sounds from different taxa (silhouettes 
from bottom to top depicting frogs, birds, and orthopterans, respectively).
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Usage Notes
Data Challenges and Open Problems.  During the annotation and dataset-building process, we faced 
challenges inherent to Neotropical, real-world datasets in PAM. We encourage researchers to experiment with 
the AnuraSet, from heuristics to understand the optimal parameters in preprocessing steps, including augmenta-
tion strategies to novel techniques for advancing the anuran call identification problem and other tasks yet to be 
discovered. With the goal of paving the way for new directions and advancements in ML research for bioacoustics 
and ecoacoustics, we summarize these challenges in the following topics.

The devil is in the tails.  As expected, the number of audio samples per species is highly imbalanced (Fig. 5), 
forming a long-tailed distribution43. The characteristics of a large number of categories and small training exam-
ples pose a challenge for obtaining good classifiers in all species. As we see in the benchmark results, there was 
a dependency between the number of samples and performance. This situation is especially relevant when rare 
species are of interest for ecological and conservation applications. AnuraSet is a suitable dataset to test different 
methods such as algorithmic solutions44–46 or augmentation strategies that have been proposed to overcome the 
long-tailed problem. Furthermore, this problem can be formulated as a Learning from small samples problem to 
explore state-of-the-art approaches42 like few-shot learners47,48 or self-supervised learning49,50.

Human Intensive Annotation.  Another manifestation of the Learning from small samples challenges happens 
in the early beginning of the annotation process. As we showed in the annotation protocol section, this is a human 
labor-demanding process. To scale in rich and large datasets it is necessary to use new ways to annotate data points 
as have been shown in clever approaches like Auto Arborist Dataset12. For example, one possible path is to explore 
a hybrid approach for human-machine collaboration labeling using an active labeling and learning scheme where 
each step of the learning procedure is actively assisted by a learning algorithm51. Recent work52 shows that weak 
labels combined with unsupervised learning approaches can improve the performance of classifiers. The evaluation 
of such methods on the AnuraSet dataset can facilitate advancements in efficient and scalable annotation techniques.

Fine-grained audio in natural environments.  Despite a classic dataset such as ImageNet53, where the 
classes can be easily identified for a human, the classes annotated in the AnuraSet rely on the expert knowledge of 
local herpetologists on sound-based species identification. Additionally, the recordings were collected in complex 
environments, generating variability in the signal-to-noise ratio of the data due to neotropical soundscape diver-
sity in the different biomes (Fig. 7). We confirm that the presence of calls in noisy conditions is a typical situation 
encountered in tropical environments investigated by PAM. This kind of problem, which involves distinguishing 
between subtle differences may imply other approaches54,55 compared with generic object recognition.

Multi-label dataset.  Tropical anuran assemblages recorded via PAM exhibit a distinctive feature of dense 
choruses with high call overlap, comprising different call types. This characteristic often leads to sound masking 
and makes the identification of individual calls challenging. Species calls in PAM recordings from AnuraSet are 
highly overlapped, therefore, calls often overlap not only between conspecifics but also between heterospecifics. 
As Fig. 7a shows, 8 different anuran calls were recorded in less than 8 seconds. This characteristic is unique to 
PAM data and poses a challenge that is different from other wildlife monitoring sensors like camera trap images. 
These overlaps are related to the classic problem of the cocktail party, in which we try to search for an audio signal 
of interest like the anuran call, while other species, geophony, and biophony sounds co-occur or overlap with the 
signal of interest. Recent studies56–58 show promising progress in the context of bioacoustics.

Towards abundance and behavior classification.  In the weak labeling process, we go beyond binary 
presence-absence annotation and use four categories to capture calling activity, similar to the Amphibian Calling 
Index31 (Table 1). By mixing this assignment of weak labels with strong labels in the AnuraSet it is possible to 
work towards call activity classifiers that can measure anuran abundance and behavior in an ecologically mean-
ingful way. These classifiers could help us understand species co-occurrence, temporal patterns of vocal activity, 
and chorus formation. Measuring abundance in bioacoustics is not straightforward, as it depends on factors 
such as variability of animal vocalization behavior, overlap, and interference of sounds from different sources. 
However, the AnuraSet provides a dataset with these properties in a natural and complex environment that will 
allow the development of new classification techniques that consider sources of error and bias.

Code availability
The dataset and the raw data are hosted in Zenodo https://doi.org/10.5281/zenodo.8342596 under the CC0 
license36. All the code for reproducing the experimental protocol, the building and preprocessing of the dataset, and 
the use of the baseline model are available in the repository https://github.com/soundclim/anuraset under the MIT 
license. We open the Python code to fast development of new deep learning models and experiments in Pytorch.
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