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Hydrological model-based 
streamflow reconstruction  
for Indian sub-continental river 
basins, 1951–2021
Dipesh Singh Chuphal  1 & Vimal Mishra  1,2 ✉

Streamflow is a vital component of the global water cycle. Long-term streamflow observations 
are required for water resources planning and management, hydroclimatic extremes analysis, and 
ecological assessment. However, long-term streamflow observations for the Indian-Subcontinental 
(ISC) river basins are lacking. Using meteorological observations, state-of-the-art hydrological model, 
and river routing model, we developed hydrological model-simulated monthly streamflow from 
1951–2021 for the ISC river basins. We used high-resolution vector-based routing model (mizuRoute) to 
generate streamflow at 9579 stream reaches in the sub-continental river basins. The model-simulated 
streamflow showed good performance against the observed flow with coefficient of determination 
(R2) and Nash-Sutcliffe efficiency (NSE) above 0.70 for more than 60% of the gauge stations. The 
dataset was used to examine the variability in low, average, and high flow across the streams. Long-
term changes in streamflow showed a significant decline in flow in the Ganga basin while an increase 
in the semi-arid western India and Indus basin. Long-term streamflow can be used for planning water 
management and climate change adaptation in the Indian sub-continent.

Background & Summary
Climate change has altered the water cycle by changing the frequency and magnitude of the hydrological var-
iables1,2. Understanding the changes in the water cycle is crucial for mapping the variability in the hydrolog-
ical variables (e.g. precipitation, evapotranspiration, and streamflow). Streamflow is a vital component of the 
hydrological cycle, which provides an integrated response of a catchment to meteorological and other basin 
characteristics. Streamflow serves as a key input for water resources management and hydropower projects. In 
addition, flow in the rivers is critical to support the human activities and ecosystems that depend on river sys-
tems3. Long-term streamflow assessment is essential to examine streamflow variability, climate change impacts, 
and environmental protection4–6. Streamflow observations at gauge are the most reliable; however, they are 
limited in spatial and temporal coverage7,8. In addition, streamflow observations are not available for the three 
major transboundary basins (e.g. Ganga, Indus, and Brahmaputra) as they are classified. While streamflow 
observations are limited, accurate streamflow estimation using statistical and hydrological modelling remains a 
challenge for the water resources community.

Streamflow in India is monitored by the Central Water Commission (CWC). Despite having about 1500 
streamflow monitoring stations in different river basins of India9, a number of streams across India remain 
unmonitored. Moreover, actively working monitoring stations with consistent data records do not cover smaller 
and remote streams. For instance, a majority of the streamflow monitoring sites provide 30–40 years of data, 
which is publicly available only for the peninsular river basins. To address this challenge, there is a need for 
solutions to offset the inconsistency and spatiotemporal limitations in streamflow measurements10. Hydrological 
modelling can supplement limited streamflow data in data-scarce ungauged regions11–13. However, the lack of 
high-quality input datasets, model parameterisation, and computational limits at high resolution may pose 
challenges for hydrological modelling14–16.
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Global river routing models have undergone significant advancements in recent years, with improvements 
in routing methods, development of finer-scale river networks, and incorporation of anthropogenic water with-
drawal17–21. Vector-based river routing models are preferred over grid-based models for their ability to provide 
a more realistic representation of river channels22–26. The vector-based routing models use vector river networks 
derived from high-resolution digital elevation models (DEMs). The finer-scale streamlines and other hydro-
logical features are better represented in a vector-based river network than traditional grid-based network24. 
Yamazaki et al.24 reported that the vector-based river network utilised in CaMa-Flood was 60% more efficient 
than the grid-based river network in simulating observed streamflow. We used a vector-based mizuRoute 
model to simulate observed streamflow across 9579 stream reaches (Fig. 1a) in eighteen sub-continental river 
basins (Fig. 1b). We considered the stream reaches of all stream orders (levels 1–8). The highest stream order for 
sub-continental river basins (level 8) is for Ganga, Indus, and Godavari river basins (Fig. 1).

Methods
Workflow. We developed model-simulated monthly streamflow for the sub-continental river basins using 
observed meteorological forcing (precipitation, maximum and minimum temperatures) and land surface hydro-
logical and river routing models for the 1951–2021 period. We obtained the daily observed meteorological forc-
ing at 0.25° from the India Meteorological Department (IMD) and Sheffield et al.27 database, which was used to 
drive the H08 land surface model28. The H08 model simulations were conducted at 0.25° resolution. The runoff 
and baseflow produced by the H08 model were then used as input to the vector-based river routing model (miz-
uRoute) to simulate streamflow for each stream of the river network. The simulated streamflow was compared 
against the observed streamflow at the gauge stations where streamflow observations are available. We performed 
a manual calibration of the H08 model by adjusting the four parameters29,30 (soil depth, tau, gamma, bulk coef-
ficient) to ensure reasonable agreement between the simulated and observed streamflow. We assessed the mod-
el’s performance using the Nash-Sutcliffe Efficiency31 (NSE) and coefficient of determination (R2) for monthly 
streamflow.

observed datasets. We obtained daily gridded precipitation data at 0.25° spatial resolution for the Indian 
region from IMD, covering the 1951–2021 period. The precipitation data was developed using daily measure-
ments collected by a well-distributed network of rain gauges located across India. The gridded precipitation 
captures the spatial heterogeneity of rainfall across the region32. Similarly, daily maximum and minimum tem-
peratures for the Indian region, spanning the period from 1951–2021, were obtained from IMD33 at a spatial 
resolution of 1°. The temperature data was developed using improved Shepard’s angular distance weighting algo-
rithm34. Additionally, to ensure consistency with the gridded precipitation data, daily temperature data from 
IMD was bi-linearly interpolated to 0.25° using the Synergy Mapping algorithm35 considering the lapse rate. The 
high-resolution precipitation and temperature data have been used for streamflow simulations that are compared 
against observed streamflow36–38. Since IMD’s observational network covers only the Indian mainland, the mete-
orological data for the region outside India was obtained from Sheffield et al.27 database, which is available at 0.25° 
spatial and daily temporal resolutions. The Sheffield et al.27 precipitation and temperature agree reasonably well 
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Fig. 1 Map of the Indian subcontinent river basins showing the location of selected streamflow gauging station 
(cyan circles) and selected river segments. River segments of different stream order are represented in different 
colour. The thick black lines enclose the major ISC river basins. The shaded colour in the background in the 
right panel represents the elevation of the that area in meters from the mean sea level.
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with the gridded observations from IMD for the Indian region and are consistent in terms of inter-annual varia-
bility and bias39,40. We compared Sheffield et al.27 and bias-corrected ERA5 (WFDE5)41 precipitation against IMD 
for the Indian region and observed similar performance of both datasets (Figure S1). However, the long-term 
availability of Sheffield et al.27 data (1901 onwards) made it suitable for this study.

The long-term observed monthly streamflow for the selected gauge stations was obtained from Central Water 
Commission (CWC) to evaluate the hydrological model’s performance. The gauge stations were chosen primar-
ily based on data availability and the influence of the upstream reservoirs40. Moreover, the observed stream-
flow for the three transboundary rivers (Brahmaputra, Ganga, and Indus) was obtained from the Centre for 
Sustainability and the Global Environment (SAGE) database. The availability of publicly accessible streamflow 
for transboundary rivers was limited, and the number of gauge stations available was lesser than the other river 
basins mainly located in peninsular India. The performance of hydrological models in the sub-continental river 
basins (especially for the transboundary basins) has also been carefully evaluated for satellite-based soil mois-
ture and evapotranspiration42. This is particularly important to ensure that the water budget in the transbound-
ary river basins is well simulated by the model in the absence of streamflow observations.

Hydrological and routing models. The H08 is a physically based large-scale water resources model, which 
generates the hydrological response in terms of daily runoff by employing the water and energy balance28,43. The 
H08 model is a single soil layer model that uses the bucket model approach for surface runoff estimation and 
the leaky bucket technique for subsurface runoff calculations44. The total runoff is divided into direct runoff and 
groundwater recharge, which is governed by the geology, relief, soil texture, and glacier indexes of the grid cell45. 
The H08 model uses the soil parameters from the Harmonized World Soil Database (HWSD) and land use data 
from the ISIMIP3a database46.

The mizuRoute is a vector-based river network routing tool developed by Mizukami et al.25 The vector-based 
river network and their corresponding hydrological response units (HRUs) input in the mizuRoute were 
taken from Hydrologic Derivatives for Modeling and Analysis (HDMA) database47. The vector layer (HRUs 
and streams) was derived from the 3 arc-seconds digital elevation model (DEM), comprising 9579 HRUs and 
streams distributed across the 18 major sub-continental river basins. The routing process involves the mapping 
of the gridded runoff to the river network HRUs by using the weightage-area runoff approach. The next steps 
involve hillslope routing, where a gamma-distribution-based unit-hydrograph is used to simulate the water flow 
on hillslopes, followed by river channel routing, which utilizes the kinematic wave tracking scheme to simulate 
water flow through the river channels.

Reconstruction of streamflow. We integrated the H08 hydrological model and the mizuRoute routing 
model to develop long-term streamflow. We forced the H08 model with the observed meteorological data availa-
ble at 0.25° spatial resolution. The simulations were carried out from 1951–2021 after stabilizing the initial spinup. 
The daily gridded runoff from the H08 model was routed along the vector-based river network by mizuRoute to 
produce spatially distributed discharge. Our hydrological modelling framework does not incorporate the role of 
human activities (i.e., irrigation, groundwater pumping, and reservoir storage) on streamflow. Human activities 
can considerably influence streamflow magnitude and variability48. However, the observational datasets to esti-
mate the role of human activities on streamflow variability are unavailable at appropriate temporal and spatial 
scales. We manually calibrated the combined modelling system for each basin by adjusting four input variables 
of the H08 model. The four variables include soil depth (meters), tau (days), gamma (dimensionless), and bulk 
transfer coefficient (parameter for estimating potential evaporation). The sensitivity analysis demonstrated that 
these four critical parameters significantly influence runoff generation49. The calibration parameters of H08 are 
discussed in detail in Dangar & Mishra29. We used different combinations of these parameters by systematically 
adjusting them within the defined range of each parameter (Table S1). The parameters employed for the 18 river 
basins within the Indian Subcontinent are available in supplementary information (Table S2). Since the model 
calibration is performed against the observed streamflow instead of naturalized streamflow, the calibrated param-
eters can account for the influence of human activities50. The model simulated streamflow was obtained at a daily 
time scale and for each stream considered in the river network. We estimated the mean monthly streamflow from 
the daily discharge of the mizuRoute for each stream.

We estimated standardised precipitation index (SPI) and standardised streamflow index (SSI) for the assess-
ment of drought conditions. SPI and SSI are dimensionless drought indices that are used to identify anomalous 
dry and wet periods based on precipitation and streamflow data51–53. We used the SPI and SSI values to represent 
the relationship between precipitation deficits and their impacts on streamflow. We employed the parametric 
method for estimating the SPI and SSI by fitting the gamma distribution to the data. The data is transformed into 
a standard normal distribution using the cumulative distribution function of the assumed gamma distribution. 
The positive values (greater than 0.5) of SPI and SSI indicate wetter conditions, while negative values (less than 
−0.5) indicate drier conditions. SPI and SSI between −0.5 and 0.5 indicate normal condition.

Data Records
Monthly streamflow dataset (m3/s) for the period 1951 to 2021 are available from Zenodo repository54 for all the 
selected streams in the sub-continental river basins. The mean annual and monsoon streamflow (m3/s), mean 
low and high flow (m3/s), and coefficient of variation (CV) in annual and monsoon streamflow were estimated 
for all the streams. Additionally, the SSI for the top four dry and wet months during the 1951–2021 period was 
estimated. Moreover, the data repository includes a list of stream reaches that exhibit a statistically significant 
trend in streamflow between 1951 and 2021. We assigned a unique identification (ID) to each stream segment 
of the sub-continental river basins. The segment ID (seg_id) corresponding to a stream can be found in the 
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attribute table of the stream’s shapefile (India_streams) available in the above directory. A readme file available 
at the above link provides detailed information on the format of the data.

Technical Validation
We compared the observed and simulated monthly streamflow for 85 streamflow gauge stations across India. We 
utilized approximately half of the period for which observed streamflow is available for the model calibration 
and the other half for the evaluation of the hydrological model. Thus, we considered about 10 to 15 years for 
the calibration and validation to ensure that the model captures temporal patterns and seasonality in stream-
flow. We evaluated the performance of the H08 model by estimating the Coefficient of Determination (R2) and 
Nash-Sutcliffe Efficiency31 (NSE) at all gauge stations. R2 indicates how well the model explains the variation in 
the observed streamflow, while NSE compares the model-simulated streamflow to the observed flow, taking into 
account the variability in streamflow. The H08 model performed well (satisfactory R2 and NSE) in simulating 
streamflow for the sub-continental river basins (Figs. 2, 3). The majority of the stations show NSE and R2 more 
than 0.60 for both calibration and evaluation (Table S3). The average R2 and NSE values for the calibration were 
0.78 and 0.69, while for evaluation were 0.76 and 0.67, respectively. More than 60% of the selected stations 
show R2 and NSE greater than 0.70 during the model calibration and validation. However, a few stations show 
NSE and R2 less than 0.50. The H08 model exhibited relatively good performance (NSE and R2 > 0.7) at gauge 
stations in the Narmada, Mahi, Tapi, Mahanadi, Ganga, and Brahmaputra river basins. In contrast, the model 
performance is relatively weaker (NSE and R2 < 0.5) at locations in Cauvery, Sabarmati, and Indus river basins, 
which can be attributed to the quality of meteorological and streamflow observations or other input parameters 
related to soil and vegetation30,37. The number of selected gauge stations in Indus, Ganga, and Brahmaputra river 
basins was less than others due to confidentiality in the publicly available streamflow data of the transboundary 
river basins.

65° 70° 75° 80° 85° 90° 95°

10°

15°

20°

25°

30°

35°

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

65° 70° 75° 80° 85° 90° 95°

10°

15°

20°

25°

30°

0

5

10

15

20

25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 2 Calibration of model against monthly streamflow. (a,b) Spatial distribution of R2 and NSE value between 
observed and simulated monthly streamflow for selected gauge stations. (c,d) Distribution of stations based on 
R2 and NSE values during model calibration.
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We also evaluated the model’s performance (R2 and NSE) for the daily streamflow at 80 streamflow gauge 
stations across India (Figure S2, Table S4). Since we have calibrated the model for the monthly streamflow, the 
model’s performance was reduced at a few stations while evaluating for the daily streamflow. The average R2 and 
NSE during calibration and validation of the model for daily streamflow was satisfactory (more than 0.50). We 
next evaluated the performance of trends in simulated mean monsoon streamflow against observed streamflow 
during the period 1981–2010 for six streamflow gauge stations (that had long-term observations without con-
siderable missing data) across India (Figure S3). We selected a 30-year common period (1981–2010) for each 
station based on the observed streamflow availability. Both the observed and simulated flow are consistent for 
the long-term trends for 1981–2010 period. The simulated streamflow effectively captures the interannual var-
iability in the observed streamflow (Figure S3). The model performed well for most stations in different river 
basins, including the Narmada, Brahmani, and Mahi river basins (Figure S3a–c).

We utilised the hydrological model simulated monthly streamflow data to estimate the mean annual and 
mean monsoon flow in the stream reaches of sub-continental river basins during 1951–2021 (Fig. 4). The 
stream reaches with a mean flow of less than 50 m3/s were depicted in grey (Fig. 4a,b). The rivers Indus, Ganga, 
Brahmaputra, Mahanadi, and Godavari have higher mean annual and monsoon flow (greater than 2000 m3/s). 
Additionally, Narmada and Krishna exhibit a mean monsoon season flow greater than 2000 m3/s, while their 
mean annual flow is less than 1000 m3/s. We use log transformation (base 10) to reduce the variability in mean 
flow of the small and large streams. The log-transformed mean annual flow in sub-continental rivers varies 
between 0 and 4.60 (Fig. 4c). At the same time, the mean monsoon flow varies between 0.0 and 4.90 (Fig. 4d). 
Most of the stream reaches have a log-transformed mean annual and mean monsoon flow less than 1.84 and 
1.96, respectively. The coefficient of variation (CV) in mean annual and mean monsoon flow for the stream 
reaches having flow of more than 50 m3/s ranges between 0 and 4 (Figure S4). The CV for annual flow is con-
sistently higher than that of monsoon flow across all stream reaches. The rivers Indus, Ganga, and Brahmaputra 
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Fig. 3 Validation of model against monthly streamflow. (a,b) Spatial distribution of R2 and NSE value between 
observed and simulated monthly streamflow for selected gauge stations. (c,d) Distribution of stations based on 
R2 and NSE values during model validation.
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have the minimum CV in streamflow due to the year-round contribution of glacier and snow melt water. 
Moreover, the CV for stream reaches in the Brahmaputra river basin is lower than that of other river basins, 
indicating that the Brahmaputra basin has the most consistent streamflow. The analysis can be used in decision 
and policy-making for rivers that have higher variability in streamflow availability over the year.

We also estimated the mean low flow and high flow for the stream reaches of the sub-continental river basins 
(Fig. 5). We calculated the mean low flow and high flow by averaging the streamflow below the 5th percentile and 
above the 95th percentile thresholds of the time series (1951–2021), respectively. The mean low flow and high 
flow have similar spatial variation across all the streams but differ in absolute magnitude (Fig. 5a,b). The mean 
low flow transformed in the log scale ranges between −0.8 and 3.9 (Fig. 5c). In contrast, the mean high flow 
transformed in the log10 scale varies between 0.52 and 5.72 (Fig. 5d). Overall, the log-transformed flow value is 
less than 1.55 and 3.12 for mean low flow and mean high flow, respectively.

Using the simulated streamflow, we evaluated the stream reaches that have a statistically significant trend 
in streamflow during 1951–2021 (Fig. 6a). We used the modified Mann-Kendall trend analysis test to evalu-
ate the streams having statistically significant trends in streamflow55,56. We find that more than 5000 stream 
reaches show a statistically significant trend in streamflow (Fig. 6c). Stream reaches in the Mahanadi, Narmada, 
Godavari, and West Coast river basins do not exhibit a considerable trend in streamflow, while the Indus, Ganga, 
and Sabarmati river basins experienced substantial changes in streamflow (Fig. 6a). The percentage decrease 
in streamflow is the highest for stream reaches in the Ganga river basins. In contrast, the percentage increase 
in streamflow is most prominent for stream reaches in the Sabarmati and Indus river basins. We estimated 
changes (%) in streamflow for all the stream reaches, including both significant and insignificant streamflow 
trends (Fig. 6b), and their distribution based on percentage flow change (Fig. 6d). Streamflow change for most 
of the stream reaches (>5000 streams) varies between −4% to 15% (Fig. 6d). However, on average, stream 
reaches in the sub-continental river basins experienced an overall increase in streamflow during recent decades 
(1951–2021).

Fig. 4 Long-term historical (1951–2021) mean flow in Indian subcontinent river basins. (a,b) Mean annual and 
monsoon historical flow (m3/s) of selected ISC river segments. Grey colour represents the river segments having 
flow less than 50 m3/s. (c,d) Distribution of streams based on mean annual and monsoon flow. The x-axis is 
made on a logarithmic scale (log10 scale).
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We next estimated SSI for each stream reach for the top four dry and wet monsoon months between 1951 
and 2021 (Figures S5, S6). We determined the top four driest and wettest months based on SPI calculated using 
monthly average precipitation data for the Indian Subcontinent. The four driest monsoon months for India were 
July 2002, June 2009, July 1972, and June 2014. SSI value ranges between −4.0 to −0.5 for the majority of the 
stream reaches during all four months (Figure S5e–h). Similarly, the four wettest monsoon months for India 
were July 1988, August 2020, September 2019, and September 1983. The SSI value for the above four months 
varies between −0.5 to 6.0 (Figure S6e,–h).

The model-simulated streamflow can provide valuable insights for optimizing the capacity and functionality 
of dams and reservoirs. We examined the monthly flow duration curves at upstream of four prominent hydro-
power dams in India: Bhakra, Hirakud, Sardar Sarovar, and Mettur (Fig. 7). We strategically selected these dams 
from different regions of India, representing the northern, eastern, western, and southern parts of the country, 
respectively. Our analysis of the monthly flow duration curves for the selected dams revealed intriguing find-
ings. The monthly flow for Bhakra, Sardar Sarovar, and Mettur was less than 400 m3/s for more than 50% of the 
time. In contrast, the Hirakud dam exhibited a 50% flow rate of around 750 m3/s. Furthermore, the high-flow 
events (flow available for less than 5% of the time) ranges between 500 m3/s to 2500 m3/s for Mettur and 1000 
m3/s to 2700 m3/s for Bhakra (Fig. 7a,d). In the case of Hirakud, high-flow varies between 6000 m3/s and 12000 
m3/s (Fig. 7b). Notably, Sardar Sarovar exhibited the widest range of high-flow values (upto 13500 m3/s), while 
it demonstrated the sharp dip at the low-flow end of the flow duration curve (Fig. 7c), which can be attributed 
to increased atmospheric demands at higher temperature during dry months. Flow duration curves for Sardar 
Sarovar and Mettur demonstrated a steep slope at the high-flow end, indicating rapid runoff attributed to sub-
stantial rainfall events during the wet months. Conversely, the curve for Bhakra exhibited a more gradual slope, 
indicating a significant contribution of the snowmelt water (Fig. 7a). These dams play a critical role in India’s 

Fig. 5 Long-term historical (1951–2021) mean low and high flow in ISC river basins. (a) Mean low flow  
(m3/s) of selected ISC river segments calculated as the average of streamflow values less than 5th percentile of  
the time series (1951–2021). Grey colour represents the river segments having flow less than 10 m3/s. (b) Mean 
high flow (m3/s) of selected ISC river segments calculated as the average of streamflow values higher than  
95th percentile of the time series (1951–2021). Grey colour represents the river segments having flow less 
than 500 m3/s. (c) & (d) Distribution of streams based on mean low and high flow. The x-axis is made on a 
logarithmic scale (log10 scale).

https://doi.org/10.1038/s41597-023-02618-w


8Scientific Data |          (2023) 10:717  | https://doi.org/10.1038/s41597-023-02618-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

hydropower generation and water resource management, and the analysis of the monthly flow duration curves 
provides valuable insights into the hydrological characteristics of these dams. The simulated streamflow can 
enhance the understanding of flow patterns and water availability dynamics of these dams, aiding in informed 
decision-making for efficient hydropower generation and water resource management strategies.

Usage Notes
Streamflow variability in the sub-continental river basins has increased during recent decades. Long-term 
consistent streamflow is vital for flood and drought monitoring, ecological assessment, and water resources 
management. We simulated streamflow using physically based hydrological models (H08-mizuRoute). We 
used high-resolution vector-based river routing model (mizuRoute) to simulate streamflow for more than 
9500 stream reaches in the sub-continental river basins. The model simulated streamflow was evaluated against 
observed monthly streamflow at 85 stream gauge stations across India. The validation ensures that the data 
accurately represents the temporal variability and seasonality of streamflow. The long-term streamflow data 
can be used to assess the hydrologic alteration and its ecological impacts. The model simulated streamflow can 
also be used to identify stream reaches that are more susceptible to hydroclimatic extremes, such as floods and 
droughts, which can improve local flood and drought awareness and redefine regional policies.

While we have evaluated the simulated streamflow data against observed streamflow, there are limitations. 
For instance, we considered Sheffield et al.27 precipitation and temperature for the region outside of India. 
However, the data may have a bias in the mountainous regions due to the limited number of available mete-
orological stations. Moreover, the monthly temporal resolution of streamflow could potentially pose limita-
tions for certain applications that require daily data, like capturing rapid changes in streamflow during floods. 
Furthermore, we did not consider reservoir operations and anthropogenic withdrawal of water from rivers while 
calibrating the model. Despite these limitations, the overall performance of the model simulated streamflow was 
satisfactory (average R2 and NSE > 0.67). The hydrological model simulated streamflow can also support climate 
change adaptation by assessing the historical changes in streamflow for the long-term sustainability of water 

Fig. 6 Percentage change in monthly flow between 1951 and 2021 for ISC river basins. (a,b) Percentage flow 
change for streams showing statistically significant trend based on Mann Kendall trend analysis test and for 
overall river segments. (c,d) Distribution of river segments based on percentage flow change for statistically 
significant and overall streams.
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resources. The data can facilitate environmental assessments, enabling the evaluation of the ecological health of 
rivers and their surrounding ecosystems. Additionally, the dataset can assist in the assessment of river-induced 
greenhouse gas contributions to the global carbon budget.

Code availability
Publicly available source codes and manuals for H08 and mizuRoute were downloaded from http://h08.nies.go.jp  
and https://github.com/ESCOMP/mizuRoute. Model parameters detail for each basin is available in the 
supplement information. Data processing and plotting were performed using MATLAB and Generic Mapping 
Tool 6 (GMT 6), whereas QGIS 3.22 was utilized for geospatial analysis. The MATLAB codes used for data 
processing can be accessed through the GitHub directory (https://github.com/DIPESHSINGHCHUPHAL/
Streamflow-India).
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