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A Large Finer-grained Affective 
Computing EEG Dataset
Jingjing Chen1,2,5, Xiaobin Wang1,2,5, Chen Huang1,2, Xin Hu1,3, Xinke Shen2,4 & Dan Zhang   1,2 ✉

Affective computing based on electroencephalogram (EEG) has gained increasing attention for its 
objectivity in measuring emotional states. While positive emotions play a crucial role in various real-
world applications, such as human-computer interactions, the state-of-the-art EEG datasets have 
primarily focused on negative emotions, with less consideration given to positive emotions. Meanwhile, 
these datasets usually have a relatively small sample size, limiting exploration of the important issue 
of cross-subject affective computing. The proposed Finer-grained Affective Computing EEG Dataset 
(FACED) aimed to address these issues by recording 32-channel EEG signals from 123 subjects. During 
the experiment, subjects watched 28 emotion-elicitation video clips covering nine emotion categories 
(amusement, inspiration, joy, tenderness; anger, fear, disgust, sadness, and neutral emotion), 
providing a fine-grained and balanced categorization on both the positive and negative sides of 
emotion. The validation results show that emotion categories can be effectively recognized based on 
EEG signals at both the intra-subject and the cross-subject levels. The FACED dataset is expected to 
contribute to developing EEG-based affective computing algorithms for real-world applications.

Background & Summary
Affective computing, aimed at enabling intelligent systems to recognize, interpret, and respond to people’s affec-
tive states, has drawn enthusiasm in various fields, including artificial intelligence, human-computer interaction, 
education, etc.1,2. In recent years, electroencephalogram (EEG) has gained increasing attention in the field of 
affective computing3. Unlike behavioural modalities such as voice, facial expression, and gestures that might 
be consciously disguised or restrained, EEG can objectively measure emotional states by recording people’s 
brain signals directly4. Compared with other neuroimaging technologies, EEG devices offer advantages such 
as relatively low cost and high portability, making them promising candidates for practical affective computing 
applications5. However, while research has demonstrated the feasibility of affective state decoding based on EEG 
signals, efforts are still needed to bridge the research-to-practice gap for EEG-based affective computing tech-
niques towards real-world applications6.

First, while the importance of accurate decoding of positive emotions is acknowledged for real-world affec-
tive computing applications7, existing EEG-based affective computing studies have mainly used classical emo-
tion theories with an oversimplified categorization of positive emotions6,8. For example, among Ekman’s six basic 
emotions, only “happiness” can be considered positive9. Considering that people usually experience positive 
emotions more frequently than negative emotions in their daily lives10, the relatively limited categorization of 
positive emotions may fail to effectively describe one’s affective states during possible affective-computing appli-
cation scenarios7. Psychologists have called for a more balanced view of both the negative and positive side of 
emotion11,12, and emerging neuroscience studies have provided preliminary support for the decoding of discrete 
positive emotions. For instance, inspired by recent positive emotion theories12, distinct neural representations 
of positive emotions, such as joy, amusement, tenderness, etc., have been revealed with a video-watching par-
adigm for emotion elicitation8,13–15. However, publicly available EEG datasets have not sufficiently emphasized 
the positive side of emotion. A finer-grained emotion categorization, preferably with a special focus on positive 
emotions, is needed for datasets that better fulfill the needs of real-world affective computing applications6.

Second, emotion recognition that can be “plug-and-play” is always preferred in practical scenarios due to its 
time-saving and good user experience16. However, individual differences in people’s emotional experiences and 
the correspondingly individualized emotion-related EEG activities have posed challenges to the development 
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of algorithms for cross-subject affective computing4. Indeed, substantial drops in the performance from 
intra-subject to cross-subject emotion recognition have been consistently reported17,18, hindering seamless emo-
tion recognition usage. Due to the time and labour cost for EEG data collection, available benchmark datasets 
usually have a relatively limited sample size (20~60 subjects)19–22. A dataset with a larger sample size, however, 
may help address the cross-subject affective computing challenges, as the extraction of subject-invariant rep-
resentation of emotional states could benefit from an increase in the subject number23. In particular, the recent 
rise of deep learning methods has brought new possibilities for cross-subject challenges and also placed higher 
demands on the sample size6,24. With the development of data augmentation techniques25, the expected positive 
effects of the increased sample size could be amplified.

The present Finer-grained Affective Computing EEG Dataset (FACED) aims to address these issues by 
recording EEG signals from 123 subjects who watched 28 emotion-elicitation video clips covering nine emotion 
categories (amusement, inspiration, joy, tenderness; anger, fear, disgust, sadness, and neutral emotion). The 
sample size of over 100 subjects is expected to facilitate the cross-subject affective computing research. The 
EEG data were recorded using 32 electrodes according to the international 10–20 system. For each video clip, 
subjective ratings were obtained for all subjects, covering the dimensions of the four negative and four positive 
emotions, as well as arousal, valence, familiarity, and liking. For validation, we used a classical machine learning 
algorithm26 for both intra-subject and cross-subject affective computing and a state-of-the-art algorithm utiliz-
ing a contrastive learning framework4 for cross-subject affective computing. The features of the FACED dataset 
are summarized in Table 1. The validation supports the effectiveness of nine-category cross-subject affective 
recognition. The dataset is open-access for research purposes: https://doi.org/10.7303/syn50614194.

Methods
Stimuli and experiment procedure.  Twenty-eight video clips were used to elicit nine categories of emo-
tion (four negative emotions: anger, disgust, fear, and sadness; four positive emotions: amusement, inspiration, 
joy, and tenderness; and the neutral emotion). The selection of emotion labels is based on the following consid-
erations. The four negative emotions were derived from Ekman’s six basic emotions9, while the selection of the 
four positive emotions was based on the latest advancements in psychology and neuroscience, as well as specific 
application requirements: Recent neuroscience studies have identified three positive emotions (inspiration, joy, 
and tenderness) as being representative8,13, and amusement is frequently encountered in application scenarios 
like human-computer interactions27,28. The emotion-evoking video clips were selected from various databases, 
including the FlimStim database29, the database of positive emotional videos8,13, the standardized database of 
Chinese emotional videos30, and the database of emotion profile videos31. Each negative/positive emotion cate-
gory had three video clips, while the neutral emotion category had four clips. On average, these video clips lasted 
about 66 seconds, with duration ranging from 34 to 129 seconds. The details of each video clip are provided in 
Supplementary Table S1.

Figure 1 demonstrates the experimental procedure. During the experiment, subjects were seated approxi-
mately 60 cm away from a 22-inch LCD monitor (Dell, USA). Each trial began with subjects focusing on a fix-
ation cross for 5 seconds, followed by watching a video clip. The sound of video clips was played through stereo 
speakers (Dell, USA). After each video clip, subjects were required to report their subjective experiences during 
the video-watching on 12 items, including anger, fear, disgust, sadness, amusement, inspiration, joy, and tender-
ness, as well as valence, arousal, liking and familiarity. Subjects provided ratings on a continuous scale of 0–731,32 
for each item and then had at least 30 seconds of rest before starting the subsequent trial. Here, for the valence 
item, 0 indicated “very negative” and 7 indicated “very positive”. For the other items, 0 indicated “not at all” and 
7 indicated “very much”. The meaning of the 12 items was explained to the subjects before the experiment.

To minimize the possible influence of alternating valence, video clips with the same valence (e.g., positive) 
were presented successively as a block of four trials. Consequently, there were three positive blocks, three negative 
blocks, and one neutral block. Between two blocks, subjects completed 20 arithmetic problems to minimize the 
influence of previous emotional states on the subsequent block33. When answering the arithmetic problems, if 
subjects did not complete a problem in 4 seconds, it would be skipped, and the next problem would be presented. 
The order of the video clips within each block and the seven blocks was randomized across subjects. Before 
the experiment, subjects performed one practice trial to become familiar with the procedure. The experimental 
procedure was programmed with Psychophysics Toolbox 3.0 extensions34 in MATLAB (The Mathworks, USA).

Subjects.  A total of 123 subjects (75 females, mean age = 23.2 years, ranging from 17 to 38 years; all native 
Chinese) were recruited for the experiment. None of the subjects have reported a history of neurological or 

Key features of the FACED dataset

Number of subjects 123

Emotion category 9 anger, fear, disgust, sadness, amusement, inspiration, joy, tenderness, 
and neutral emotion

Number of video clips 28 three clips for each negative/positive emotion and four clips for the 
neutral emotion

Self-reporting ratings (continuous scale of 0–7) 12 items anger, fear, disgust, sadness, amusement, inspiration, joy, and 
tenderness valence, arousal, liking, and familiarity

Recorded signals 32-channel EEG

Table 1.  The summary of key features of the FACED dataset.
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psychiatric disorders. The subjects were de-identified and indexed as S000~S122. The study was approved by the 
local Ethics Committee of Tsinghua University (THU201906), and informed consent was obtained from all subjects.

Data acquisition.  The EEG signals were recorded using a wireless EEG system (NeuSen.W32, Neuracle, 
China) at a sampling rate of 250 or 1000 Hz. Thirty-two wet electrodes (Ag/AgCl electrodes with conductive gel) 
were placed according to the international 10–20 system. The impedance was kept below 10 kOhm through-
out the experiment. Our experiment was conducted in two cohorts in two distinct time periods, involving two 
non-overlapping groups of subjects. Cohort 1 included participants sub000 to sub060, while cohort 2 encom-
passed participants sub061 to sub122. The data in both cohorts was collected with the same experimental proce-
dure. In the experiment, we initially used a sampling rate of 250 Hz, which is comparable with other datasets19,35. 
However, the sampling rate was switched to 1000 Hz18 later to provide richer information for data analysis. The 
sampling rate for each subject during recording is provided in Recording_info.csv, along with the dataset. Data 
in both cohorts were recorded with the reference electrode at CPz and the ground electrode at AFz. The refer-
ence and ground electrode were defaulted by the EEG amplifier, which was also used in other emotion-related 
studies31,36. Note that the 32-electrode coverage available in the present dataset allowed multiple re-referencing 
methods (e.g., the common average or the average of both mastoids) by simple linear computations in subsequent 
analysis. The spatial placement of the electrodes in the two cohorts is the same, although 6 of them have different 
names due to the device setting. The electrode information for both cohorts can be found in Supplementary 
Tables S2, S3. During the experiment, the recorded EEG signals were synchronized to the experimental procedure 
by sending triggers to the EEG recording system with a serial port when events occurred, which is a common 
practice in data-task synchronization in EEG-based experiments37. The event information during the experiment 
is listed in Table 2.

Data pre-processing.  The dataset was collected in a regular office environment resembling possible prac-
tical application scenarios19,38. Then, to validate the dataset, we conducted a pre-processing procedure to enable 
further analysis. The pre-processing process was conducted based on the MNE toolbox39, version 1.2.1, with 
Python 3.10. Codes for data pre-processing were provided together with the dataset. First of all, the unit for the 
recorded EEG signal was adjusted to μV. Then, the last 30 seconds of each video clip were selected to capture 
the maximal emotional responses4,8 based on the timing of events that indicates the end of each video clip (i.e., 
“Video clip end” in Table 2). Then, the sampling rates of EEG were adjusted to 250 Hz (downsampled when 
necessary). Next, filtering, interpolation, and independent component analysis (ICA) were conducted to remove 
possible motion and ocular artifacts, which was similar to the pre-processing pipelines of other datasets like 
DEAP and SEED. Specifically, a bandpass filter from 0.05 to 47 Hz was applied to the EEG signals with the MNE 
filter() functions. Following that, samples whose absolute values exceeded three times the median absolute value 
in each 30-second trial were defined as outliers4. In each 30-second EEG trial, if the proportion of outliers for an 
electrode exceeded 30%, this electrode was defined as a bad electrode and was interpolated, following previous 
studies4,40 with the MNE interpolate_bads() function. Then, the ICA method was performed. The independent 
components (ICs) containing ocular artifacts were automatically defined and rejected by using FP1/2 as the proxy 
for electro-oculogram with the MNE ica.find_bads_eog() and ica.exclude functions. Next, the cleaned EEG signals 
were re-referenced to the common average reference. Finally, the order of electrodes in cohort 1 was adjusted to 
be consistent with cohort 2. Note that all the data pre-processing was conducted offline. The raw EEG data are 
provided and hereby available to the users. We also provide the pre-processed data to promote more efficient 
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Fig. 1  Experimental procedure.
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use of the present dataset. We recommend that users read the released pre-processing code before using the 
pre-processed data to develop a more detailed grasp of the implementation. Nevertheless, users can design their 
own pre-processing pipeline and apply it to the raw data according to their specific needs (e.g., considering suffi-
cient artifact removal towards electromyography, electrocardiogram, and channel noise).

We also provide commonly-used EEG features, including differential entropy (DE)41 and power spectral 
density (PSD)42 for our dataset. The DE and PSD features were obtained from the pre-processed data within each 
non-overlapping second at 5 frequency bands (delta band: 1–4 Hz, theta band: 4–8 Hz, alpha band: 8–14 Hz, beta 
band: 14–30 Hz and gamma band: 30–47 Hz). The formula to calculate DE and PSD followed the practice in the 
SEED dataset (https://bcmi.sjtu.edu.cn/home/seed/seed-iv.html).

=PSD E x[ ] (1)2

DE ln e1
2

(2 )
(2)

2π σ=

Where x is the EEG signal, σ is the variance of the EEG signal.

Data Records
The FACED dataset is available in Synapse43 and stored in the “FACED” repository (Project SynID: 
syn50614194) at the website https://doi.org/10.7303/syn50614194. As shown in Table 3, the current dataset 
contains data records from 123 subjects. For each subject, we provide raw EEG data and event data in the “.bdf ” 
file format, self-reported ratings in the MATLAB “.mat” format, pre-processed EEG data in the Python “.pkl” 
format, DE and PSD features in the Python “.pkl” format. The pre-processed data were obtained after apply-
ing the pre-processing pipeline described in the Methods section to the raw EEG data. For each subject, the 
pre-processed EEG data is presented as a 3-dimensional matrix of VideoNum*ElecNum*(TrialDur*SampRate). 
The number of video clips is 28. The order of video clips in the pre-processed data was reorganized according 
to the index of video clips, as reported in Supplementary Table S1. The number of electrodes is 32. The order of 
electrodes is provided in Supplementary Table S3. The duration of each EEG trial is 30 seconds, and the sampling 
rate of pre-processed EEG data is 250 Hz. For each subject, the DE and PSD feature is a 4-dimensional matrix of 
VideoNum*ElecNum*TrialDur*FreqBand. There are 5 frequency bands, corresponding to delta, theta, alpha, 
beta, and gamma band, respectively.

The data structure of behavioural data is shown below in Table 4. For each subject, the behavioural data 
includes self-report ratings on 12 items for each video. Additionally, task performances, including accuracy and 
response time, for the arithmetic problem-solving task during each inter-block interval are also provided. The 
unit for the response time is in seconds.

Event Trigger value

Experiment start 100 Successive triggers of 100 as the start of the experiment

Video index 1–28 The index of each video clip

Video clip start 101 The start of each video clip

Video clip end 102 The end of each video clip

Table 2.  The event information during the experiment.

File name Content

Dataset_description.md Description of the dataset

Task_event.xslx Event information during the experiment

Electrode_Location.xslx Electrode information

Stimuli_info.xslx Details of the video clips

Recording_info.csv Age, gender, sampling rate, and the units of EEG signal for each subject

DataStructureOfBehaviouralData.xslx Data structure of the behavioural data

Data/subXXX/data.bdf, evt.bdf Raw EEG and event data

Data/subXXX/After_remarks.mat Self-reporting ratings and the performances of the inter-block arithmetic task

Processed_Data/subXXX.pkl Pre-processed EEG data 3-dimensional matrix of VideoNum*ElecNum*(TrialDur *SampRate)

EEG_Features/DE/ subXXX.pkl DE feature 4-dimensional matrix of VideoNum*ElecNum*TrialDur*FreqBand

EEG_Features/PSD/ subXXX.pkl PSD feature 4-dimensional matrix of VideoNum*ElecNum*TrialDur*FreqBand

Code Codes for data pre-processing and validation

README.md Usage notes for data and codes

Table 3.  Data records in the FACED dataset. Note: The subXXX indicates sub000~sub122.
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Technical Validation
Behavioural data validation.  To assess the effectiveness of the video-watching paradigm in eliciting the 
targeted emotions, we conducted repeated measures analyses of variance (rmANOVA) and post-hoc tests on 
the subjects’ emotional ratings. As illustrated in Fig. 2, the category of video clips that was expected to elicit one 
specific emotion indeed yielded the highest self-report ratings for the target emotion (rmANOVA p < 0.001 for 
all emotion items and post-hoc tests showed significantly higher ratings for the target emotion, p < 0.05, false 
discovery rate corrected). At the same time, neutral video clips received low arousal ratings and moderate valence 
ratings (average arousal score: 1.41; average valence score: 3.18). The results validate the efficacy of the current 
video-watching paradigm. The self-report ratings on arousal, valence, familiarity, and liking are demonstrated in 
Supplementary Fig. S1. The self-report ratings for each video clip on all 12 items are provided in Supplementary 
Table S4.

EEG data validation.  Pearson’s correlations between the relative EEG spectral powers and self-reported 
emotional ratings were computed to identify the neural correlates of emotional experiences. The relative spectral 
powers were defined as the ratio between the sum of the spectral powers in the frequency band of interest (delta, 
theta, alpha, beta and gamma band) and the sum of the full-band spectral power. Specifically, for every 30-second 
EEG trial of each video, the trial was divided into 1-second epochs. Then, Fourier Transform was conducted for 
each 1-second epoch, and the relative spectral powers for each video clip were calculated by obtaining the median 
of all 30 1-second epochs. Then, the correlation was calculated between each subject’s ratings on a specific emo-
tion item for 28 video clips and her/his relative spectral powers for the same 28 video clips at each electrode. The 
topographies of the averaged Pearson’s correlation coefficients over all subjects were demonstrated in Fig. 3 and 
Supplementary Fig. S2. Distinct EEG correlates of different emotional experiences were observed spatially and 
spectrally, showing comparable magnitudes of correlation coefficients with one previous study8. These results 
suggest that the video-elicited EEG signals contain emotion-related information, providing the neural basis for 
EEG-based emotion recognition.

Classification analysis.  Classification analysis was further conducted to validate the utility of the data 
records in two parts: 1. Binary classification of positive and negative emotional states was performed to directly 
compare with previous studies. 2. Classification of the nine-class emotional states was conducted to test whether 

Field

score Rating scores of 12 items for the 28 video clips 0–7 Item order: “joy”,“tenderness”,“inspiration”,“amusement”,“anger”, 
“disgust”,“fear”,“sadness”,“arousal”,“valence”,“familiarity”, “liking”

trial Presentation orders of the 28 video clips 1–28

vid Video indexes of the 28 video clips 1–28

Accuracy Averaged accuracy of the arithmetic task during each inter-block interval Ranging from 0 to 1

ResponseTime Response times of the 20 arithmetic problems during each inter-block interval The unit for response time is in seconds

Table 4.  The data structure of the behavioural data.
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Fig. 2  The subjects’ ratings on the emotional experience items. For each category of video clips, the eight bars 
indicate mean ratings of the video clips on joy, tenderness, inspiration, amusement, anger, disgust, fear, and 
sadness (from left to right). The gray bars indicate the ratings on the corresponding target emotion; The white 
bars indicate the ratings on the non-target emotion. The error bars indicate standard errors.
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the present dataset could support a finer-grained emotion recognition. The classification of emotional states was 
conducted on a 1-second time scale. In the first part, the classical method based on DE features and support 
vector machine (SVM)26 was used for intra-subject and cross-subject emotion recognition. Here, anger, disgust, 
fear, and sadness were labelled negative, while joy, amusement, inspiration, and tenderness were labelled positive. 
The neutral emotion was excluded due to an imbalanced data amount (4 neutral video clips vs. 12 positive/neg-
ative video clips). The recognition was carried out using the pre-processed data with a ten-fold procedure. In the 
intra-subject emotion recognition, for all positive/negative video clips, 90% of EEG data in each video clip served 
as the training sets, and the remaining 10% was used as the testing sets for each subject. In the cross-subject emo-
tion recognition, the subjects were divided into 10 folds (12 subjects for the first nine folds, and 15 for the 10th 
fold). Then, nine-fold subjects were used as the training sets, and the remaining subjects were used as the testing 
sets. The procedure was repeated 10 times and the classification performances were obtained by averaging accu-
racies for 10 folds. The classification accuracies of 78.8 ± 1.0% and 69.3 ± 1.5% (mean ± standard error, the same 
below for the reported classification accuracies) were obtained for the intra-subject and cross-subject emotion 
recognition, respectively. Both the intra-subject and cross-subject performances were comparable with previous 
studies using the same classification methods26,44. A drop in performance was also observed in the cross-subject 
recognition compared with the intra-subject recognition, consistent with findings from previous studies17,18. The 
classification accuracies for each subject were demonstrated in Fig. 4. Both intra-subject and cross-subject classi-
fication reveal substantial individual differences, underscoring the value of large-scale datasets in better charac-
terizing population attributes.

In the second part, we performed a classification of the nine-class emotional states to assess if the present 
dataset could support more fine-grained emotion recognition. The same classification procedure (DE + SVM 
with a 10-fold cross-validation, as detailed above) was conducted to classify joy, tenderness, inspiration, amuse-
ment, anger, disgust, fear, sadness, and neutral emotions. The achieved accuracies were well above the chance 
level (intra-subject: 51.1 ± 0.9%; cross-subject: 35.2 ± 1.0%), indicating the feasibility of decoding multiple 
emotional states based on EEG signals. The classification accuracies for each subject were demonstrated in 
Fig. 5.

Moreover, we also employed one state-of-the-art algorithm named Contrastive Learning for Inter-Subject 
Alignment (CLISA)4 for the cross-subject recognition of the nine emotion categories. The objective of 
CLISA was to reduce inter-subject differences by maximizing the similarity in EEG signal representations 
among subjects when exposed to the same emotional stimuli, as opposed to different ones. Subsequently, the 
inter-subject-aligned EEG representations were used to extract features for emotion classification, which are 
expected to be relatively stable across subjects. Due to its state-of-the-art cross-subject emotion recognition 
performance on several EEG datasets, we selected the CLISA algorithm to validate the newly proposed FACED 
dataset. A classification accuracy of 42.4 ± 1.2% was achieved with a ten-fold procedure, demonstrating a 7.2% 
improvement in the nine-emotion classification cross-subject performance. The accuracy was also comparable 
with one previous study4. The classification accuracies based on CLISA are shown in Fig. 6. The classification 
results supported the potential to boost the cross-subject performance by integrating the latest advancements 
in deep learning.
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Fig. 3  The topographies of the correlation coefficients between the relative spectral powers at the five frequency 
bands and the subjects’ ratings on the eight emotion items.
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In summary, the technical validation of self-reporting ratings indicated that the current video-watching par-
adigm effectively elicited the targeted emotions. The correlation analysis between self-reporting ratings and EEG 
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Fig. 4  The classification accuracies for each subject with DE + SVM in the binary classification of (a) intra-
subject and (b) cross-subject emotion recognition. The subjects are re-ranked according to their classification 
accuracies, increasing from left to right. The light gray bars indicate accuracies for each subject, and the white 
bars indicate averaged accuracies across all subjects. The error bars of white bars indicate the standard error 
across all subjects. The dotted gray line indicates the chance level of binary classification.

a

b

A
cc

ur
ac

y
(%

)
A
cc

ur
ac

y
(%

)

intra-subject

cross-subject

Fig. 5  The classification accuracies for each subject with DE + SVM in the nine-category classification of 
(a) intra-subject and (b) cross-subject emotion recognition. The subjects are re-ranked according to their 
classification accuracies, increasing from left to right. The light gray bars indicate accuracies for each subject, 
and the white bars indicate averaged accuracies across all subjects. The error bars of white bars indicate the 
standard error across all subjects. The dotted gray line indicates the chance level of nine-category classification.
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signals indicated that the video-elicited EEG signals contained emotion-related information. The classification 
analysis further showed that the emotion categories could be successfully recognized based on the EEG signals 
at both the intra-subject and the cross-subject level. These technical validation results collectively support the 
validity and reliability of the present dataset.

Code availability
All the codes used for the data pre-processing and the technical validation are publicly available together with the 
FACED datasets in Synapse (https://doi.org/10.7303/syn50614194). The codes were developed in Python 3.10. 
These codes can be executed on Linux and Windows. All required packages are listed in the torch_ubuntu.yml 
and torch_win.yml files. The README file under the Code file provides a detailed explanation of the procedure 
to reproduce the validation results using the codes and data.
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Fig. 6  (a) The classification accuracies for each subject with the CLISA algorithm for the nine-category cross-
subject emotion recognition and (b) the averaged confusion matrix. The subjects are re-ranked according to 
their classification accuracies, increasing from left to right. The light gray bars indicate accuracies for each 
subject, and the white bar indicate averaged accuracies across all subjects. The error bar of the white bar 
indicates the standard error across all subjects. The dotted gray line indicates the chance level of the nine-
category classification.
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