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DOES - A multimodal dataset 
for supervised and unsupervised 
analysis of steel scrap
Michael Schäfer   1,2 ✉, Ulrike Faltings   2 & Björn Glaser1

DOES - Dataset of European scrap classes. Today, scrap is already an important raw material for 
industry. Due to the transformation to green steel, the secondary raw material scrap will become 
increasingly important in the coming years. With DOES a free dataset is presented, which represents 
common non-alloyed European scrap classes. Two important points were considered in this dataset. 
First, scrap oxidizes under normal external conditions and the visual appearance changes, which plays 
an important role in visual inspections. Therefore, DOES includes scrap images of different degrees of 
corrosion attack. Second, images of scrap metal (mostly scrap piles) usually have no intrinsic order. For 
this reason, a technique to extract many overlapping rectangles from raw images was used, which can 
be used to train deep learning algorithms without any disadvantage. This dataset is very suitable to 
develop industrial applications or to research classification algorithms. The dataset was validated by 
experts and through machine learning models.

Background & Summary
On the way to climate-neutral production in the steel industry, a reduction of CO2 emissions of 80–95% could be 
achieved by 2050 compared to 19901. To achieve this goal, the steel industry is currently facing major challenges 
to significantly reduce its direct and indirect CO2 emissions. Besides the switch to hydrogen-based production 
and migration to the EAF (Electronic Arc Furnace) production route, the use and recycling of steel scrap and 
the development of new technologies to Technology Readiness Level 8 is a key factor1. As a result, the demand 
for high-quality scrap in the steel industry is increasing, but the availability of this secondary raw material will 
decrease in the future. However, the amount of old scrap that can be used is expected to increase2. This induces 
high demands and requires new strategies for scrap cleaning, scrap sorting, scrap processing and scrap disposal3. 
Digitalization and machine learning are fundamental tools for implementing these strategies and developing 
new systems, products and processes4. Structured, semi-structured and unstructured data form the basis for the 
implementation of these digital technologies. It is becoming increasingly important for companies to collect, 
store and process relevant data. In order to successfully implement digitalization and the green transformation 
of the steel sector, demand for data, tools and intelligent applications will increase significantly. DOES can help 
to develop intelligent scrap yard, scrap inspection and classification systems.

In contrast to datasets such as MS COCO5 or ImageNet6 featuring images for “object or thing” categories7,8, 
DOES focuses on specific “stuff ”-like categories. Thing classes or categories have specific features, specific 
sizes, particular shapes or attributes that belong to this object (e.g. a cat has ears, legs and eyes). In contrast, 
stuff classes do not have such special properties. For everyday object categories such as cars or people, a vast 
number of datasets have been collected and annotated and much research has been conducted on image cate-
gorization, instance detection, semantic segmentation, instance segmentation, etc. However, for tasks such as 
scrap classification or more generally “stuff ” classification, research and dataset collection have been far more 
limited as yet, see e.g.9,10. There are a few datasets for surface materials or general “stuff ” categories such as 
COCO-Stuff10, CUReT11, Flickr Materials Database (FMD)12, KTH-TIPS13,14, OpenSurfaces15 or Materials in 
Context (MINC)16, but these focus on classifying different materials categories, e.g. wood vs. metal.

To the best of the authors’ knowledge, DOES is the first freely available steel scrap dataset, covering the defined 
non-alloyed European steel scrap grades (Table 1). There are some commercially available solutions for autom-
atized scrap discrimination (e.g. www.primetals.com, www.automation-fair.com) as well as some non-public 
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internal solutions using visual characteristics developed at scrap processing companies such as steel manufac-
turers. But there are no independently evaluated systems providing a baseline against which DOES could be 
validated. Many publications and research activities on scrap classification focus on shredded scrap, non-ferrous 
materials and techniques such as LIBS (laser induced breakdown spectroscopy) or multi-spectral image anal-
ysis, e.g.17–23. Publications focusing on ferrous scrap classification in steel plant settings do not provide refer-
ence to the dataset used or discuss classification techniques without providing classification results, e.g.9,24–26.  
In many steel plants, classification is done mostly by manual visual inspection.

This scrap dataset can provide a basis for developing automatized scrap classification systems using computer 
vision approaches or other scrap-related solutions. Freely available datasets are very useful for many purposes 
and stakeholders, for example application developers using it for testing and training machine learning models, 
educational purposes to provide a reference of the scope in scrap classes, or research on scrap discrimination. 
Moreover, DOES can also be of interest to researchers, data scientists, students and for general deep learning 
purposes, providing an alternative to the “classical” object-category datasets. In some sense scrap is an interest-
ing fusion of object-like characteristics (richness of features) with stuff-characteristics (translation-, rotation-, 
orientation-, section-invariance as to detectability of class characteristics):

Scrap tends to be very heterogeneous in terms of item-sizes or shapes. Moreover, the scrap images intrinsi-
cally do not have a dedicated orientation or structure. The latter means the presence of certain characteristics 
in one section of the image does not reliably generate an implication on to-be-expected characteristics for other 
sections of the image (in contrast to “object” categories, where e.g. a cat’s nose in one part of the image makes it 
a fair guess that the cat’s eyes will be located above to the left and right with regard to the nose’s orientation). So, 
the scrap characteristics are a local property, not a global one.

The fact that a local perspective offers a similar richness of features as a global perspective and is suffi-
cient to discern the characteristics of the scrap in the given section is used to generate a larger dataset with 
moderate effort by extracting multiple tiles from a given camera-shot and using these as individual dataset 
instances, rather than scaling down standard camera images to a size suitable for training. In particular for 
image classification task annotations, this can also decrease the annotation effort, and ensures a fixed input 
size for classification models. Moreover, as some tiles will depict the foreground and others the background, 
this also encourages robustness to scale variation. The size of the tiles was chosen to be a useful input size for 
Convolutional Networks while staying in a range where scrap characteristics are well discernible, thus maximiz-
ing the uptake of dataset instances from a single camera shot. This technique is not limited to scrap images, but 
could be applied to any dataset where to-be-discerned characteristics are a local property and do not rely on the 
global perspective. When creating the dataset, several steps were performed. An overview of the approach and 
the process is shown in Fig. 1, which is divided into the following main steps: (I) Image and Video collection; 
(II) Manually sort the images and videos into different classes; (III) Pre-processing of the sorted recordings; 
(IV) Sorting into the DOES dataset; (V) Technical validation. Since the dataset was created over several months, 
most of the various process steps were performed several times. Validation with machine learning methods were 
performed only at the end on the final dataset.

In summary, DOES provides a new opportunity for researchers to investigate computer vision challenges 
aside from the classical “object”-centered topics. A broader understanding and research on the mechanisms 
and workings of CV approaches on different types of datasets can hopefully help the field of research in general.  
It could be an interesting path for further research to investigate structural differences as well as things in com-
mon between “object”- and “stuff ”-related tasks further as well as ways in which models can benefit from both 

Fig. 1  Overview of the approach and methodology.
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worlds. The experiments conducted for the validation of the model show the usability of the dataset and the 
structural difference from common datasets.

The construction of DOES is described in more detail in section Methods. In particular, the composition and 
collection is described in subsection Dataset, the pre-processing in subsection Pre-processing, the basic struc-
ture in section Data Records and the validation of DOES in section Technical Validation.

Methods
In this section, an explanation of the general structure and steps for collecting and pre-processing of the dataset 
is given.

Dataset.  The scrap images were collected at the scrapyards of Dillinger, Saarstahl AG, affiliated entities of 
SHS (SHS-Stahl-Holding-Saar GmbH & Co. KGaA https://www.stahl-holding-saar.de/shs/en/home/index.shtml 
is an operational management holding company that actively performs tasks for the two major steel companies 
in Saarland, Aktien-Gesellschaft der Dillinger Hüttenwerke (Dillinger) https://www.dillinger.de/d/en/corporate/
index.shtml and Saarstahl https://www.saarstahl.com/sag/en/products/index.shtml) and local transshipment 
scrap yards. DOES basically covers the defined European steel scrap grades and an additional background cate-
gory (Table 1). These scrap types also define the hierarchical structure of the dataset.

The images were collected over several months at different times of the day and under different weather con-
ditions. This is especially important in order to be able to map the different states of the scrap surface (Fig. 2a); 
due to the fact that when oxygen and water act on the iron and steel, this oxidation reaction forms hydrated 
ferric oxide (Fe2O3), i.e. rust. Surface rust is usually friable and flaky and takes different colors (Fig. 2b).

This has a similar effect on classification using deep learning as Suharjito et al.27 have described for oil palm 
fruits. Often Deep Learning systems are trained with grayscale images. But color can play an important role in 
a visual inspection of scrap, whether manually or using machine learning. This is because different grades or 
elements can also be distinguished by color or surface. Good examples are copper, alloying elements such as zinc 
or various stainless steels.

To ensure that the test images are definitely different from the original dataset, the collection of images for the 
test set was made temporally independent of the main dataset. This also allowed to ensure that no scenes from 
the train set were duplicated when creating the test set rectangles.

Scrap is most often stored in piles or containers prior to use or further processing. For that reason, different 
recording techniques are required for the images in order to be able to represent the viewing angle of a camera 
on a loading crane, for example. Therefore, various smartphone cameras and a drone were used to obtain image 
data. The collection of images in the dataset was made with different settings. Explicit care was taken to capture 
images with different angles, lighting conditions, distances, contrasts, colors, focal length, environments (indoor 
and outdoor), shadows, etc. This variance offers several benefits for future applications. For example, overfitting 
to a particular setting can be avoided through this diversity. As a result, inference can become much more robust 
in future applications with different camera technology and in different environments.

Images from the smartphone cameras used have a resolution of 4032 × 3024, 4624 × 3468 and 4000 × 3000 
pixels respectively, whereas drone videos were recorded with a Full HD resolution of 1920 × 1080 pixels and 
a frame rate of 30 frames per second (fps). The raw images in 4:3 or 16:9 format were each cropped into two 
images with a square ratio. Here the side length of the square is the pixel size of the smaller side (see section 
Pre-processing). All images were resized to 256 × 256 pixels afterwards.

When scrap is used or further processed, scrap is usually stored in larger quantities. The displayed scrap on 
the raw images has no order or represents objects of its own. In contrast to other datasets, the spatial orientation 
of the scrap does not play a role in the subsequent inference or classification using machine learning methods. 
This allowed to divide the raw images into many overlapping tiles (see section Pre-processing) in a structured 
way. Thus, the variety of tiles allow efficient training. Tiles offer great advantage for this kind of unstructured data.

Category Scrap ID Description Dimension

used scrap
E1 Old thin steel scrap ≤1.5 × 0.5 × 0.5 m

Thickness <6 mm

E3 Old thick steel scrap ≤1.5 × 0.5 × 0.5 m
Thickness ≥6 mm

new scrap

E2 Thick new production steel scrap <1,5 × 0,5 × 0,5 m
Thickness ≥3 mm

E6 Thin new production steel scrap (compressed or firmly baled) Thickness <3 mm

E8 Thin new production steel scrap ≤1.5 × 0.5 × 0.5 m
Thickness <3 mm

steel turnings E5H Homogeneous lots of carbon steel turnings —

high residual scrap EHRB Old and new steel scrap consisting mainly of rebars and merchant bars max 1,5 × 0,5 × 0,5 m

shredded E40 Shredded steel scrap —

background — Different background images —

Table 1.  Different scrap classes and their descriptions & dimensions.
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Pre-processing.  Only single images and no videos were recorded with the smartphone cameras. With the 
drone, only video recordings were made. This data was saved sorted by scrap categories as images (.png) resp. vid-
eos (.mp4). To create the dataset, five pre-processing steps (Fig. 3) were performed. The dataset should be easily 
and quickly expandable in the future. The manual sorting, parameterization, defining the tile size and step size is 
very time consuming. The creation of the dataset was semi-automated using various self-developed or customized 
Python programs.

Extracting frames from the videos.  To exclude similar or almost redundant frames, it is necessary to extract 
frames from the videos that are sufficiently different from the previous frame. Since the drone videos were 
recorded at approximately constant speed, frames can be selected equidistantly. The videos are between 1 minute 
and 11 seconds and 1 minute and 49 seconds long. From each second of the individual videos (30 fps), 5 frames 
were saved with a Python program. In the case of 5 frames per second, every 6th frame had to be extracted. 
When recording the videos, the flight direction or the flight altitude was changed at various points. With these 
changes in direction, it can happen that the drone briefly remains in a very similar place. Then a lot of pictures 
are taken at one spot. For example, if the drone stops at one point for 2 seconds, 60 frames are saved. In this 
example one would have 10 almost identical images. Therefore, too similar images were picked out manually 
after extracting the frames and deleted from the dataset.

Fig. 2  (a) A typical surface change over the time in the case of oxidation (b) Heavy friable and flaky surface 
change.

Fig. 3  Pre-processing.
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Choosing the tile size.  A tile is defined as a square. However, the different scrap classes vary greatly in geometry 
and size. Therefore, the tile size was chosen so that the geometric properties of the scrap are still clearly visible 
(Fig. 4). The size of the tile was defined with the domain experts of the scrap warehouse and consumers in the 
steel plant. The defined tile size is as small as possible and as large as necessary. To avoid statistical artifacts by 
treating different classes differently, providing an implicit labeling for the different classes in the tiles, a fixed tile 

Fig. 4  (a) Define the right size of a tile (b) Crop tiles with in (a) defined size.

Tile size E1 E2 E3 E5H E6 E8 E40 EHRB

256 — — — x — — x —

320 x — — x x — x —

480 x x — x x — x —

720 x x x x x x x x

1024 x x x x x x x x

Table 2.  Discernibility of scrap class characteristics on extracted tiles depending on the tile size (x �= 
discernible, - �= non-discernible).

Larger image resolution value n o

4032 7 168

4032 8 246.89

4032 9 306

4032 10 352

4032 11 388.8

4624 9 232

4624 10 286 2.

4624 11 329.6

4624 12 365 09.

4000 7 .173 3

4000 8 251.43

4000 9 310

4000 10 .355 5

4000 11 392

1920 3 120

1920 4 320

1920 5 420

Table 3.  Overlap o in pixel for the given resolutions given extracting n tiles per row in the larger image 
resolution value’s direction.
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size was chosen for all the classes, not an individual size per class. As all tiles are finally being rescaled to a fixed 
pixel size, different initial tile sizes would result in different statistical artifacts from rescaling in the final dataset.

To choose the tile size, an experiment was conducted on a small subset of the raw images, containing smaller 
and larger examples from all the different classes and including views from different ranges. For each image, 
different sized tiles were extracted and it was validated through domain experts which tile size is large enough to 
still discern the scrap class characteristics.

The results of the experiment are related in Table 2. As shown in Table 2, only the classes E5H and E40 were 
clearly discernible in the smallest tile size of 256 px tested in the experiment. This is well understandable as both 
classes consist of very small scrap particles, as related in Table 1. For a tile size of 320 px, E1 and E6 were discern-
ible as well, and for a tile size of 480 px, E2 was discernible in addition. Finally, for a tile size of 720 px, all the 
scrap classes were discernible on the tiles tested in the experiment. Based on the findings from the experiment, it 
was decided to use a tile-size of 720 px, as this was the smallest size where all classes were discernible.

Choosing the overlap for extraction of tiles.  When extracting the tiles from the image, a certain overlap between 
adjacent tiles of between 1

3
 and 1

2
 of the tile size was allowed for. The overlap was chosen fixed for all cameras, but 

such that not to large a section of the initial image gets lost in the process.
The same overlap in both vertical and horizontal direction was chosen as tile extraction should not depend on 

whether the image is oriented with width > height or height > width. To choose the overlap, the larger of the two 
side-lengths of the images was regarded. Of course one could also have regarded both image dimensions, but as 
most raw images are oriented with width > height and the upper and lower section of the image are more likely to 
contain background (e.g. sky, soil, etc.), it was decided rather to go only by the larger of the two dimensions. The 
goal was to extract as many tiles as possible per image whilst remaining in the desired overlap range. Given an image 
resolution of a × b, with a > b, and a final tile size of c, and let n ∈ ℕ be the number of tiles to be extracted in a row 
from the length a with an overlap of size o c c,1

3
1
2

∈ 



 ⊂ . Then a c n c o c o( 1) ( ) a c

n 1
= + − ⋅ − ↔ − = .−

−
So n needs to be chosen such that the overlap o lies in the desired range 



 =720, 720 [240, 360]1

3
1
2

 of pixels. 
The results for the camera resolutions used in the dataset collection are given in Table 3, rounded to two decimal 
points where necessary. Table 3 contains the values of n per image resolution where o lies inside the desired 

Fig. 5  Schematic overview of the hierarchical structure of the dataset.

Class

Train Set Test Set

No. of raw instances No. of tiles No. of raw instances No. of tiles

BG 0 1951 0 0

E1 1026 18236 36 1628

E2 232 10175 14 642

E3 1358 21254 38 1833

E5H 16 856 14 717

E6 1170 8841 26 1069

E8 1466 39496 20 927

E40 6 317 14 680

EHRB 746 4397 14 635

Total 6020 105523 176 8131

Table 4.  DOES statistics: Number of raw image instances and tiles per class and in total, both for the train set 
and the test set (BG - Background).

https://doi.org/10.1038/s41597-023-02662-6
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range [240, 360] as well as the largest n for which o < 240 and the smallest n for which o > 360, again per image 
resolution. In column n of Table 3, the largest value of n per image resolution value such that the overlap lies in 
the desired range is marked in boldface. To ensure a fixed overlap for all images, the mean of the overlaps was 
taken for the boldfaced n, rounded to an integer. Thus finally, an overlap of = 





+ . + . +339 352 329 6 3555 320
4

 px was 
chosen.

Sorting out backgrounds, square ratio and resize.  In the raw images there are also areas that do not show scrap. 
These areas were defined as backgrounds in their own class and were sorted out manually from the image tiles. 
In a later step, a neural network could also take over the task and significantly increase the performance.

To be able to scale the raw images into a square format of 256 × 256 px, the raw images were also divided into 
squares. Due to the input images’ rectangular format with shorter side < longer side < 2 · shorter side, this could 
be achieved by dividing the images along the longer side into two squares with a slight overlap. These squared 
images were then resized to the desired format of 256 × 256 px.

Data Records
The DOES is available at Zenodo (https://doi.org/10.5281/zenodo.821916328).

Figure 5 shows the hierarchical directory structure of the dataset. The root directory contains all other the 
directories of the individual classes. “Classes” is again divided into raw images and tile images. Due to this struc-
ture it is easily possible to create new individual training data with the required/desired classes. This structure 
already contains an implicit weak annotation of the different scrap classes. The basis of the dataset are the raw 
images in the raw directory, as the images in the tile directory were extracted from these images. There are no 
raw images where only the background is shown. The background directory contains only tiles extracted from 
images of all other classes. Additionally, there are images of the different classes in the test directory. These are 
images from indoor locations and outdoor locations pre-processed in the same way as the train set and are ideal 
for testing the future algorithms.

The statistics of DOES are given in Table 4. It can be seen from the different number of raw images and tiles 
that the classes are not equally balanced in the dataset. This is due to some classes being far more commonly 
used in (high quality) steel production than others, and some classes being far more heterogeneous than others; 
e.g. E5H, E40 have a comparatively homogeneous appearance whereas E1 can be very divers. As the primary 
sources of the images where Saarstahl’s and Dillinger’s scrapyards as well as suppliers’ scrapyards, the distribu-
tion of scrap in the dataset reflects the available scrap at these sites, which in return reflects the demand of a 
(high quality) steel production meltshop. Some lower quality scrap was included from local transshipment scrap 
yards, but these did not offer the full range of all scrap categories. The ratios of tiled images per class as compared 
to raw images of the same class in the train and test set vary between the different classes. This is due to several 
reasons: For one, some raw images have a lower resolution than others, thus resulting in less tiles per raw image 
than for other higher-resolution raw images. Another reason is that depending on the placement of the scrap on 
the scrap yard and the shape of the scrap piles, some raw images have a higher ratio of background as compared 
to scrap than others, thus resulting in more “background”-category tiles and less “scrap”-category tiles.

Technical Validation
Quality control.  To rule out confusion and processing errors, the complete dataset was finally checked in 
detail by the domain experts and the authors. To ensure the accuracy and quality of the data set, images were 
checked in regular cycles. For this purpose, batches of images were manually controlled in different groups.

Experiment Model No. Architecture Epochs Batch Size Class Weights Train Set Test Set

I 1 PreActResNet1830 50 32 yes tiles tiles

II 2 PreActResNet18 50 32 yes raw tiles

III 2 PreActResNet18 50 32 yes raw raw

IV 3 PreActResNet18 50 32 no tiles tiles

V 4 ResNet5033 50 32 no tiles tiles

Table 5.  Conducted experiments.

Experiment
Overall 
Accuracy E1 E2 E3 E40 E5H E6 E8 EHRB

I 68.09 0.58 0.32 0.89 0.49 0.48 0.82 0.87 0.62

II 28.93 0.09 0.07 0.52 0.00 0.01 0.33 0.62 0.42

III 43.18 0.19 0.21 0.66 0.14 0.07 0.65 0.90 0.21

IV 64.57 0.47 0.33 0.86 0.39 0.60 0.78 0.84 0.60

V 59.20 0.40 0.23 0.86 0.46 0.37 0.69 0.80 0.62

Table 6.  Overall accuracy and per-Class accuracy on test set.

https://doi.org/10.1038/s41597-023-02662-6
https://doi.org/10.5281/zenodo.8219163


8Scientific Data |          (2023) 10:780  | https://doi.org/10.1038/s41597-023-02662-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 6  Model 1 training.

Evaluation of the dataset.  Several experiments were conducted to evaluate the dataset and the 
tile-approach. As framework, PyTorch was used. PyTorch is well suited for researchers29 to effectively develop 
convolutional neural networks for image classification. To technically validate the dataset, different variants of 
neural networks were trained on DOES. An overview and description of the experiments is provided in Table 5.

During training, the best model was kept, i.e. not necessarily the model from epoch 50. The batch size was 
kept constant over all the experiments. Due to the imbalances in class sizes as visible in Table 4, class weights 
were used in experiments I,II,III. They were not used in experiments IV, V in account of the ResNet50 in exper-
iment V being pretrained on a different dataset with other classes. Model 2 trained on the raw images was 
evaluated both on the tiled test set (experiment II) and the raw test set (experiment III). All other models 1, 3, 4 
were trained on the tiled train set and only evaluated on the tiled test set (experiments I, IV, V). A more detailed 
motivation for the setup of the individual experiments is given in the following subsections.

An overview of the performance for the different experiments is provided in Table 6.
The evaluation of the model 2 on the raw test set (experiment III) is not as representative as for the tiled 

test set in experiment II since the size of the raw test dataset is quite small. For example, the very high per-class 
accuracy on E8 could also be a statistical artifact. Generally, there is quite a spread in performance in Table 6 
between the different models. However, overall accuracy ranking is mostly consistent with per-class accuracy 
ranking, which is encouraging as it suggests that the learned features have a certain stability in being useful for 
class discrimination over the different classes.

The individual results are presented and discussed in more detail in the following.

Baseline model.  To demonstrate the usability of DOES and provide a baseline for classification accuracy, a 
PreActResNet1830 was trained over 50 epochs with batch size 32 and class weights on the tiled train data in 
experiment I. Figure 6 shows accuracy and loss curves for the training (accuracy on test set), and Table 7 pro-
vides the confusion matrix on the tiled test set.

As one can see in Fig. 6, the accuracy does not increase significantly anymore after the first 10 epochs (9000 
Steps). This indicates training could have been aborted earlier; however, for the sake of a standardized setup, 

Fig. 7  Model 2 training.
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Table 7.  Confusion matrix for model 1 on tiled test set (BG - Background).

all models were trained over the same number of epochs. Since the best-performing model was kept, attained 
after epoch 10, not the one after the last epoch, this is not problematic. The confusion matrix in Table 7 shows 
very well how some categories are more similar to one another while others are more easily discernible. This is 
at least partially due to the nature of the European scrap grade classification (see also Table 1) and to the way 
scrap is handled and traded. For example, E6-cubes will sometimes unravel during scrap handling, making 
them essentially identical to E8. Thus piles of E6 on a scrap yard will usually also contain instances looking like 
E8-scrap. Also, in scrap trading, batches of e.g. E3 will always also contain individual items that are closer to E1 
than E3, and vice versa. If a perspective buyer finds that the scrap was not sorted well enough for the category 
it is declared as, he might ask for a discount or decline the purchase. Similarly, individual items of E2 scrap can 
look very much like E3 scrap, e.g. a railroad track that was discarded due to production errors (E2) looks very 
much like a railroad track discarded after end-of-use (E3). Overall, piles of E2 will have a different average 
composition than e.g. piles of E3, but there can always be individual items or sections of the pile that cannot be 
clearly categorized as the one or the other solely from appearance. Thus a 100% accuracy for scrap classification 
from visual information alone is unrealistic. However, this does not make visual scrap discrimination obso-
lete. A pile of scrap of one of the categories as a whole will in general display sufficient class characteristics for 

Table 8.  Confusion matrix for experiment II on tiled test set (BG - Background).

Table 9.  Confusion matrix for experiment III on raw test set (BG - Background).
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discrimination, and categories that can more easily be mistaken for one-another also tend to have more similar 
compositions, thus making a mistake less fatal. It is also visible in the confusion matrix in Table 7 that the model 
performs better on classes with more examples in the dataset, and, for two classes that are hard to distinguish, 
tends to pick the more common one such as E8 or E3.

The performance of the PreActResNet18 trained on DOES is in a similar range to the published results for 
PreActResNet on Tiny ImageNet31,32. Tiny ImageNet is comparable in size to DOES, but features a downsampled 
version of ImageNet. This shows that DOES provides meaningful input for training models and provides a use-
ful alternative as dataset not only for researching on or developing scrap-related solutions, but also to the more 
general research community interested in a broader approach to computer vision topics than only focusing on 
the classical “object”-categories.

Validation of the tile approach.  To validate the usefullness of the tiling approach for dataset generation, exper-
iments II & III were conducted in which a PreActResNet1830 was trained over 50 epochs with batch size 32 and 
class weights on the raw untiled images.

As one can see in Fig. 7 and in the confusion matrices in Tables 8, 9, the performance of the model trained 
on the raw dataset (model 2, experiments II, III) is considerably lower than the model trained on the tiled data-
set (model 1 & experiment I, Fig. 6 and Table 7), even when evaluating the model on the raw test set (Table 9), 
which is structurally more similar to the raw train set then the pre-processed tiled test set. This shows the benefit 
of the novel approach for dataset generation for “stuff ”-like categories. The number of steps in Fig. 7 is lower 
than e.g. for model 1 in Fig. 6 as the raw dataset is considerably smaller; thus one epoch consists of less steps of 
32-image batches than for the tiled dataset. Again, as for the case in experiment I, the accuracy does not increase 
significantly anymore after the first few epochs (one epoch corresponds to roughly 180 steps), but again, as the 
best model was saved, attained after epoch 35, not the one after epoch 50, this does not affect the final models 
performance negatively. The loss curve in Fig. 7 is less smooth than for example for model 1 in Fig. 6. This is 
because the loss was logged at a more granular scale (in terms of steps) for the smaller raw train set of model 2 as 
compared to the training instances on the larger tiled train set as for model 1.

Impact of pretraining.  Another interesting aspect is the impact of using a model pretrained on a ‘classical’ 
object-focused dataset. If DOES should be intrinsically similar to ‘classical’ object-focused datasets, pretraining 
on one of the large available object-focused datasets such as ImageNet should improve model performance. 

Table 10.  Confusion matrix for experiment IV on tiled test set (BG - Background).

Fig. 8  Model 4 on tiled test set and model 3 on tiled test set.

https://doi.org/10.1038/s41597-023-02662-6


1 1Scientific Data |          (2023) 10:780  | https://doi.org/10.1038/s41597-023-02662-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

To this end, experiments IV and V were conducted, in which a ResNet5033 pretrained on ImageNet and 
a PreActResNet18 not pretrained on any dataset were trained, both without class weights. If the model 4 in 
experiment V profited from the pretraining, one would expect the performance to increase as compared to the 
non-pretrained model 3 in experiment IV. The more so as ResNet50 is a larger model than PreActResNet18, 
which in itself should encourage better performance. Accuracy and loss during the training process (accuracy 
on tiled test set) are given in Fig. 8 and the confusion matrices on the tiled test set are provided in Tables 10, 11.

The results on the test set displayed in Fig. 8 and Tables 10, 11 suggest that the ResNet50 could not profit from 
pretraining on ImageNet. This could imply that the images in DOES are structurally different and the extracted 
and learned features relevant for discriminating classes are significantly different for DOES as compared to the 
“object”-focused ImageNet dataset. This emphasizes once more the need for providing datasets such as DOES for 
“stuff ”-categories, also to enable more research for this kind of data. The loss- and accuracy-curves in Fig. 8 for 
models 3 and 4 show a very similar progress, and also the confusion matrices in Tables 10, 11 are quite similar, 
with the model 3 in experiment IV showing slightly better overall results than the model 4 in experiment V. As 
in the previous experiments, the accuracy does not increase continuously over the entire 50 epochs, but again, 
as for the previous experiments, the best model was saved, which was attained after epoch 19 for model 3 and 
after epoch 9 for model 4.

Code availability
The dataset is freely available as described in Data Records. The custom code to generate or process these data can 
be found in the following GitHub repository: https://github.com/micschaefer/does-utils. The rights to the source 
code of the validation model belong to Saarstahl AG and unfortunately cannot be published.
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