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SM2RAIN-Climate, a monthly 
global long-term rainfall dataset  
for climatological studies
Hamidreza Mosaffa   ✉, Paolo Filippucci  , Christian Massari, Luca Ciabatta & Luca Brocca  

A reliable and accurate long-term rainfall dataset is an indispensable resource for climatological studies 
and crucial for application in water resource management, agriculture, and hydrology. SM2RAIN (Soil 
Moisture to Rain) derived datasets stand out as a unique and wholly independent global product that 
estimates rainfall from satellite soil moisture observations. Previous studies have demonstrated the 
SM2RAIN products’ high potential in estimating rainfall around the world. This manuscript describes 
the SM2RAIN-Climate rainfall product, which uses the European Space Agency (ESA) Climate Change 
Initiative (CCI) soil moisture v06.1 to provide monthly global rainfall for the 24-year period 1998–2021  
at 1-degree spatial resolution. The assessment of the proposed rainfall dataset against different existing 
state-of-the-art rainfall products exhibits the robust performance of SM2RAIN-Climate in most regions 
of the world. This performance is indicated by correlation coefficients between SM2RAIN-Climate 
and state-of-the-art products, consistently exceeding 0.8. Moreover, evaluation results indicate the 
potential of SM2RAIN-Climate as an independent rainfall product from other satellite rainfall products 
in capturing the pattern of global rainfall trend.

Background & Summary
Rainfall is a vital component of the hydrological water cycle, which controls the balance of water and energy 
on the Earth. As the most Essential Climate Variable by the Global Climate Observing System (GCOS)1, accu-
rate, long-term, and consistent rainfall datasets are crucial in many applications, including water resource man-
agement2, climate studies3, and drought monitoring4. Ground-based measurements (rain gauges and radars), 
reanalysis-based, and satellite-based observations are the most important approaches for rainfall estimation. 
Rain gauges are considered as the most reliable rainfall data sources, but they have two main limitations: 
(1) low-density spatial coverage in many regions of the world and (2) limited representative area around the 
gauge5. Meteorological radar estimates rainfall with high spatial resolution. However, it suffers from high-cost 
maintenance and a lack of accessibility limitations6. Reanalysis products, generated through numerical mod-
els and data assimilation algorithms, introduce uncertainties7. Satellite-based rainfall products, with their high 
spatial and temporal resolution, offer an alternative rainfall estimation technique. Notably, various precipi-
tation databases have been developed, including those based on station observations (e.g., Global Historical 
Climatology Network(GHCN)8, Climate Prediction Center (CPC), Global Precipitation Climatology Centre 
(GPCC)9, Climate Research Unit (CRU)10), radars (e.g., Stage-IV11, multi-Radar/Multi-Sensor (MRMS)12 
and NIMROD13), reanalysis (e.g., Research and Applications (MERRA)14, the Japanese 55-year Reanalysis 
(JRA55)15, and the European Centre for Medium-Range Weather Forecasts (ECMWF)16 Re-Analysis (ERA)), 
satellite-derived data (e.g., SM2RAIN17, the Integrated Multi-satellitE Retrievals for GPM (IMERG)18), and 
combinations of multiple resources (e.g., Multi-Source Weighted-Ensemble Precipitation (MSWEP)19, Frequent 
Rainfall Observations on GridS (FROGS)20). These precipitation databases provide valuable information in its 
spatio-temporal scale, although they are also subject to uncertainties, for example the multi-platform satellite 
precipitation products can also be impacted due to changes in the satellite constellation over time, which can be 
crucial for climate studies21,22.

There are two main approaches, including top-down and bottom-up, for rainfall estimation from satellite 
observations17. In the top-down approach, rainfall is obtained from the combination of the Geostationary (GEO) 
and Low Earth Orbiting (LEO) satellites sensors whose rainfall is related to the emitted or reflected radiation 
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from clouds or rain droplets23. In the bottom-up approach, rainfall is estimated from soil moisture (SM) obser-
vations through the SM2RAIN algorithm17. In this algorithm, soil is considered as a natural rain gauge and the 
algorithm is based on the inversion of the soil water balance equation. The main difference between these two 
approaches algorithms is that top-down approaches are based on instantaneous measurements of rainfall which 
may cause the underestimation of rainfall when the satellites do not pass over the rainfall event. Differently, 
bottom-up approaches provide accumulated rainfall between two consecutive SM measurements.

The bottom-up approach has been applied at a global scale23,24 and a local scale in Asia25–28, Australia29,30, 
Europe31,32, Africa33,34, and America35,36. More than 150 papers have been published in peer-reviewed journals 
related to SM2RAIN rainfall products, which have highlighted the high potential of this approach over different 
parts of the globe and also the effectiveness of them in many applications including flood prediction37, water 
resources management38, and prediction of landslide39, soil erosion33, and crop yield40.

In the last eight years, several SM2RAIN rainfall products were developed by forcing different SM satellite 
observations into the algorithm, including SMOS41 (Soil Moisture Ocean Salinity mission), ASCAT24 (Advanced 
SCATterometer), AMSR242 (Advanced Microwave Scanning Radiometer 2), Sentinel-143, ESA CCI SM44 (the 
European Space Agency Climate Change Initiative), and SMAP45 (Soil Moisture Active and Passive). These 
studies demonstrate that the accuracy of the SM2RAIN rainfall products is highly dependent on the accuracy 
of satellite soil moisture observations. However, it is important to note that the accuracy of these products is not 
uniform over the globe. The precision of the retrieved soil moisture data, and thus the resultant precipitation 
estimates, can vary due to a range of factors. These factors include the accuracy of the retrieval algorithm, the 
sampling interval, and the number of retrievals possible in remote areas for each sensor. In general, low per-
formance of soil moisture products over densely vegetated areas, frozen soils, snow-covered soils, and complex 
topography regions are expected.

Long-term rainfall datasets are fundamental for climatological studies and analyses of spatiotemporal rainfall 
variations. However, existing SM2RAIN rainfall products do not offer extensive records. To address this gap, we 
present a long-term, gridded rainfall dataset that opens up potential for various applications. This dataset pro-
vides essential data for understanding global patterns and trends, aiding climate change research, water resource 
management strategies, hydrological modelling, and large-scale hydro-ecological studies. Therefore, the goal of 
this study is to build the global SM2RAIN-Climate rainfall product with monthly temporal and 1° spatial reso-
lutions for the 24-year period 1998–2021. This product presents a distinct and independent addition to existing 
rainfall datasets for climatological studies and is based on the ESA CCI SM products16.

Methods
This study utilizes a variety of datasets to achieve its objectives. The ESA CCI soil moisture dataset serves as 
the foundation for SM2RAIN-Climate generation. For validation purposes, we employ three distinct rainfall 
datasets representing gauge-based, reanalysis, and satellite-based products: Global Precipitation Climatology 
Centre (GPCC), European ReAnalysis 5th Generation (ERA5)-Land, and Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS), respectively.

ESA CCI soil moisture v06.1. In 2012, ESA developed the first long-term global satellite-based SM datasets 
as a part of the Climate Change Initiative program. The dataset contains three products, including active, passive, 
and combined at 0.25° spatial and daily temporal resolution. The active product is built by merging scatterome-
ter soil moisture data for the period of 1991–2021. Passive product retrievals from multiple passive microwave 
sensors and the data available for 1978–2021. The ESA CCI combined product was developed by merging the 
active and passive sensors. The active and passive ESA CCI SM v06.116 data are used in this study. The products 
are accessible through https://www.esa-soilmoisture-cci.org/. Table 1 summarizes the sensors used for the active 
and passive products of ESA CCI SM.

Global precipitation climatology centre (GPCC) v2020. This product was developed in 1989 at the 
National Meteorological Service of Germany as a contribution to the World Climate Research Programme 
(WCRP). This product provides the global daily rainfall dataset at 1° spatial resolutions for the period after 1982. 
This dataset is based on in situ rain gauge data which contain the information of +84000 stations. The description 
of the GPCC dataset9 can be found in Schneider et al.46 The dataset is available on the website https://opendata.
dwd.de/climate_environment/GPCC/html/download_gate.html.

European ReAnalysis 5th Generation (ERA5)-Land. ERA5-Land is the land component of the ERA5 
reanalysis dataset that is produced by the European Centre for Medium-Range Weather Forecasts (ECMWF)47. 
The dataset is available with 0.1° spatial and hourly temporal resolution from 1950 to the present. In this study, 
three components, including soil temperature for the layer of 0–7 cm, snowfall, and precipitation, are used by 
regridding to 1° spatial resolutions and averaged to daily temporal resolution. Also, by eliminating the snowfall 
component of ERA5 from the ERA5-Land total precipitation, daily rainfall data were derived, which is used in the 
technical validation of SM2RAIN-Climate. The ERA5 dataset is available via the Copernicus Climate Data Store 
(CDS) (https://cds.climate.copernicus.eu/.

Climate hazards group infrared precipitation with station data (CHIRPS) v2.0. The United State 
Geological Survey (USGS), and Climate Hazard Center of the University of California-Santa Barbara developed 
the CHIRPS dataset, which is a rainfall dataset with land-only quasi-global coverage (50°S–50°N) at 0.05 spa-
tial and daily temporal resolutions for the period from 1981 to present. This product consists of both satellite 
and gauge observation information. The details of CHIRPS can be found in Funk et al.48 and the data can be 
downloaded at https://www.chc.ucsb.edu/data/chirps. We used this dataset in the technical validation section by 
regridding CHIRPS to 1° spatial resolutions by using the bilinear interpolation method.
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SM2RAIN-climate generation. The SM2RAIN-Climate rainfall product is developed by using the ESA 
CCI SM product as input into the SM2RAIN algorithm. Specifically, three steps are implemented, includ-
ing pre-processing of ESA CCI SM, applying SM into the SM2RAIN algorithm, and rainfall post-processing 
(Fig. 1). Due to the low temporal frequency of ESA CCI SM before 199849, all processes are applied for the period 
1998–2021. As shown in Table 1, the ESA CCI SM products are built by different sensors during the time, and 
therefore, the dataset generation is done separately in different periods. These periods, specifically 1998–2001, 
2002–2006, 2007–2012, 2013–2014, and 2015–2021, were chosen based on the operational periods of different 
sensors used in the active and passive products. Each period represents a unique combination of sensors with 
varying characteristics and sensitivities to soil moisture. Moreover, all the process is done separately for ESA CCI 
SM active and passive.

The details of the methods are as follows.

Pre-processing of ESA CCI soil moisture. The pre-processing procedures are performed on the daily 
active and passive ESA CCI SM products before using them into the SM2RAIN algorithm. SM products are spa-
tially regridded to 1° spatial resolutions using the bilinear interpolation method. Moreover, to fill the temporal 
gaps of the SM time series, linear interpolation in time was applied on gaps with a duration lower than three days. 
This process of linear interpolation ensures a more complete and continuous dataset for the application of the 
SM2RAIN algorithm. After this step, the datasets are ready to be applied into the SM2RAIN algorithm.

SM2RAIN algorithm description. The SM2RAIN algorithm17 was developed to estimate rainfall from two 
successive SM observations by inverting the soil water balance equation as follows:

= − − −Z dSM t
dt

p t g t r t e t( ) ( ) ( ) ( ) ( )
(1)

*

Where Z* (mm) is the soil water capacity obtained by soil porosity times soil layer depth, SM(t) (−) is the relative 
SM and p(t), r(t), e(t), and g(t) are the rainfall, surface runoff, evaporation, and drainage rate (mm d−1), respec-
tively. Since this equation is used to estimate rainfall during the rainfall event, evaporation and surface runoff 
are assumed to be negligible50. The drainage rate depends on SM, which is obtained from Famiglietti and Wood’s 
equation51. Hence, the rainfall rate can be estimated by rewriting Eq. (1) as follows:

= + .p t Z
dSM t

dt
a SM t( )

( )
( )

(2)
* b

Active Sensor Temporal interval

AWI-WS Aug 1991–Dec 2006

ASCAT-A Jan 2007–Dec 2020

ASCAT-B Nov 2012–Dec 2021

ASCAT-C Nov 2018–Dec 2021

Passive Sensor Temporal interval

SMMR Nov 1978–Aug 1987

SSM/I Sep 1987–Jun 2002

TMI Jan 1998–Dec 2013

AMSR-E Jul 2002–Oct 2011

WindSat Oct 2007–Jun 2012

SMOS Jan 2018–Dec 2021

FY-3B Jun 2011–Aug 2019

FY-3C Sep 2013–Aug 2021

FY-3D Jan 2019–Aug 2021

AMSR2 Jul 2012–Dec 2021

GPM Mar 2014–Dec 2021

SMAP Apr 2015–Dec 2021

Table 1. Overview of the sensors used for active and passive products of ESA CCI SM16.

ESA CCI
soil moisture 

v06.1
(Daily)

Ac�ve & Passive

Temporal 
interpola�on

SM2RAIN
algorithm

Temperature
mask

SM2RAIN-Cimate
Merged Ac�ve & Passive 

Convert to monthly

Fig. 1 The methodological framework used to generate the SM2RAIN-Climate rainfall product.
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Where a(mm d−1) and b(−) are the saturated hydraulic conductivity and the Famiglietti and Wood’s equation 
exponent, respectively. Before SM data is used in the algorithm, it undergoes another modification, which is 
an exponential filtering. This filtering step is used to mitigate the effects of temporal noise in the satellite SM 
observations. We apply the modified exponential filter equation as described by Brocca et al.24, where the char-
acteristic time length parameter (T) is considered a function of SM through a 2-parameter power law. The two 
parameters of the modified exponential filter equation, a, b, and Z* are obtained by point-by-point calibration of 
SM2RAIN algorithm against the GPCC rainfall dataset. For calibration, the minimization of root means square 
error (RMSE) between the SM2RAIN rainfall estimates and GPCC rainfall is used as an objective function. The 
calibration is performed separately for each time period of analysis, and for ESA CCI SM active and passive 
products. Calibrating SM2RAIN separately for each period ensures accuracy and consistency across different 
time periods. After the calibration, the datasets in the different periods are temporally merged to obtain two 
rainfall products from active and passive ESA CCI SM, respectively, for the period 1998–2021.

Post-processing of rainfall. After the estimation of the daily active and passive rainfall through the 
SM2RAIN algorithm, the soil temperature mask is applied to remove the area with SM retrieval issues (snow 
covered and frozen soil). For this purpose, a thorough sensitivity analysis was conducted to determine an appro-
priate criterion. During the sensitivity analysis, different threshold values (0 to 3 °C) for the ERA5-Land soil 
temperature were evaluated to assess their impact on the post-processing of rainfall. Based on the analysis, the 
rainfall on days with the ERA5-Land soil temperature below 3 °C is excluded from the time series. Following this 
step, to gain from the advantages of both active and passive rainfall estimations, they are combined. This combi-
nation is achieved by employing a methodology proposed by Kim et al.52, that maximizes the correlation between 
estimated rainfall and GPCC. This method is expressed through the equation:

P k P k P(1 ) (3)SM RAIN Climate active passive2 = . + − .−

Where Pactive and Ppassive are the active and passive rainfall estimation and PSM2RAIN-Climate is the merged product. 
k is calculated as follows:

ρ ρ ρ

ρ ρ ρ ρ ρ ρ
=

− .

− . + − .
k

(4)
AG AG PG

PG AP AG AG AP PG

In this equation, the subscripts A, P, and G denote the active, passive, and GPCC datasets, respectively, and ρ 
signifies the Pearson’s correlation coefficient between two datasets. This approach operates under the assumption 
that both rainfall estimations are unbiased and that there is a correlation between the errors of these estimations 
and the GPCC. In case one of the active or passive rainfall estimations is not available, the remaining one is 

# product File name Flag_value Flag_meaning

1 SM2RAIN-Climate-monthly-1998–2021-f1 1 Missing threshold 66, without temperature mask

2 SM2RAIN-Climate-monthly-1998–2021-f2 2 Missing threshold 20, without temperature mask

3 SM2RAIN-Climate-monthly-1998–2021-f4 4 Missing threshold 66, temperature mask

4 SM2RAIN-Climate-monthly-1998–2021-f5 5 Missing threshold 20, temperature mask

Table 2. SM2RAIN-Climate filenames and flag value convention.

# product Flag_value CC RMSE BIAS KGE
% Sample Size Change 
compared to product #1

Against ERA5

1 1 0.799 52.730 1.040 0.741 0.00

2 2 0.816 51.752 −1.088 0.747 9.97

3 4 0.799 53.717 −0.337 0.746 6.09

4 5 0.820 52.446 −2.265 0.748 16.78

Against CHIRPS

1 1 0.824 53.286 3.170 0.759 0.00

2 2 0.837 52.106 2.237 0.765 7.78

3 4 0.820 54.459 3.084 0.762 3.83

4 5 0.840 52.353 1.849 0.768 12.52

Against GPCC

1 1 0.829 49.777 3.162 0.750 0.00

2 2 0.846 48.662 1.746 0.756 9.97

3 4 0.828 50.987 2.574 0.755 6.09

4 5 0.849 49.365 1.073 0.759 16.78

Table 3. Evaluation of different products of SM2RAIN-Climate against other products.

https://doi.org/10.1038/s41597-023-02654-6
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incorporated into the merged product. After generating the daily SM2RAIN-Climate product, the product is 
converted to monthly by scaling the available daily data. In cases where there are missing values, a threshold is 
defined to identify months with a high percentage of missing data. If the percentage of daily missing data for 
a particular month exceeds the threshold, that month is considered with no data. However, for months with a 
lower percentage of missing data, the available daily values are averaged, and the resulting average is then multi-
plied by the number of days in the month to estimate the accumulated monthly rainfall.

RMSE (mm)

CC (-)

GPCC ERA5

CHIRPS

CHIRPS

GPCC ERA5

Fig. 2 Spatial evaluation of SM2RAIN-Climate (product #1 in Table 2) dataset against GPCC, ERA5, and 
CHIRPS in terms of correlation coefficient (CC) and root mean square error (RMSE).
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Data Records
Based on the methodology outlined above, the SM2RAIN-Climate global monthly rainfall dataset is generated in 
the period 1998–2021. The product is named SM2RAIN-Climate, and it is publicly available at (https://doi.org/ 
10.5281/zenodo.7276469)53 in NetCDF format. As mentioned above, we have considered the temperature mask 
in data post-processing and a threshold value (percentage of missing data) to take into account missing data 
within a month. Specifically, we have considered two threshold values of 66% and 20% to obtain a lower and 

GPCC

KGE 

CHIRPS

ERA5

BIAS (mm)

CHIRPS

GPCC ERA5

Fig. 3 Spatial evaluation of SM2RAIN-Climate (product #1 in Table 2) dataset against GPCC, ERA5, and 
CHIRPS in terms of bias (BIAS) and and Kling-Gupta Efficiencies (KGE).
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higher quality product, respectively. The lower quality product (threshold equal to 66%) has better spatial and 
temporal coverage, and hence depending on the application, the user can select the more suitable product. 
Therefore, four different SM2RAIN-Climate datasets are provided. For each dataset, the spatial grid (latitude 
and longitude), the rainfall values, and the mask type is defined in each NetCDF file. The flag value convention 
and the specifications of each dataset are shown in Table 2. These multiple datasets allow users to choose the 
most suitable option based on their specific needs and application requirements.

Fig. 4 Global and regional scale seasonality (Note: America represents both South and North America).
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Technical Validation
The technical validation of the SM2RAIN-Climate product involves a comparison with various global rainfall 
products to assess its performance. For this purpose, three distinct datasets, namely GPCC, ERA5, and CHIRPS, 
have been selected. These datasets represent gauge-based, reanalysis, and satellite-based rainfall products, 
respectively, and have available data during the period from 1998 to 2021. It’s important to note that the NASA 
Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) dataset is not available 
for the whole period of 1998–2021 and therefore was not included in the validation process. Four quantitative 

Fig. 5 Annual boxplots of correlation coefficient (CC), root mean square error (RMSE), and bias (BIAS) 
value between the SM2RAIN-Climate dataset and ERA5. The red dashed line in CC figure represents the 95% 
significant confidence level.
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statistical metrics, including correlation coefficient (CC), root mean square error (RMSE), bias (BIAS), and 
Kling-Gupta Efficiency (KGE) are calculated for the evaluation of the SM2RAIN-Climate product (note that a 
positive BIAS represents the overestimation of SM2RAIN-Climate against the other products).

Global scale assessment. The assessment of SM2RAIN-Climate products against ERA5, GPCC, and 
CHIRPS are shown in Table 3. Overall, the SM2RAIN-Climate product with a 66 percent threshold and no tem-
perature mask (flag_value=1) demonstrated relatively lower quality. However, the other SM2RAIN-Climate 
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Fig. 6 Monthly time series of four products, including SM2RAIN-Climate (green line), ERA5 (blue line), 
GPCC (black line), and CHIRPS (red line) spatially averaged over Australia, Africa, America, and Europe. CC 
represents the correlation coefficient value between spatially averaged SM2RAIN-Climate and other products.
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products exhibited slightly better performance compared to ERA5, GPCC, and CHIRPS (flag_value=1), with a 
2.62%, 2.41%, and 1.94% improvement in correlation coefficient (CC), respectively, for the higher quality/lower 
temporal product (flag_value=5). Given that this product (flag_value=1) exhibits the lowest missing values, its 
validation is presented in this paper.

Figures 2, 3 show the performance of the SM2RAIN-Climate dataset against the three different global rainfall 
products, including GPCC, ERA5, and CHIRPS, for the period 1998–2021 at monthly timescale and 1° spatial 
resolution. The results indicated that SM2RAIN-Climate has a good agreement with other rainfall products. 
The spatial average of CC values of SM2RAIN-Climate is 0.83, 0.80, and 0.82 against the GPCC, ERA5, and 
CHIRPS, respectively. Based on CC and KGE values, SM2RAIN-Climate agrees well with other products over 
Australia, India, central and South of Africa, and the eastern part of South America. Performances are lower 
across the north of Africa (Sahara Desert) and the eastern part of north America, likely due to the lower tem-
poral variability of rainfall. Moreover, due to the low quality of SM products over high latitudes (>60°), the skill 
performance of SM2RAIN-Climate is lower over these regions. Assessment results indicate that the RMSE value 
is higher over the south and eastern part of Asia than in other parts of the world. The average GPCC, ERA5, 
and CHIRPS BIAS values are 3.16, 1.04, and 3.17 mm, respectively. In spite of the lowest value of BIAS in ERA5 
among the products, the BIAS value of this product over southeastern Asia is higher than other products, where 
the SM2RAIN-Climate underestimates the rainfall.

The seasonality analysis across the globe is depicted in Fig. 4, highlighting the patterns of rainfall estimation 
for SM2RAIN-Climate and other rainfall products. The findings reveal that the SM2RAIN-Climate dataset esti-
mates a higher amount of rainfall compared to the other products, particularly during the months of October, 
November, and December.

Figure 5 shows the comparison results of the SM2RAIN-Climate dataset and ERA5 based on CC, RMSE, 
and BIAS over time, i.e., year by year. The results indicate that the performance skill is increasing over time, 

Africa Australia

Europe America

Fig. 7 Boxplot of correlation coefficient (CC) of the SM2RAIN-Climate against three rainfall products, 
including CHIRPS (red box), ERA5 (green box), and GPCC (blue box) over Australia, Africa, America, and 
Europe.
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especially after 2007, in which the CC (RMSE and BIAS) values increase (decrease). This result should be attrib-
uted to the increase in the temporal coverage of ESA CCI SM data due to the start of the ASCAT operations.

Regional scale assessment. For further investigation of the potential of SM2RAIN-Climate in the esti-
mation of rainfall, three macroregions, including Europe, Africa, America (South and North America) and 
Australia, are selected. Figure 6 indicates the time series of mean monthly rainfall of four rainfall products, 
including SM2RAIN-Climate, GPCC, ERA5, and CHIRPS, spatially averaged over the selected regions from 
1998 to 2021. In addition to the mean values, the interquartile range (IQR) time series are also calculated to 
provide information on the variability of rainfall within each month. The IQR reflects the range between the 25th 
and 75th percentiles, representing the middle 50% of the data distribution. Over Australia, the mean monthly 
SM2RAIN-Climate rainfall shows very good agreement with other products during the austral summer months 
and an overestimation in the austral winter months. Despite these differences in mean values, IQR values of 
SM2RAIN-Climate exhibit a remarkable consistency with the other products. This consistency in IQR values 
indicates that the patterns and distribution of rainfall remain relatively consistent across the different products, 
despite the variations in average rainfall amounts over Australia. In contrast to the situation over Australia, over 
America, the mean monthly SM2RAIN-Climate rainfall exhibits a relatively similar pattern compared to other 
rainfall products. However, there are differences in the IQR values of SM2RAIN-Climate compared to the other 
products. This suggests that while the average rainfall amounts are consistent among the different products, the 
variability and distribution of rainfall show some variations. The mean monthly rainfall and IQR value time series 
over Africa shows good agreement between these products except before 2007 when the SM2RAIN-Climate esti-
mated more rainfall than other products. Additionally, the overestimation observed before 2004 can be attributed 
to the unavailability of active microwave data in that region prior to 2004. Overall the rainfall products have a 
good agreement over Europe, even though in some years there are discrepancies among products. Also, a lower 
IQR of SM2RAIN-Climate than other product indicates indicating less variability of monthly rainfall.

The seasonality analysis, presented in Fig. 3 for various regions, reveals consistent patterns among the 
products over Africa and America, indicating a convergence in capturing the seasonal variability of rainfall. 
Conversely, in Australia, SM2RAIN-Climate consistently exhibits higher rainfall estimates compared to other 
products throughout most months. Over Europe, disparities emerge between the rainfall estimates of the differ-
ent products, highlighting variations in capturing the seasonal precipitation patterns within this region.

Figure 7 shows boxplots of CC values between SM2RAIN-Climate and GPCC, ERA5, and CHIRPS. 
According to this result, SM2RAIN-Climate performs well in these four regions, where the median CC value is 
above 0.6, 0.8, 0.7 and 0.8 over Europe, Africa, America and Australia, respectively. The CC value in Australia 
is generally higher than in Africa and Europe. Although GPCC is used in the calibration of SM2RAIN-Climate, 
ERA5 has the best agreement with SM2RAIN-Climate over Africa, likely due to the poor quality of the 
gauge-based GPCC product in Africa.

CHIRP
S

GPCC

SM2RAIN-ClimateERA5

Monthly rainfall change (mm/day) 1998-2021

Fig. 8 Monthly changes [mm/day] of rainfall in the period 1998–2021 with SM2RAIN-Climate, GPCC, ERA5, 
and CHIRPS datasets.
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Trend analysis. One of the applications of long-term rainfall products is in climate studies, e.g., trend anal-
ysis. In this section, the potential of the SM2RAIN-Climate dataset in capturing the rainfall trend is investigated 
and compared with the trend analysis of GPCC, ERA5, and CHIRPS. Figure 8 shows the monthly rainfall change 
in the different rainfall products during the period 1998–2021, calculated based on the slope of the fitted trend 
line, which represents the rate of change in monthly rainfall over time. The pattern of the rainfall change in all 
rainfall products is similar in most of the regions, such as Australia, the United States of America (USA), south 
and central Africa, and the northern part of South America. Also, in some regions, e.g., the eastern part of the 
USA, although the performances in terms of CC are not so high, the trend pattern of the datasets is very similar. 
In eastern Asia, the SM2RAIN-Climate trend pattern is similar to GPCC and CHIRPS but the opposite of ERA5. 
In this region and in others with some discrepancies, it would be highly interesting to perform detailed studies to 
assess the rainfall trend and the reasons for these differences.

To investigate regional monthly rainfall trends, four specific pixels were selected for analysis. Figure 9 pre-
sents the time series of these pixels, showcasing the trend lines superimposed on the monthly rainfall data. The 
case study reveals both similarities and differences among the rainfall products across various regions. In the 
eastern part of Africa, for example, the GPCC and SM2RAIN-Climate products exhibit a declining trend, while 
ERA5 and CHIRPS display an opposing trend of increasing rainfall. This disparity emphasizes the significance 
of considering multiple datasets when assessing regional rainfall patterns. Likewise, over China, all products 
except ERA5 demonstrate a decreasing trend in rainfall. The inclusion of these regional time series analyses pro-
vides valuable insights into the local-scale variations in rainfall trends and further enhances the comprehensive 
understanding of the performance and reliability of the different rainfall products.

Scientists and stakeholders can enhance the comprehensive analysis of precipitation across various appli-
cations by utilizing a combination of rainfall products enriched with diverse informational resources. Indeed, 
it is worth noting that individual rainfall products can yield distinct results when compared to each other. For 
instance, when conducting trend analysis, the ERA5 rainfall product over East Asia and CHIRPS over East 
Africa display different trends compared to other datasets, which might be attributed to differences between the 
data sources and methodologies used for rainfall estimation.

One of the important features of the SM2RAIN-Climate dataset is the full independence from other rain-
fall products based on the different approaches of rainfall estimation. In this study, we show the potential 
of SM2RAIN-Climate rainfall estimation in many regions of the world. While we are also conscious of the 
SM2RAIN-Climate limitations (we expect high errors over mountainous, heavily vegetated, and frozen or 
snow-covered area24), we believe that the SM2RAIN-Climate dataset will provide additional and independent 
information for rainfall application and analysis.

Code availability
SM2RAIN algorithm code is available in python, R, and Matlab on GitHub (https://github.com/IRPIhydrology/
sm2rain).
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Fig. 9 Monthly time series, trend line of rainfall change (slope in mm/day) for SM2RAIN-Climate (blue), 
GPCC (green), ERA5(red), and CHIRPS (purple) datasets over four specific geographic coordinate (longitude 
(lon) and latitude (lat)).
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