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Land cover and forest health 
indicator datasets for central India 
using very-high resolution satellite 
data
Sarika Khanwilkar  1 ✉, Chris Galletti1, Pinki Mondal  2,3, Johannes Urpelainen4, 
Harini Nagendra5, Yadvendradev Jhala  6, Qamar Qureshi6 & Ruth DeFries  1

Satellite imagery has been used to provide global and regional estimates of forest cover. Despite 
increased availability and accessibility of satellite data, approaches for detecting forest degradation 
have been limited. We produce a very-high resolution 3-meter (m) land cover dataset and develop a 
normalized index, the Bare Ground Index (BGI), to detect and map exposed bare ground within forests 
at 90 m resolution in central India. Tree cover and bare ground was identified from Planet Labs Very 
High-Resolution satellite data using a Random Forest classifier, resulting in a thematic land cover map 
with 83.00% overall accuracy (95% confidence interval: 61.25%–90.29%). The BGI is a ratio of bare 
ground to tree cover and was derived by aggregating the land cover. Results from field data indicate 
that the BGI serves as a proxy for intensity of forest use although open areas occur naturally. the BGI is 
an indicator of forest health and a baseline to monitor future changes to a tropical dry forest landscape 
at an unprecedented spatial scale.

Background & Summary
Forest cover changes impact global biodiversity and bio-geochemical cycles1 and livelihoods of forest-dependent 
people. Deforestation, the complete conversion of tree cover to another land cover, has been well-documented 
and quantified at regional and global scales using satellite imagery2. Technological developments in remote sens-
ing methods have improved the feasibility to detect more fine-scale changes to forests; for example, Very-High 
Resolution (VHR) satellite data has increased the spatial resolution and amount of data available to make useful 
interpretations of land cover. Despite advancements in remote sensing, the scientific literature lacks a standard 
definition and methods for detecting and quantifying subtle ‘within class’ changes, such as forest degradation.

Generally, forest degradation is a change in the structure, function, or composition of a forest without com-
plete loss of forest3. Soil health is included in different definitions of forest degradation because it is important 
for plant survival and growth. Additionally, lack of vegetation can lead to exposed soil (i.e. bare ground) within 
forests, which can alter soil moisture, water holding capacity, and nutrients4. Globally, the amount of exposed 
bare ground is increasing and from 2000 to 2012, an estimated 93,896 km2 of bare ground was gained5. The tran-
sition from tree cover to bare ground is caused by a complete loss of vegetation6, which may be due to resource 
extraction5.

The Central Indian Highlands Landscape (CIHL) spans across the Indian states of Madhya Pradesh, 
Maharashtra, and Chhattisgarh and is a heterogeneous mosaic of land covers that includes tree cover, exposed 
bare ground, water bodies, cropland, and villages and cities. The total geographic area is 273,136.6 km2. While 
there was only a slight decrease (1.7%) in total forest cover from 2003 to 2019 in the CIHL, there is evidence of 
nuanced changes to forest health; areas of open forest (canopy cover between 10% and 40%) and moderately 
dense forest (canopy cover between 40% and 70%), which made up a combined 83.0% of total forest in 2019, 
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decreased by 4.9% and 7.5%, respectively, while very dense forest (canopy cover of 70% or more) increased by 
30.5% (Supplementary Table 1)7,8.

Tropical Dry Forest (TDF) in the CIHL directly supports a high number of forest-dependent people (i.e. 
people living in and adjacent to forests and using the forest for livelihood needs and income generation), who 
largely belong to an officially recognized Scheduled Tribe or Scheduled Caste. Livestock rearing and agriculture 
are primary occupations. Livestock grazing and fire have altered tree species composition in the CIHL, which 
demonstrates the important long-term impacts associated with human use of the forest9. In addition, most 
forest-dependent households in the CIHL collect firewood for cooking fuel10. Another driver of forest degra-
dation in the CIHL is lantana (Lantana camara), an invasive species which most often invades forests in India 
where humans lop trees for wood or graze livestock11.

In order to quantify and map forest health in the CIHL we first produce a high spatial resolution (3 meter 
(m)) land cover dataset. Several machine learning algorithms exist to classify land covers. We compared four 
machine learning algorithms based on an accuracy assessment and used the random forests (RF) algorithm12 
to classify five land covers for the CIHL: tree cover, bare ground, water, cropland, and built environment. Tree 
cover was defined as woody vegetation excluding shrubs, bare ground was land without vegetation and lacking 
water (water) or man-made infrastructure (built environment), and cropland included fallow and active agricul-
ture land. Based on the classification, we develop an index (Bare Ground Index, BGI) to quantify exposed bare 
ground within forested regions at 90 m. We assess the BGI with ground observations of signs of degradation, 
which include the presence of an invasive species as well as signs of resource extraction and forest use. Land 
cover and BGI datasets of central India are freely available in the GeoTIFF and KML file formats, respectively; 
code used to classify land cover and the BGI in Google Earth Engine are also available13. To our knowledge, this 
was the first VHR dataset of CIHL.

The BGI is a structural indicator of forest health; it may be used as a baseline to monitor future changes to 
bare ground and tree cover in the CIHL and contribute towards an operational definition of forest degradation 
as one of several forest health indicators14. The BGI approach to understanding the status of forests in CIHL 
is distinct from previous efforts to map and quantify forests such as the Forest Survey of India because it inte-
grates land cover with tree cover along with land cover without vegetation (bare ground). In addition, the BGI 
is derived from VHR data. Our approach (Fig. 1) to mapping the BGI can be applied to additional forested 
landscapes.

Methods
Very-high resolution (VHR) satellite data. Planet’s PlanetScope surface reflectance in 4 bands (Red, 
Green, Blue, and Near-infrared [NIR]) at 3 m resolution was used to classify land cover in the CIHL. The four 
spectral bands correspond to the following wavelengths: Red (590 to 670 nm), Green (500 to 590 nm), Blue (455 
to 515 nm), and NIR (780 to 860 nm). We selected and downloaded images of the study area captured between 
February 28 and March 5 2018 using the Planet Explorer interface. Imagery during the winter season was selected 
to minimize cloud cover. Rainfall is highly seasonal and concentrated during the monsoon season (mid-June to 
September). Many tree species are deciduous and lose their leaves before the summer (March to mid-June). The 
coldest and driest season is from December to February. We aimed to capture bare ground exposed throughout 
the year because deciduous tree species maintain leaves in the winter. The images were mosaiced and clipped (i.e. 
pre-processed) into 233 tiles in ArcMap (Supplementary Fig. 1) and then uploaded into Google Earth Engine 
(GEE), which was the first step to testing algorithms, classifying land cover, and calculating the BGI.

Fig. 1 A flowchart outlining our approach to producing land cover and forest health indicator datasets in a 
Tropical Dry Forest using Very-High Resolution imagery.
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algorithm selection. Four of the Planet imagery tiles, covering the fieldwork region were classified using 
RF, Support Vector Machine15, Boosted Decision Tree with AdaBoost, adaptive boosting16, and Kohonen’s Self 
Organizing Map with k-means clustering17,18.

Random Forest is an ensemble classification algorithm based on a collection of decision trees; the starting 
node, or root of the tree, considers all training data. The first and subsequent splits separate the training data 
into subsets by using the input features (image bands). Support Vector Machine is a non-parametric classifier 
that creates a linear decision boundary for a dataset based on support vectors, a subset of the training sam-
ples. AdaBoost, short for adaptive boosting, is an ensemble method that sequentially combines the results of 
weak estimators, such as individual decision trees, to obtain an optimal classification16. Finally, Kohonen’s Self 
Organizing Map with k-means clustering is an unsupervised neural network that uses competitive learning 
to optimize a vector of weights, or “synaptic coefficients,” of a given set of neurons to minimize the distance 
between each input vector and its associated neuron17,18.

We assessed the performance of each ML algorithm based on the overall accuracy and the kappa index, and 
selected RF as the best performing algorithm (Table 1). A total of 18 models were run which differed in the algo-
rithm used and the number of samples in the training data (Supplementary Table 2) and algorithm parameters 
(Supplementary Tables 3–6). The final accuracy of all models was assessed using validation data from a stratified 
random sample of pixels which were distributed across the four test tiles. The randomization was stratified by 
class and by geography. There were 5,332 total pixels assessed with a minimum of 150 pixels per class. For geo-
graphic stratification, a uniform grid was established across the corridor and pixels were randomly spread across 
the cells within the grid.

Training data for each land cover class was selected as polygons using Google Earth imagery from February 
2018. Pixels within the polygons were extracted and assigned a land cover class. The same training data was used 
to train all three supervised algorithms. Likewise, the same validation was used to assess the accuracy of each 
algorithms’ classification output. Models were trained using the Scikit-Learn package within Python v2.7 and 
parameters varied. The ML models were then applied to the images on a Linux-based high-performance com-
puting cluster that processed each image in just over an hour.

Land cover classification. Each Planet tile was classified into five discrete land covers: trees, bare ground, 
water, cropland, and built environment (Fig. 2). Data is available in GeoTIFF format, with coordinate reference 
system (CRS) WGS 84 (EPSG: 32643 or 32644) (Supplementary Fig. 1), and includes 3 m resolution land cover 
information (class 1: water, class 2: tree, class 3 and 5: cropland, class 4: bare ground, class 6: built environment). 
Cropland represents an aggregation of fallow and active cropland. We identified trees and bare ground in order 
to derive the BGI and additional land cover types were chosen based on a field assessment completed within the 
fieldwork region in February 2018. Training data for each land cover class from the algorithm selection was used, 
and additional training data was selected as polygons using Google Earth imagery from February 2018 and col-
lected in the fieldwork region in February 2018 and June 2019. Pixels, 1,048,575 in total, within the polygons were 
extracted and assigned a land cover class (Table 2). The pixels were used as training data using a RF classifier, with 
10 decision trees as a parameter in the RF classifier, in Google Earth Engine’s Classifier package and was applied 
to Planet imagery at 3 m scale in GEE.

Bare ground index (BGI) classification. The BGI (Fig. 3) was calculated and mapped using land cover 
data from the VHR land cover classification. First, we aggregated the land cover to 90 m resolution to identify 
forest, defined as >10% tree cover19, and non-forest (<10% tree cover). Then, we calculated the BGI within forest.

Band
Tree cover, 
N = 498,049

Bare ground, 
N = 130,756

Cropland, 
N = 95,864

Water, 
N = 215,989

Built environment, 
N = 107,917

Red, Band 1 Mean (SD) 437.67 (52.21) 1077.70 (215.90) 476.97 (75.17) 552.80 (70.18) 824.59 (130.24)

Green, Band 2 Mean (SD) 544.14 (62.57) 1312.09 (258.84) 603.97 (82.94) 673.54 (100.03) 996.97 (157.97)

Blue, Band 3 Mean (SD) 580.90 (85.51) 1733.98 (378.31) 574.24 (133.72) 675.71 (112.33) 1236.04 (225.10)

Near-infrared, Band 4 Mean (SD) 1967.48 (265.02) 2828.61 (438.59) 3336.76 (756.40) 703.57 (127.33) 2171.17 (368.07)

Table 2. The mean and standard deviation (SD) of reflectance values of all the training data according to land 
cover type.

Classification type Algorithm Highest overall accuracy Kappa

Supervised

Random Forest 0.70* 0.61*

Support Vector Machine 0.44 0.32

Boosted Decision Tree (AdaBoost) 0.69 0.60

Unsupervised Kohonen’s Self Organizing Map 0.63 0.51

Table 1. Algorithm selection was accomplished by comparing the performance of four machine learning (ML) 
algorithms in the land cover classification of the fieldwork region of the Central Indian. Highlands Landscape. 
Four Planet tiles that were also used to produce the final landscape classification were classified and the Random 
Forest ML algorithm resulted in the highest overall accuracy and kappa index (indicated by a *).
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The BGI is a normalized index that ranges from −1.0 (all forest) to +0.8 (all bare ground). The maximum 
BGI value for a pixel is +0.8 because the BGI was only calculated within pixels that had 10% or greater tree 
cover. The BGI was derived from the land cover classification and calculated using the following equation:

= − +Bare Ground Index(BGI) (BareGround TreeCover )/(BareGround TreeCover ) (1)i i i i

where BGI is the Bare Ground Index (BGI) at 90 m resolution, and TreeCoveri and BareGroundi is the fraction 
of pixels within the 90 m pixel that were classified as “tree cover” and “bare ground,” respectively, in the land 
cover classification. The BGI classification was performed using the GEE Code Editor (www.code.earthengine.
google.com) and visualized in QGIS3.16. Figure 3 shows examples of the BGI. The BGI classification is available 
in KML format at CRS WGS 84 (EPSG: 4326) and includes attributes such as the BGI and fraction of pixels clas-
sified as bare ground and tree cover (Supplementary Table 7).

Data Records
Data are available for download from Science Data Bank at https://doi.org/10.57760/sciencedb.1042213. The 
‘Read_me’ PDF file describes the available land cover and BGI classification data files. The ‘code’ Word file 
includes the code used in the GEE Code Editor for the land cover and BGI classifications. The ‘StudyAreaZones’ 
shapefile shows the location of 233 tiles that cover the landscape; the tile number corresponds to the location 
and file name of available land cover (‘Classified_[tile number]’) and BGI (‘classified_bgi_[tile number]’) data.

Technical Validation
Land cover classification accuracy. In addition to assessing the accuracy of multiple ML algorithms during 
algorithm selection, we conducted an accuracy assessment of the final land cover dataset following an independent 
resampling approach (Table 3). Geographic randomization of reference data was achieved by generating ten ran-
dom points per tile (2,330 points) in R version 3.6 to ensure an unbiased reference data selection and distribution 
across the study area. Reference data was selected through visual interpretation of historical imagery in Google 
Earth Pro from the same season and year as Planet imagery by manually delineating homogeneous land cover poly-
gons around the ten randomly selected points. When historical imagery was not available, land cover from the clos-
est year prior to 2018 was interpreted. If imagery prior to 2018 was interpreted and land cover had changed between 
that time and the present at the randomly selected point, reference data was selected from a location nearest the 
random point and where land cover class remained between the historical data and post-2018 imagery. The accu-
racy of the land cover classification as compared to our reference data was calculated in R version 3.6 and resulted 
in 83.00% overall accuracy (95% confidence interval (CI): 61.25%–90.29%). The 95% CI for overall accuracy was 
calculated using the mean and standard error of user and producer accuracies (Eq. 2, Table 3). The user accuracy 
for tree and bare ground classes were 90.21% (95% CI: 89.87%–90.54%) and 52.19% (95% CI: 51.55%–52.83%), 

Fig. 2 Very-High Resolution (3 meter) land cover map of the Central Indian Highlands Landscape. The 
classification was completed in Google Earth Engine and visualized in QGIS3.16.
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respectively; the producer accuracy for tree and bare ground classes were 88.53% (95% CI: 88.16%–88.88%) and 
92.08% (95% CI: 91.61%–92.53%), respectively (Table 3). The 95% CI for each user and producer accuracy was 
calculated using Eq. 3, where x is the number of positive samples and N is the number of total samples (Table 3).

= ± . ×Overall accuracy CI Mean Standard Deviation95% 1 96
10 (2)

User or producer accuracy CI x
N

x N x
N

95% 1 96
(3)3= ± . × × −

Ground validation of the BGI. In February 2020, we visited 191 locations which varied from high to low 
BGI in the fieldwork region (Fig. 4). The season of data collection during ground validation coincided with the 

Fig. 3 The Bare Ground Index (BGI) was calculated and mapped in the Central Indian Highlands Landscape at 
90 meter (m) resolution. The BGI was derived from the land cover classification. First, forest (>10% tree cover 
within a 90 m pixel) and non-forest was identified. Then, the BGI, a normalized index that ranges from −1 to +0.8, 
was identified within forest. White indicates pixels where the BGI equals 0. Pixels that are pink have more bare 
ground as compared to tree cover, whereas pixels that are green have more tree cover as compared to bare ground.

Land cover 
classification

Independent samples

Row 
total

User’s 
accuracy (%)

User’s accuracy 95% 
CI (lower limit, 
upper limit)Tree cover Bare ground

Built 
environment Cropland Water

Tree cover 27220 17 56 2625 256 30174 90.21 89.87, 90.55

Bare ground 1357 12252 156 4716 4995 23476 52.19 51.55, 52.83

Built environment 1 208 2623 2655 7870 13357 19.64 18.96, 20.31

Cropland 1111 827 569 39984 9274 51765 77.24 76.88, 77.60

Water 1059 2 7 47 102446 103561 98.92 98.86, 98.99

Column total 30748 13306 3411 50027 124841 222333

Producer’s accuracy (%) 88.53 92.08 76.90 79.92 82.06

Producer’s accuracy 
95% CI (lower limit, 
upper limit)

88.17, 88.88 91.62, 92.54 75.48, 78.31 79.57, 80.28 81.85, 82.27

Table 3. Error matrix to assess the accuracy of the final land cover dataset. Reference data were polygons of a 
single land cover identified from 10 randomized points per tile; land cover was identified from historical Google 
Earth imagery. The overall accuracy was 83.00% (95% Confidence Interval (CI): 61.25%–90.29%).
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season that Planet satellite images were acquired, which was of particular importance to accommodate the sea-
sonality of the region. Signs of forest use and invasive species presence, including trails, cattle dung, and lopping, 
and lantana were detected within a 10 m radius of each ground validation location. These signs were visually 
assessed into 3 categories: (1) no sign of forest use or lantana plant, (2) 1 or 2 trees lopped, dung piles, trails, or 
lantana plants, and (3) 3 or more trees lopped, dung piles, trails, or lantana plants. The visual assessment was 
quantified as 0 (no signs), 1 (1 or 2 signs), or 2 (3 or greater signs). Then, we compared the BGI values of areas 
with minimal to maximal signs of forest use and lantana using a Wilcoxon rank sum test, which estimates the 
significance of the difference between non-normally distributed data. There were significantly higher amounts 
(p < 0.05) of cattle dung in places with higher values of BGI, or more bare ground than tree cover (Supplementary 
Fig. 2). There were no significant associations between the BGI and other signs of forest use.

Usage Notes
There is not a single remote sensing method that can measure forest health and degradation in all of its com-
plexity. Where changes to the forest cannot be measured through changes in tree cover alone, the BGI serves as 
a geospatial tool to quantify and explore one characteristic of forest health. The BGI can be a valuable metric to 
couple with other indicators of forest health to assess and understand forest degradation and contributes to a 
broader need to assess and estimate changes to forest health in TDFs around the world, forests which have been 
understudied as compared to tropical moist or wet forests20.

An increase in BGI is associated with increased presence of cattle dung, which we used as a proxy for intensity 
of cattle grazing. Stronger evidence that links the BGI directly to cattle grazing can be collected through further 
field research, such as direct observations of cattle grazing and a more thorough understanding of grazing pat-
terns through social surveys. Throughout our ground surveys of the BGI, signs of forest use were prevalent across 
a range of values of the BGI. Such activities may continue to impact forest health below the canopy where optical 
data is unable to detect. We advocate for the development of additional forest heath indicators using LiDAR and 

Fig. 4 Ground validation data was collected from the fieldwork region of the study area in February 2020 (a). 
Tree cover comes from Hansen et al.2. Trails were present in photos from ground validation locations (b) that 
illustrate exposed bare ground within forests which we aimed to identify and map with the Bare Ground Index 
(BGI). Signs of lopping were present in the far-left photo. Photos were taken with a Samsung Galaxy S10+.
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SAR data, with a specific emphasis on identifying indicators of degraded forest structure and composition driven 
by lantana invasion, firewood collection, and human and livestock movement through the forest.

Phenological and historical examinations of the BGI would provide further insight into structural changes 
to the forest. We carefully considered the dates of image acquisition and ground validation due to seasonality 
of vegetation (see Very-High Resolution (VHR) satellite data section). Although exposed bare ground occurs 
naturally in some locations in the study area as well of other TDFs, we measured tree cover during a season 
when a majority of the deciduous tree species had leaves. Historical VHR data may be used to detect long term 
persistence of, or changes to, the BGI. For example, transitions from tree cover to bare ground which would be 
indicated by increased BGI values. Future users of the BGI data and/or methods must consider inter and intra 
annual vegetation cycles before making interpretations and comparisons of the BGI.

It is not possible to compare the BGI of a forest across large geographies where forest types and vegetation 
differ. The BGI we produced was derived from five land cover classes; forms of vegetation such as shrubs or 
grasses were included in one of the classified land covers. For instance, lantana may have been classified under 
the tree cover class because we found greater amounts of lantana in areas with low BGI values compared to high 
BGI values and this difference approached significance (p = 0.07) (Figure S1). Grasses were likely classified in 
cropland because both can be seasonal land covers or have similar vegetation structures, although there was no 
technical validation to quantify the error. Bare ground was commonly misclassified as cropland or water, and 
built environment was largely misclassified as water.

We advocate that others adapt our methods to monitor the BGI in additional TDFs and derive the BGI from 
land cover classification with a larger number of vegetation classes. Deriving the BGI from a more distinctive 
tree cover class could help overcome potential issues of interpretation similar to the Normalized Difference 
Vegetation Index (NDVI), a measure of live vegetation cover, where the NDVI value is not limited to photosyn-
thetic activity from trees alone21. Finally, additional indicators of forest health in the CIHL can be developed that 
incorporate locally grounded values, knowledges, and needs22.

Code availability
The code classifying land cover from PlanetScope imagery and deriving the BGI was written in Google Earth 
Engine. The JavaScript language to classify land covers from Planetscope imagery and derive the BGI from the 
land cover is available as the ‘Code’ text file from Science Data Bank at https://doi.org/10.57760/sciencedb.10422/.
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