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Enhancing radiomics and Deep 
Learning systems through the 
standardization of medical  
imaging workflows
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Recent advances in computer-aided diagnosis, treatment response and prognosis in 
radiomics and deep learning challenge radiology with requirements for world-wide 
methodological standards for labeling, preprocessing and image acquisition protocols. 
The adoption of these standards in the clinical workflows is a necessary step towards 
generalization and interoperability of radiomics and artificial intelligence algorithms in 
medical imaging.

Introduction
According to the American Cancer Society it is estimated that around 2 million new cancer cases will be diag-
nosed in 2023 in the United States1. Medical imaging in oncology is the reference to evaluate most cancers, in 
particular for lesion detection and staging, which proves the need for general standards and guidelines in radi-
ology to advance research in digital diagnosis. Medical images in radiomics play a key role not only in diagnosis, 
but also in monitoring the progression and development of tumors, in addition to supervising the response 
to therapy and risk of relapse2,3. Throughout the present text, the term radiomics will be used to encompass 
both classic radiomics and advanced data analysis techniques based on Artificial Intelligence (AI), such as deep 
radiomics4,5.

Recent advances in medical imaging have shown the prospects of quantitative image descriptors to emerge as 
noninvasive prognosis phenotypes and predictive biomarkers6,7. Medical imaging and virtual biopsy are nonin-
vasive techniques in oncology that reach the whole tumor volume8, in contrast with genomics and proteomics, 
which rely on biopsies or invasive surgeries to analyze only a limited sample of tumor tissue that may not be 
representative of the whole lesion due to its heterogeneity6. Radiomics and radiogenomics have shown potential 
to solve these inconveniences7,9,10, but there are several challenges that must be implemented in the workflows of 
clinical practice. Interestingly, radiomics is not exclusive to oncology, and can be applied to a wide range of med-
ical imaging modalities, from magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, 
positron-emission-tomography (PET) and single-photon emission computerized tomography (SPECT)5,11,12.

The promise of radiomics lies in its potential for noninvasive automated evaluation of medical images. The 
price will be standardizing the different workflows in image acquisition, preprocessing, annotation, anonymi-
zation, metadata, and storage processes. Here we present an overview of current methods in preprocessing and 
harmonization alongside the limitations of radiomics. Furthermore, we propose guidelines to facilitate stand-
ardization and outline future prospects in the field of medical imaging.

Medical imaging beyond the hospital’s four walls: limitations
The translation of computer vision advances into clinical practice is currently being delayed due to the lack of 
standardization and harmonization of radiology clinical protocols and workflows13, a well-known problem14 
that calls for a unified approach with the engagement of the industrial sector in the field of radiomics. The poten-
tial of P5 medicine (predictive, preventive, personalized, participatory, psycho-cognitive)15 to revolutionize the 
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state of the art in medical imaging requires a paradigm shift from individual to collective standards, particularly 
in data collection and preprocessing. This shift will also enable the transition of research from retrospective 
studies to clinical applications.

Several reviews of publications discussed by16 reveal that most current machine learning models are far from 
being ready for real-world clinical deployment. These models lack sufficient reproducibility, rigorous validation, 
generalizability to external datasets, and robustness to translate to clinical practice.

There is a wide variability between manufacturers that implement distinct reconstruction algorithms, and 
institutions that utilize different reconstruction parameters, which may also be customized for each patient17. The 
implementation of standard scanning protocols across institutions will satisfy the urgent need for consistency in 
the acquisition parameters. Orhlac et al.18 showed in CT that scanner parameters such as reconstruction kernel or 
slide thickness influence radiomics texture features. Moreover, Son et al.19 showed that similar CT protocols and 
same slice gaps in data from different hospitals lead to an improved performance of machine learning algorithms. 
Rizzo et al.17 proposed identifying and excluding radiomic features highly influenced by the acquisition and recon-
struction parameters, however this solution may limit the power of radiomics analyses. Image quality is another 
factor that impacts the performance of radiomics systems, particularly if the equipment has become obsolete 
compared to modern devices16. In case the images come from different sources (manufacturers, hospitals) a sim-
ilar distribution of “positive” and “negative” cases needs to be ensured to train an AI algorithm16. Moreover, pre-
processing steps like filtering, resampling and morphological image processing also have an impact on radiomic 
features, as depicted in Fig. 1, that remains to be further investigated20. Finally, for AI systems, data augmentation 
should not alter the images in a way that the underlying biological or tissue properties are implausible16.

There have been some attempts in the literature to provide guidelines to preprocess medical images. Van 
Timmeren et al.11 enumerates some of the necessary steps before radiomic feature extraction, such as interpo-
lation, normalization and discretization. However, the authors highlight that many questions regarding these 
steps remain open. Aerts et al.6 performed radiomics analysis from the RAW imaging data (before the images 
are reconstructed), without any pre-processing or normalization, yet a strong dependence of their radiomic 
signature on tumor volume was later revealed by21.

Recently, the ComBat harmonization technique has been applied in several medical imaging modalities, 
such as lung cancer CT datasets22. ComBat harmonization is a batch-effect correction23 that aims to suppress 
batch effects by standardizing the means (location) and variances (scale) of each feature across batches to 
reduce the batch effect error24,25. This algorithm is based on an empirical Bayes approach, originally developed 
for genomics data26, later applied to reducing radiomics variability in PET27, and CT18. There are other varia-
tions of the algorithm, such as longComBat24, developed for longitudinal data. Overall, ComBat is intended to 
harmonize radiomic features, thereby minimizing the impact of different acquisition protocols on radiomic 

Fig. 1 Effect of different preprocessing steps on the same nodule and the corresponding histograms calculated 
for the nodule mask: (A) mediastinal window, (B) lung window (a.u. refers to arbitrary units).
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feature extraction, which is particularly useful for retrospective studies, where it would be impractical -or even 
impossible- to re-image patients to a controlled imaging protocol22. Ligero et al.25 applied ComBat considering 
different sources of variance as batches: manufacturer-dependent convolution kernel, slice thickness, and the 
combination of both. Their results showed that ComBat correction minimized radiomics data variability regard-
less of differences in CT acquisition protocols25. In the study by22, ComBat harmonization proved to be effective 
by harmonizing radiomic features extracted from different imaging protocols, although the authors underline 
that its effect on imaging-feature based predictive models requires further investigation22. In fact, research is 
underway to analyze the power of ComBat harmonization in multicenter studies in various imaging modalities, 
for example28 studied ComBat harmonization on PET/MRI and PET/CT for radiomics-based tissue classifica-
tion. Furthermore, ComBat is generalizable to other imaging modalities as it makes no assumptions about the 
origin of the site effects23.

The previous examples illustrate the need for general guidelines for medical image preprocessing in com-
puter vision tasks.

The clinical utility of an algorithm highly relies on the quality of the reference standard used in its training 
and evaluation16. Reference standards based on radiologists’ opinion are subjective, especially if established by 
a single expert, and should therefore be replaced whenever possible by objective reference standards, such as 
diagnostic tests and pathologic evaluation of biopsies or excised lesions, patient survival or time-to-progression 
for shorter-term reference standards16.

There are several standardization initiatives and imaging protocols investigating homogenization of 
image biomarkers and radiomic features, such as the Image Biomarker Standardization Initiative (IBSI)29, the 
Quantitative Imaging Network of the National Institute of Health (QIN)30, the Quantitative Imaging Biomarkers 
Alliance (QIBA)31, and the European Imaging Biomarker ALLiance (EIBALL)32, among others. Harmonization 
of the extraction and validation of robust radiomic features is essential to achieve results that are reliable and 
reproducible18,33–35, although it does not address the systematic variations between patient subpopulations16. The 
range of different standardization initiatives shows the need to reach consensus among the radiomics research 
community on joint standards.

Radiomic signatures are intrinsically data driven, which poses several challenges as the high volume of fea-
tures is susceptible to overfitting and overinterpretation of the derived models10. The development of radiomic 
signatures is significantly affected by underlying dependencies between radiomic features, redundancies and 
multicollinearity, as outlined by33. Machine learning algorithms can be effective to identify unexpected effects, 
such as volume-confounding features34,35. Lately, the lack of biological meaning of current high-throughput 
agnostic radiomic analyses has raised concerns. Tomaszewski and Gillies10 emphasize the need of support-
ing radiomics with biological validations to gain insights into the casual relationships of the features with the 
outcomes.

Most published radiomics studies lack independent validations of their signatures beyond a single external 
test set10, which is insufficient for their deployment in clinical practice. Independent validations of radiomic 
signatures on different cohorts and multiple institutions are hindered by the lack of standardization in medical 
imaging, although36 have already proposed an approach for distributed radiomics. Therefore, to achieve general-
ization and robustness of radiomic signatures further efforts are required to homogenize image acquisition and 
preprocessing18, in addition to controlling the effect of potential confounders35.

Another aspect that hinders the translation of radiomics and AI tools to clinical practice is the black-box 
nature of most current deep learning systems. Thus, in Europe, the General Data Protection Regulation estab-
lishes that individuals have the right to receive a clear and understandable explanation of how artificial intel-
ligence is being used to make decisions that directly affect them37. Explainable AI is essential to gain the trust 
of physicians and understand the reasons behind a prediction or decision16. Besides, interpretability can detect 
biases and problems such as unbalanced data, and explainable models are more robust against adversarial 
attacks38. Post-hoc explanations like saliency maps are insufficient to provide a full explanation of why and how 
the features are connected and weighted to identify the target lesion. Provided explanations should align with 
medical knowledge or be supported by clinical evidence16. In this regard39, introduced Co-12 properties, a high 
level decomposition of explanation quality, such as completeness, correctness, and compactness. A promising 
alternative to black-box AI algorithms are Part-prototype models, explainable by design. In this field, PIP-Net 
(Patch-based Intuitive Prototypes Network) proposed by40 opens up a new field of research for explainable AI 
in medical imaging.

The shortage of large enough datasets to train and externally validate radiomic signatures in prospective 
multi-center studies also happens for medical AI devices41. Several of the devices approved by FDA for diagnos-
tic use were trained on small datasets from a single center or from only two centers42. These algorithms are prone 
to biases and lack of generalizability outside the site where they were trained.

Public databases provide free validation datasets to the medical imaging community, however, as argued 
by16, the QA process for data in a public database is often overlooked. For example, the well-known LIDC-IDRI 
dataset43 includes the manufacturer in DICOM metadata, but not demographic information such as patient age 
or gender44, which can lead to unexpected biases when developing radiomics and machine learning models.

As outlined by16, even if a hospital could use a vendor-trained computer-aided diagnosis (CAD) AI tool 
with multi-institutional data and approved for clinical use, its performance in the local population could not 
be the same as in the vendor’s specifications. Hence, the hospital would have to evaluate the performance of the 
CAD-AI tool on their patients in an adjustment phase, achieving a deeper understanding of the CAD-AI per-
formance in the local setting, while reducing unrealistic expectations and improper use of the CAD-AI tool16.

To ensure data availability, accessibility and reusability, radiomic signatures demand stability and reproduc-
ibility across different hospitals, scanners and acquisition protocols, that is, the adoption of FAIR principles, as 
described by45, in a manner that preserves patient privacy13. Data collection must also conform to the ethical 
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considerations and legal framework of the country in which the data were obtained16. Standardization extends 
to validation and evaluation criteria, providing guidelines and contrasted metrics to reduce bias and overly opti-
mistic results hiding the lack of generalization of certain models subjected to highly restrictive data conditions 
and insufficient reporting11. The Radiomic Ontology project46 provides a Python library for FAIR radiomics 
analysis which aims to facilitate the transfer of research efforts to clinical practice.

Despite the mentioned efforts, it is important to note that a consolidated standard in the field of radiomics is 
still far from being established.

towards standardization: guidelines
At the moment, there are several public databases available with medical images, such as The Cancer Imaging 
Archive47 or Neurovault48. However, the absence of standardization in the format of these databases (i. e. inter-
operability) hinders simultaneous use of different data sources in the same machine learning algorithm13. Thus, 
the change of paradigm from visual assessment of medical images to computer-aided evaluation demands for 
methodological standardization of the workflows in medical imaging as proposed in Fig. 2. This standardization 
should implement the FAIR principles to the extent that the requirements due to the nature of medical images 
(de-identification, security) allow.

Data collection is a crucial step to create computer vision models and involves different agents within the hos-
pital: radiologists, technicians, nurses, general practitioners, etc. Data interoperability is vital to facilitate research 
and multicenter studies, therefore all the involved agents in data collection should become aware of methodolog-
ical standards when these are adopted. We believe radiologists will play a key role in ensuring the correct appli-
cation of standards and the effective adoption of protocols. There are two levels at which standardization of the 
workflows in image analysis should be implemented: software (consistency of technical implementation among 
scanners and manufacturers) and human interaction (coherence between different observers and practitioners)5.

At human interaction, we identify two levels at which radiological studies should be labeled: study level  
(e.g. brain MRI FLAIR sequence, chest radiography AP, etc.) and pathology level (e.g. tumor, benign nodule, etc.).  
The study level labeling relies on the work of technicians and nurses, who are responsible for the correct cate-
gorization of the data according to the type of study modality they have performed. Hence, in the study level 
labeling, the Series Description parameter in DICOM should correctly include the type of study modality that 
was carried out. Ultimately, the labeling at study level should be incorporated in the DICOM Study Description 
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Fig. 2 The nine stages of reaching standardization and making medical imaging data as FAIR as possible.
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and Series Description fields, according to the RadLex lexicon49 standard. Therefore, it is essential that this field 
is homogenized for each DICOM across all hospitals and scanners. In addition, the pathology level labeling 
should be incorporated into the structured report50.

In software, we believe that manufacturers’ involvement in the process of standardization is essential, as they 
are in charge of bringing the latest technology to the clinic. To ensure their engagement, we propose that all lead-
ing radiological societies join forces to request the implementation of the necessary technology from the man-
ufacturers. In particular, we acknowledge that standardization of MRI protocols for MRI-based radiomics is a 
challenge51, due to the inherent versatility of this imaging modality. The experience of52 first reported a systematic 
inventory of MRI technology and personnel. They proposed the creation of a committee of stakeholders (radi-
ologists, MRI physicists, technologists and scientists) committed to establishing and maintaining a standardized 
imaging strategy, with annual protocol reviews. As for their conclusions52, demanded better remote connectivity 
to MRI systems and automation of exam acquisition, from protocol selection and configuration to parameter 
modification. In other medical imaging modalities, such as radiography or CT53–55, the same process as in MRI 
could be followed, automating exam acquisition and parameter selection based on the patient’s characteristics.

We propose the following guidelines to ensure generalization of radiomics systems:

•	 Medical imaging datasets should always incorporate metadata information about the manufacturer and the 
acquisition protocol.

•	 Datasets’ anonymization process should retain demographical information (e.g., age, gender, comorbidities, 
ethnicity) to avoid biases, as long as the patient cohort is sufficient to ensure patient de-identification.

•	 Datasets that include segmentations should provide metadata describing if the segmentation was manually 
performed, otherwise information describing the automatic or semiautomatic method that was used should 
be provided, including values of internal parameters in case of fine-tuning of the algorithm.

•	 Reference standards should be objective as far as possible, otherwise, independent evaluations should be 
secured from several experts with an assessment of the inter-reader variability.

•	 Hospitals should appoint a stakeholder committee within their staff to guide and monitor the standardization 
strategy, through a QA/QC process.

•	 All hospitals should adopt the same standards and guidelines to ensure interoperability.
•	 Radiomics and AI systems should include interpretable explanations in human-understandable terms, simi-

lar to medical standards, on how and why they perform predictions or decisions to assist physicians.
•	 Datasets along with their metadata, and code if exists, should be made publicly available to allow reusability 

and reproducibility.

Standardization of computational statistics for radiomics-based systems should consider data balancing, 
sufficient patient population in size and diversity to prevent potential biases, interpretability, biological valida-
tion (relation of radiomic signature to cell morphology, density, distribution pattern, etc.5), generalization and 
suitability of performance metrics to the case of use, among other aspects. Ultimately, it is critical to continu-
ously monitor the performance of radiomics systems to ensure their efficiency does not degrade over time, the 
so-called data drift56, as clinical practices, protocols and patient demographics may change, with a correspond-
ing impact on performance.

Potential and scope of radiomics
The potential of radiomics is currently hindered by the absence of standardization in the medical imaging work-
flow. There are two factors that hamper standardization. On the one hand, there was no homogeneity in the 
mathematical definition of radiomic characteristics. This point has already been solved by IBSI, which should be 
adopted by all institutions. On the other hand, radiological images, despite being based on physical metrics, dif-
fer in the capture of the same phenomenon (disease) depending on the machine and the patient. Although this 
issue cannot be totally solved, it can be alleviated by homogenizing the machines to the same standard, which 
would be achieved by configuring the same acquisition parameters according to standard protocols, as previ-
ously explained. In addition, the establishment of standard protocols would also help to reduce the radiation 
dose53,54. The recommendations that have been proposed here require the engagement of all agents within the 
hospitals across the world, which may seem unrealistic, given the large number of entities that would have to get 
involved. Ultimately, we argue that the progressive adoption of these guidelines, under the auspices of radiologi-
cal societies, will encourage new institutions to adhere to them, and, thus, radiomic signatures will progressively 
start the transition from research to clinical practice.

Apart from the standardization requirements, the translation of radiomics analyses to clinical practice should 
be relatively effortless and inexpensive. Firstly, radiomics research is usually based on the studies that are rou-
tinely performed to patients and it does not require additional diagnostic techniques. Secondly, radiomics stud-
ies do not need expensive or complex equipment since the biomarkers can be easily extracted with the aid of a 
conventional computer with a Graphics Processing Unit (GPU) and the validation of radiomics signatures can 
be performed distributedly to preserve patient privacy, following federated learning approaches57. To the best 
of our knowledge, one the first studies that assessed the economic impact of AI as an assistive tool was58, who 
conducted a cost-minimisation analysis in diabetic retinopathy screening to evaluate the potential savings of two 
deep learning approaches compared to current human assessment, concluding that the semi-automated screen-
ing model was the least expensive. For this reason, the field of radiomics in medical imaging has the potential 
to become a powerful tool in providing universal, high-quality and affordable health care to all, including those 
in low- and middle-income countries (LMICs) where resources and expertise are limited59, with the caveat that 
biases must be carefully considered in this deployment60. On a final note, when standardized protocols are estab-
lished, technicians will be able to focus more effectively on patient care and image quality52.
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Paving the way for future medicine: conclusions
The safe adoption of radiomics and computer-aided diagnosis systems poses as a critical requirement the stand-
ardization of protocols and workflows in medical imaging. We have presented guidelines to standardize the 
workflows in medical imaging, with references to the different levels at which homogenization is required and 
the hospital personnel involved in each phase. The clinical deployment of radiomics will promote the application 
of more adapted and personalized treatments to the patient, which will ultimately translate into a more efficient 
management and distribution of the available resources, likely resulting in cost reductions for health systems. 
Radiomics based systems have shown potential to analyze patient data and predict future needs, which will allow 
healthcare providers to plan and allocate resources more efficiently. For this reason, it is necessary to standardize 
medical imaging workflows as soon as possible, to enable the progressive clinical implementation of radiomics 
and machine learning tools, and to bring precision medicine to the patient.
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