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Europe PMC annotated full-text 
corpus for gene/proteins, diseases 
and organisms
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Named entity recognition (NER) is a widely used text-mining and natural language processing (NLP) 
subtask. In recent years, deep learning methods have superseded traditional dictionary- and rule-
based NER approaches. a high-quality dataset is essential to fully leverage recent deep learning 
advancements. While several gold-standard corpora for biomedical entities in abstracts exist, only a 
few are based on full-text research articles. the Europe PMC literature database routinely annotates 
Gene/Proteins, Diseases, and Organisms entities. to transition this pipeline from a dictionary-based to 
a machine learning-based approach, we have developed a human-annotated full-text corpus for these 
entities, comprising 300 full-text open-access research articles. Over 72,000 mentions of biomedical 
concepts have been identified within approximately 114,000 sentences. This article describes the corpus 
and details how to access and reuse this open community resource.

Background & Summary
Europe PubMed Central (Europe PMC)1 is a repository of life science research articles, which includes 
peer-reviewed full-text research articles, abstracts, and preprints–all freely available for use via the website 
(https://europepmc.org). Europe PMC houses over 33.3 million abstracts and 8.7 million full-text articles. Since 
2020, it has added over 1.7 million new articles annually. The rapid growth in the number of publications within 
the biological research space makes it challenging and time-consuming to track research trends and assimilate 
knowledge. Thanks to the digitization of large portions of biological literature and advancements in natural 
language processing (NLP) and machine learning (ML), it is now possible to build sophisticated tools and the 
necessary infrastructure to process research articles. This allows for the extraction of biological entities, con-
cepts, and relationships in a scalable manner.

Harnessing the NLP techniques, tools such as LitSuggest2 and PubTator3 are being used in biomedical lit-
erature curation4,5, recommending relevant biomedical literature, or automatically annotating biomedical 
concepts6, such as genes and mutations, in PubMed abstracts and PubMed Central (PMC) full-text articles. 
Furthermore, in a step towards FAIRification7–9 and sharing text-mined outputs across the scientific commu-
nity, Europe PMC has established a community platform to capitalise on the advances made. Annotations from 
various text-mining groups are consolidated and made available via open APIs and a web application called 
SciLite10, which highlights the annotations on the Europe PMC’s website. Several other biological resources 
including STRING11 and neXtProt12 have embedded NLP processes in their data workflows to serve their user 
community better. Developement of such NLP tools require the availability of open data (full-text corpora). 
Thanks to the biomedical text mining community, which has endorsed open data, resources such as PubMed, 
PubMed Central and Europe PMC provide open access abstracts and full-text for researchers to download. The 
COVID-19 Open Research Dataset Challenge (CORD-19 dataset)13 is a recent example of using text-mining 
to tackle specific scientific questions. This dataset consists of full-text scientific articles about COVID-19 and 
related coronaviruses. Additionally, BioC14 provides a subset of those full-text articles in a simple BioC format, 
which can reduce the efforts of text processing. Biomedical datasets, such as those from BioASQ15 and BioNLP16 
shared tasks, enable the development and testing of novel ideas, including deep learning methodologies. With 
the development of such biomedical datasets, great improvements in biomedical text mining systems have been 

1Literature Services, EMBL-EBI, Wellcome Trust Genome Campus, Cambridge, UK. 2Open Targets, Wellcome 
Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. 3These authors contributed equally: Xiao Yang, Shyamasree 
Saha. ✉e-mail: stirunag@ebi.ac.uk

Data DESCRIPtOR

OPEN

https://doi.org/10.1038/s41597-023-02617-x
http://orcid.org/0000-0002-9064-1965
https://europepmc.org
mailto:stirunag@ebi.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-02617-x&domain=pdf


2Scientific Data |          (2023) 10:722  | https://doi.org/10.1038/s41597-023-02617-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

made. From the results of recent BioASQ challenges (2013 to 2019), the performance of cutting-edge systems 
keep advancing for tasks such as large-scale semantic indexing and question answering (QA)17. While corpora 
without annotations are good for learning semantics, text-mining tools trained on human-annotated corpora 
outperform those trained on non-annotated ones. Therefore, open-source gold-standard datasets are crucial 
for improving biomedical text mining systems. In particular, transformer-based deep learning models, such as 
BERT18 and GPT19, have show that pre-training language models with large text corpora improves performance 
on downstream applications. However, compared to the text corpora, gold-standard biomedical datasets with 
human annotations are expensive to obtain, because they require domain experts to spend significant amounts 
of time creating accurate annotations. Therefore, generating human-annotated biomedical datasets is valuable 
for biomedical text mining, because once they are available, machine learning algorithms have an accurate start-
ing point to learn from.

There have been multiple projects that have produced gold standard corpora, such as BioCreative V CDR 
corpus (BC5CDR)20, BC2GM21, Bioinfer22, S80023, GAD24, EUADR25, miRNA-test corpus26, NCBI-disease cor-
pus27, and BioASQ15. In addition to these, other efforts have generated gold standard corpora from full-text 
articles, such as Linnaeus28, AnatEM29, and the Colorado Richly Annotated Full-Text Corpus (CRAFT)30. The 
Europe PMC Annotations (EPMCAs) corpus is also a full-text-based corpus, similar to CRAFT, Linnaeus, and 
AnatEM.

Specifically, the CRAFT Corpus is a human-annotated biomedical dataset that is widely used by researchers 
to develop and evaluate novel text mining algorithms. It comprises 97 full-text, open-access biomedical journal 
articles that include both semantic and syntactic annotations, as well as coreference annotations and 10 biomed-
ical concepts. This establishes it as an important gold-standard dataset in the biomedical domain.

Recent publications31,32 have demonstrated that sophisticated systems can be developed using annotated bio-
medical datasets. Notably, as pre-trained models like BERT18 have gained traction in the biomedical field, many 
systems have been created by training models on multiple biomedical datasets. For example, the BioBert model33 
has been trained and evaluated on multiple datasets for downstream tasks such as Named Entity Recognition, 
Relation Extraction, and Question Answering.

This study presents the Europe PMC Annotated Full-text Corpus (EPMCA), a collection of 300 research 
articles from the Europe PMC Open Access subset. The selected articles have been human annotated to indicate 
mentions of three biomedical concepts; Gene/Protein, Disease, and Organism. Since all annotations are created 
based on guidelines, this helped the human annotators select the correct text span and type of annotation. Three 
additional articles that were used in a pilot study are also published with this study. The size of the EPMCA (in 
terms of the number of full-text articles annotated)is among the largest human-annotated biomedical corpora. 
We believe that the high-quality gold-standard annotations of the EPMCA corpus will be an important addition 
to other existing datasets and provide significant benefits for biomedical text mining..

Methods
The overall strategy for the Full-text annotation workflow is presented in Fig. 1. Out of a million Open Access 
(OA) full-text articles archived on the 31st of August 2018 in Europe PMC, a subset of 300 articles was selected 
as the gold standard for curation. This section presents the methods we employed to stratify those articles and 
select the representative gold-standard set, followed by the annotation guidelines and article annotation.

the open access article set in europe pmc and cc-by-licenced articles. Because a primary outcome 
of this work was to create a training set for anyone to use, the first constraint applied was to use Open Access arti-
cles that have a parsable/machine-readable (available in the JATS XML standard, information on which can be 
obtained at https://jats.nlm.nih.gov under CC-BY licence. We used the archived open access set from 31st August 
2018 (v.2018.09) [Available at http://europepmc.org/ftp/archive] as a basis, which consists of 2,113,557 articles, of 
which 991,529 articles had a parsable CC-BY licence.

Body size. Using the 991,529 CC-BY articles as a starting point, we measured the size of the full-text arti-
cle < BODY > section and grouped them into bins of 10 KB size to find the most representative articles. More 
than 50% of articles were in the range of 25–5 KB (Fig. 2) that were, rich in entities. Using this size range further 
constrained the pool to 503,950 articles. Constraining the article size range also meant that the annotators would 
be provided with a more consistent article set as presumably articles falling outside this range are likely to not 
be research articles.

Entity frequency distribution. The pool of 503,950 “standard-sized” articles were further stratified based 
on the term frequency of the three entities of interest, namely; Gene/Proteins, Diseases, and Organisms. Using 
the current Europe PMC dictionary-based annotation pipeline to annotate the articles, we established the range 
of entity frequencies in the articles (Fig. 3) and created high (H), medium (M), and low (L) frequency tertiles by 
splitting them at the 33 and the 66 percentiles (Table 1). This resulted in 27 bins of articles from these tertiles of 
three entities (33) (Fig. 4). All the articles in the Low-Low-Low bin contain a small number or no mentions of any 
of the entities but represent the largest number of articles (42,261 articles, more than 8% of total articles). Because 
these would add little value to the training dataset, this bin was excluded from the article selection process. There 
were 46,1689 articles in the remaining 26 bins. We then randomly selected 300 articles in total across all 26 bins in 
proportion to the number of articles in each bin (2–20 articles from a bin in real terms, Fig. 5). For example, only 
two articles were selected from the Low Disease, High Gene/Protein, Low Organism bin.

Ontology/terminology selection. The Europe PMC annotation pipeline currently uses a dictionary-based 
approach to tag Gene/Proteins, Diseases, and Organisms1. The term dictionaries are created from UniProt5, 
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UMLS34, and the NCBI taxonomy35 for the Gene/Proteins, Diseases and Organisms, respectively. The pipeline 
annotates articles using predefined patterns and regular expressions to accommodate term variations from the 
dictionaries.

Gene/Protein. The Gene/Proteins dictionary is periodically generated from the SwissProt36 knowledgebase 
from the 2014 release. SwissProt is a manually reviewed resource of proteins and genes, and the knowledgebase 
is released in multiple formats. The entries in the Uniprot knowledgebase are structured to make it both human 
and machine-readable (for more details please follow https://www.uniprot.org/docs/userman.htm#convent). 
For tagging Gene/Proteins in the Europe PMC annotations workflow, the DAT file of the knowledgebase release 
is parsed, generating a Gene/Proteins dictionary from the gene name lines and their aliases (the gene name 
lines are denoted by starting the line with GN tag according to the knowledgebase data structure). The UniProt 
knowledgebase release, dated 2014, was used to generate the Gene/Proteins dictionary. In addition, a list of com-
mon English words (we call it a common-stop list) is used to avoid predominantly false-positive identifications, 
for example, ‘CAN’ as a gene name.

~6m Full-text

OA & 
CC-By

~1m Full-text ~0.5m Full-text

300 Full-text

25 - 50 KB
Entity 
Distribution

Inter-annotator 
agreement Annotations 

annotatoInter a

AnnotatorsUpdate guidelines
if necessary

Annotations added/corrected

Fig. 1 The illustration of the full-text annotation workflow. There were approximately six million full-text 
articles in the Europe PMC repository archived on the 31st of August, 2018 (v2018.09) of which approximately 
one million were Open Access (OA) with a CC-BY licence. Thereafter, to have articles specific to research, 
size between 25 and 50 KB were selected, which resulted in a collection of approximately 0.5 million articles. 
This was followed by sorting the articles with the entity mentions into low, medium, and high bins for each 
entity type, i.e. Gene/Protein, Disease, and Organisms. Finally, 300 articles were selected that represented the 
aforementioned entity types for each article. The workflow included working with the annotators iteratively to 
improve the annotation guidelines.

Fig. 2 Distribution of body sizes of full-text articles with a CC-BY licence on the 31st August 2018 (v.2018.09) 
frozen set.
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Fig. 3 Distribution of entity mentions (Gene, Disease and Organism) per full-text article from the candidate 
pool. For the convenience of the display, we have used a threshold of a maximum of 300 mentions per article 
per entity type for this figure, although the maximum was 2408 for Gene/Protein, 678 for Disease, and 3108 
for Organism. This figure shows that, on average, Disease mentions are almost half of Gene/Protein mentions 
per article. This distribution helped us to set entity count boundaries for the article stratification required to 
select the final corpus. The horizontal lines within the coloured boxes typically represent the median of the 
data, also known as Q2 or the 50th percentile. The heights of the boxes indicate the Interquartile Range (IQR), 
which is the difference between the third quartile (Q3, or the 75th percentile) and the first quartile (Q1, or the 
25th percentile). The horizontal lines outside of the boxes are “whiskers,” which indicate the range of the data. 
Specifically, the lower whisker usually extends to the smallest data value within 1.5 * IQR from Q1, and the 
upper whisker extends to the largest data value within 1.5 * IQR from Q3. The values outside the whiskers are 
those individual data points that fall outside of the range defined by 1.5 * Interquartile Range (IQR) above the 
third quartile (Q3) or below the first quartile (Q1). These are outliers, that are significantly different from the 
majority of the data.

Entity

Low frequency of 
occurrence count (L)

Medium frequency of 
occurrence count (M)

High frequency of 
occurrence count (H)

Lower Upper Lower Upper Lower Upper

Genes/Proteins 0 11 12 80 81 2408

Organisms 0 9 10 57 58 3108

Diseases 0 4 5 32 33 678

Table 1. The abundance of key entities is used to establish tertile boundaries.

Fig. 4 Distribution of articles based on the entity frequency. Here L, M, and H represent low frequency, 
medium frequency, and high-frequency tertile. The order of the label is Disease, Gene/Protein and Organism. 
For example, H-L-H represents articles that are high frequency for Disease and Organism and low frequency for 
Gene/Protein.
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Disease. UMLS Diseases terms are used to create the Diseases dictionary. In UMLS, there are twelve differ-
ent diseases/disorders (DISO) groups; four generate the Diseases dictionary because the other groups mainly 
comprise phenotypes and symptoms. The four DISO groups used are Disease or Syndrome (T047), Mental or 
Behavioural Dysfunction (T048), Neoplastic Process (T191), and Pathologic Function (T046). The ULMS ver-
sion, dated 2015, was used to generate the Diseases dictionary.

Organism. The Organisms dictionary is based on the NCBI Taxonomy. Specific fields, such as acronym, 
BLAST name, GenBank common name and GenBank synonym, are used to populate the dictionary. The NCBI 
taxonomy version dated 2015 was used to generate the Organisms dictionary.

Creation of annotation guidelines. A detailed concept annotation guideline is essential for developing 
a good corpus and resolving annotation disputes (Supplementary information file: Europe PMC Annotation 
Guidelines). The CRAFT corpus provides comprehensive annotation guidelines37, explaining both the text spans 
to be annotated and the assignment of entity types. We based our annotation guidelines on those of the CRAFT 
corpus and expanded them to meet our specific requirements. A list of examples was included in the guidelines to 
assist curators. Before the commencement of the annotation work, a pilot study was conducted, focusing on the 
annotation of three articles. The outcomes of the pilot study were fourfold:

 1. The pilot study helped curators estimate the workload, thereby setting project timelines;
 2. Initial feedback was used to improve the annotation guidelines;
 3. The curators familiarized themselves with both the task and the annotation tools;
 4. The pilot study established the communication channels required to manage the project.

article annotation. We worked with Molecular Connections (https://molecularconnections.com), India, 
to employ three PhD-level domain experts to annotate the corpus. We used a triple-anonymous approach to 
annotation; three annotators annotated the same articles independently to ensure annotation quality and validate 
inter-annotation agreement. Annotation discrepancies were resolved by the majority vote to achieve/ensure the 
best quality annotation. That is, at least two annotators must agree on the annotation boundary and the entity type 
of the entity terms to pass the acceptance threshold. This maximised the total number of annotations. For exam-
ple, if one annotator misses a term, it will likely be picked by the two other annotators. The triple-anonymous 
method made it possible to conveniently assess the inter-annotator agreements to ensure the annotation quality.

We sent the articles to the annotators in four batches. Between each batch, annotation quality and 
inter-annotator agreement were evaluated, and any confusion or quality issues were addressed. If necessary, 
updates to the annotation guidelines were made after each batch. To assess the quality of the annotations, the 
first batch consisted of only 30 articles, after which the number of articles per batch increased. This approach 
allowed us to resolve annotation discrepancies along the way and refine the annotator guidelines. Table 2 shows 
a detailed breakdown of these batches.

Annotators were instructed to view the articles on the Europe PMC website, where the existing 
dictionary-based annotations from Europe PMC text-mining pipeline are displayed using Scilite. The Hypothes.is 

Fig. 5 Number of articles selected from each bin for inclusion in the gold-standard corpus of 300 articles. L, M, 
and H represent low frequency, medium frequency, and high-frequency tertile.

Annotator1 Annotator2 Annotator3 Total PMC count

Batch1 1583 1587 1587 4757 30

Batch2 4745 4727 4733 14205 70

Batch3 5604 5610 5611 16825 80

Batch4 11932 11924 11931 36787 180

Table 2. Batch-wise annotation breakdown of articles and annotations.

https://doi.org/10.1038/s41597-023-02617-x
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annotation tool works as a layer on top of the Europe PMC website, allowing the curators/annotators to visualise 
and curate existing annotations and newly identified entity terms (Fig. 6). We used Hypothes.is platform for anno-
tations over other platforms such as BRAT38 and GATE39 as they require pre-processing of articles, for example, 
converting them to text files. Moreover, Hypothes.is provided easy access to Europe PMC website. We developed a 
set of standard schemes of tags for the curators to use and therefore classify the existing SciLite annotations.

The standard terms/tags were used as follows (Fig. 7 shows an example of the use of these tags):

 1. Correctness of annotation. Allows the annotators to verify existing Europe PMC annotations as Wrong 
Type (WT), Wrong Span (WS), Missing (MIS), or Correct (CRT).

Fig. 6 A screenshot of the Hypothes.is annotation platform overlayed on top of the Europe PMC website. 
Highlighted in yellow are existing dictionary-based text-mined terms. After selecting a term (1), users need to 
click the ‘Annotate’ button (2) to annotate the term. It will pop up the Hypothes.is annotation window on the 
right-hand side, allowing the annotators to add the annotation (3) and then save it using the ‘Post to Public’ 
button (4). Please refer to the supplementary information (Section ‘How to use the interface’ under “demo to 
molecular connections”) and Hypothes.is website for a detailed user manual.

Fig. 7 Example of human annotation correcting dictionary-based Europe PMC annotation using the tag set 
defined for this annotation task. Disease takes higher priority over organism type, while gene/protein tags take 
precedence over disease tags. In this figure, WT_OG is incorrectly labeled as the organism type for the entity 
“wheat.” Additionally, “rus” is inaccurately spanned for the disease tag (WS_DS). Therefore, the annotators have 
labeled “Wheat stripe rust” as ‘WT_OG, DS‘ to indicate that the correct tag should be DS, not OG. In another 
scenario, “Puccinia striiformis f. sp. tritici” is identified as MIS_OG indicating a missing organism tag from the 
the Europe PMC’s pre-annotations system.

https://doi.org/10.1038/s41597-023-02617-x
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 2. Entity type. Three symbols were used to represent the entity types, GP for Gene/Proteins, DS for Diseases, 
and OG for Organisms.

 3. A special tag ‘ALL’ allowed the annotators to apply the annotation of the current term to all occurrences of 
it across the article. This was useful in the case of reducing workload for the annotators and annotation cost 
but required additional work to find all the occurrences of a concept with an “ALL” tag in the post-process-
ing phase.

These tags were used in combination to fully curate the annotations generated by the existing Europe PMC 
pipeline. For example,

•	 A correctly annotated Gene/Proteins (both entity type and annotation boundary) would be marked CRT_GP.
•	 A wrong Diseases annotation would be marked WT_DS; and if it had been for an organism; that would be 

marked as: [WT_DS][OG].

Figure 8 presents an example of the differences in curation among the annotators from batch 1 of the 
annotations.

Gene-disease associations. While the primary objective of this initiative was entity annotation, annotators were 
additionally instructed to tag sentences that feature co-occurrences of Gene/Protein and Disease mentions. This 
was done to identify associations between them, leading to the development of a separate annotation scheme 
for these associations.

Annotators used the tags YGD, NGD, and AMB, where YGD indicates the presence of a gene-disease asso-
ciation in the sentence, NGD signifies the absence of such an association, and AMB denotes ambiguity in the 
relationship. Examples of each type of tag can be found in the supplementary information under “Demo to 
Molecular Connections (Tag schema for annotations).” The first 1,000 sentences featuring co-occurrences of a 
gene/protein and disease were annotated. The inter-rater agreement for classifying the type of association was 
very high, as illustrated in Fig. 11.

annotation extraction and processing. Hypothes.is (https://web.hypothes.is) is a free, open and 
user-friendly platform enabling annotation of web content. The annotators used Hypothes.is to highlight the 
span of the entity terms, add notes, and tag them with one of the available tags. They reviewed and marked 
pre-annotated terms as correct or incorrect and saved them using the Hypothes.is platform.

At Europe PMC, sentence boundaries are added to the article XML files using an in-house sentence seg-
menter prior to entity recognition. The Europe PMC text-mining pipeline annotates the bio-entities using a 
dictionary-based approach and displays them on the front-end HTML version via the web application (SciLite, 
which requires further processing of the annotated XML file). The Hypothes.is platform works on the front-end 
HTML version of the article. Each annotator set up a Hypothes.is account and thus their annotations were saved 
to the Hypothes.is server (Please refer to Section ‘How to use the interface’ in the supplementary information 
“Demo to Molecular Connections” for detailed instructions). We retrieved the annotations using the Hypothe.is 
API in JSON format and it was converted to a CSV format using in-house tools. The Hypothes.is JSON reported 
the annotated terms and their locations with respect to the HTML version of the article.

The annotations from the JSON file were extracted or tagged in the sentence-segmented XML file using regular 
expressions. However, due to the inconsistency between the HTML article page and the XML file, a small number of 
annotations could not be successfully extracted using regular expressions. We have identified that failure often occurs 
when an annotation is in a table. We post-processed the Hypothe.is JSON files for presenting the corpus to the wider 
community in multiple formats. More details are in the following sections. Figure 9 shows an overview of the process.

Fig. 8 An example of the tag distributions from batch 1 showing the discrepancies between the annotators. 
Annotators used the ‘ALL’ tag to mark all mentions of the entity as correct (CRT) or wrong type (WT), missing 
(MIS), and so on. The DS and OG represent the Diseases and the Organisms entities respectively.

https://doi.org/10.1038/s41597-023-02617-x
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Data Records
The dataset is available at Figshare40: https://figshare.com/articles/dataset/Europe_PMC_Full_Text_ 
Corpus/22848380.

To fit the diverse needs of the annotation users, the corpus provides multiple formats of annotations from 
the raw annotations of Hypothes.is platform (in CSV format) to the standard and ready-to-use IOB format. In 
addition to the annotations, original full-text articles are released in XML format without the tags.

 1. Stand-alone curator annotations.

 (a). CSV
 (b). JSON
 (c). Inside-outside-beginning (IOB)

 2. Full-text XML files (without EPMC annotations)
 3. Full-text XMLs with sentence boundary (we add <SENT> tag to annotate the sentence boundary)
 4. Europe PMC annotation in JSON format.

With the raw annotations in CSV format and full-text XML files, researchers can apply their own text-mining 
tools to extract the annotations. The comma-separated values (CSV) raw annotation files contain three fields 
(exact, prefix, and suffix) that are critical to locating the human annotations. “exact” is the annotation itself 
while “prefix” and “suffix” are characters before and after the annotation, respectively. By combining “prefix”, 
“exact”, and “suffix”, the snippet can locate the annotation using regular expressions. Raw annotations from all 
three human annotators are available on Figshare40, which are helpful for studies of agreement between anno-
tators. Annotations in JavaScript Object Notation (JSON) and IOB formats are provided in addition to raw 
annotations. Both JSON and IOB format annotations are preprocessed so that only annotations agreed on by 
at least two annotators are included. The IOB format provides sentences with IOB tags and follows the CoNLL 
NER corpus standards41. While the IOB format is widely used in named entity recognition (NER), researchers 
may prefer other tagging formats so the JSON format provides sentences and annotations for researchers that 
are interested in transforming annotations into other tagging formats. Full-text articles are also available in the 
format that articles are split into sentences by the Europe PMC text mining pipeline.

technical Validation
This paper presents a corpus of 300 full-text open access articles from the biomedical domain, human-curated 
with the entities Gene/Proteins, Diseases, and Organisms. Eight articles from the corpus do not contain any 
entity annotations because the human annotators removed existing dictionary-based annotations as false pos-
itives. These articles came from 5 different bins. Tables 3, 4 show an overview of the human-annotated terms 
and compares these to the existing Europe PMC dictionary-based approach. To evaluate the dictionary-based 
approach, we applied majority voting acceptance criteria on the granular level annotation tags, that is, entity 
type tags (GP, DS, OG) along with the correctness tags (CRT, MIS, WT, WS). The annotations were tagged with-
out direct reliance on the ontologies. The terms we annotated were subsequently mapped to the databases and 
resources detailed in the “Ontologies/Terminologie” of Section 0. This mapping process is responsible for the 
statistics presented in Table 3 under the category “Normalized to a DB entry”.

The triple-anonymous annotation approach had an overall inter-annotator agreement of 0.99. At this level, 
we assigned granular tags to appropriate entity types. For example, CRT_GP and WS_GP tags were mapped to 
the GP tag and used the strict evaluation rule for the inter-annotator agreement. The strict evaluation is defined 

Fig. 9 Annotation extraction workflow. Hypothes.is was added onto Europe PMC as a plug-in for the 
annotation work. Annotators saved their annotations to the Hypothes.is server in JSON format and it was 
retrieved and converted to CSV format using in-house tools. Europe PMC parses the XML version of the 
articles for sentence tagging and annotating named entities and displays an HTML version on the front end. We 
compared the hypothe.is annotation JSON files against the XML version and extracted the annotations using 
regular expressions.

https://doi.org/10.1038/s41597-023-02617-x
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in the SemEval 2013 Task 9.141 where an entity is considered correct only if both its boundary and type match. 
High inter-annotator agreement with the strictest methods shows that most of the annotations were agreed upon 
by all three annotators (Table 5). A total of 767 annotations were discarded because just one annotator anno-
tated them. Among these discarded annotations, 289 annotations had overlapping text spans, with the 1,005 

Europe PMC dictionary-based Gold-standard human annotation

Gene/
Protein Disease Organism Total

Gene/
Protein Disease Organism Total

Annotations
Total 28,869 10,515 18,040 57,425 36,369 14,518 21,491 72,378

Unique 3,419 1,752 1,700 6,871 5,600 2,037 2,347 9,970

Normalised to a 
DB entry Total — — — — 21,664 8,476 16,021 46,161

Median per article
Total 53.5 19.5 34 170 54.5 16 30 192

Unique 12 8 8 36 13 6.5 8 44.5

Max annotation 
per article

Total 722 219 407 955 795 478 456 940

Unique 113 78 111 156 178 76 170 201

Table 3. Overall annotation statistics comparing the existing Europe PMC dictionary-based text mining 
approach to the human curation for the selected 300 gold-standard articles. Overall we have gained around 11k 
term annotations, with the highest gain existing for the Gene/Protein category. We report unique term count 
based on the string match and how many normalise to a database identifier of the databases mentioned above 
rather than unique database identifier counts.

Gene/Protein Disease Organism

OverallUnique Total Unique Total Unique Total

Correct 2,551 20,832 1,309 7,518 1,351 15,353 43,703

Added 2,671 13,718 575 5,836 820 5,307 24,230

Removed 697 6,172 447 1,991 207 982 8,514

Modified 561 1,819 269 1,164 311 831 4,445

Precision 0.72 0.70 0.89 0.77

Recall 0.60 0.56 0.74 0.64

F1-score 0.65 0.62 0.80 0.70

Table 4. Evaluation of current Europe PMC dictionary workflow against the human annotation. This table 
shows the number of dictionary-based Europe PMC annotations updated by human annotators. A large 
proportion of the Europe PMC annotations are confirmed as correct by the human annotators, although they 
also added/annotated a significant number of previously unidentified/unannotated terms. The Europe PMC 
pipeline misses a proportion of these terms due to outdated dictionaries. The removed terms are often common 
English words or short acronyms. Gene/Protein terms (GP) are more likely to be removed than other entity 
types, that is, Diseases (DS) and Organisms (OG), due to the frequency of occurrence and the false positive 
rate for three-letter gene-protein acronyms. This row also counts the annotation where the dictionary-based 
approach wrongly assigned the type (WT), e.g. Diseases entities wrongly tagged as Gene/Proteins (WT_GP) by 
the Europe PMC dictionary-based approach (annotators used WT_GP, DS tag) will be added to the ‘removed’ 
cell count for the Gene/Proteins and ‘added’ cell for the Diseases. The “Modified” row shows the number of 
entities that were modified/split into multiple entities (WS). The overall column is the summation of correctness 
tags (CRT), i.e. CRT, Missing (MIS) and Wrong Span (WS), going under the Correct, Added and Modified rows. 
For the WT tag, they were split into two, one under the Removed column and the rest under the Modified row. 
When an annotation is assigned WT_GP, it means that it is a wrong Gene/Proteins annotation and removed 
from the annotation set, whereas the [WT_GP, DS] tag means the annotation was not removed from the 
annotation set, but the entity type is modified.

Agreed by Gene/Protein Disease Organism Overall

1 annotator 270 178 319 767

2 annotators 480 309 216 1005

3 annotators 35934 14237 21298 71469

Table 5. Inter-annotator agreement statistics. We evaluated annotation agreement using SemEval-2013 
Task9.1 strict rule. According to the strict evaluation rule, an annotation agreement is reached only when two 
annotators agree on the term span and the annotation type. We achieved an overall agreement of 0.99. The first 
row of this table shows the entity-level breakdown of annotations that were rejected due to the voting system, 
i.e. at least two annotators must agree on the annotation term, boundary and entity type. Some of these entities 
were annotated by the other annotators with different entity boundaries.
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annotations agreed upon by two annotators. For example, two annotators annotated “Welsh Mountain sheep”. 
However, the third annotator only annotated “sheep” from “Welsh Mountain sheep”. Both of them are correct 
in terms of the definition of species. Only 478 annotations were truly discarded, accounting for 0.7% of total 
annotations. Further inspection of the discarded annotations may validate some and help keep the correct ones, 
but we did not consider this to be a major blocking task.

Our analysis of the distribution of tags set (Fig. 10) shows the highest number of missing terms by the 
dictionary-based approach is from the Gene/Proteins type (MIS_GP tag). This might be due to the fact that our 
Gene/Proteins dictionary was last updated in 2014. Updating an entity dictionary involves a number of manual 
human edits, making it difficult to maintain. Although we were aware of the limitations of the common-stop list 
approach to limiting false positives, human annotation showed only a small number of these terms (1.6% tagged 
as MIS_GP) were inappropriately excluded. Using this gold-standard data to train the state-of-the-art machine 
learning/deep learning models for entity recognition eliminates these challenges. We observe the same trend for 
the false-positive identifications, i.e. WT_[GP|DS|OG]. The highest number of false positives are from the Gene/
Proteins type followed by the Diseases and Organisms terms, respectively. The wrong-type annotation counts 
are quite low; annotators only correct the entity type for a small number of annotations. This perhaps reflects the 
way the Europe PMC annotation pipeline works. This pipeline applies dictionaries sequentially, first the Gene/
Proteins dictionary, followed by the Diseases dictionary, and then the Organisms dictionary. Once an entity is 
tagged, it becomes unavailable to tag with subsequent dictionaries, likely reducing false-positive Diseases and 
Organisms entity identifications. Our analysis shows only a few terms were assigned to the wrong entity type 
due to this approach, proving our sequential method works. Table 6 shows how many term annotations were 
updated to reassign the entity type.

The special ‘ALL’ tag was used to indicate that the annotation of a term applies to all occurrences of the term 
within the article. This was a significant time-saver for articles that mention a particular entity tens or hundreds 
of times. A total of 23,281 (7,336 unique) terms were tagged ‘ALL’.

Because Hypothes.is allows free text in the tag field, we identified a small number of errors in the tag names; 
for example, ten annotations from annotators 1 and 2 use ‘DIS’ instead of ‘DS’; one annotation uses ‘CRt’ instead 
of ‘CRT’. We corrected these errors for downstream analysis.

Fig. 10 Entity tags distribution of the corpus and the comparison among the annotators. A large number of 
Gene/Proteins terms are missed by the dictionary annotation. This figure demonstrates high inter-annotator 
agreement; correct (CRT), missed (MIS), wrong span (WS), and wrong type (WT). The latter part of the tag 
represents the entity type namely, Disease (DS), Gene/Protein (GP), and Organisms (OG). Annotators use the 
WT keyword to remove an annotation and to change the entity type of annotation. They submit the correct 
entity type by adding the correct entity type keyword after the WT tag, e.g. WT_OG, DS.

human annotation

Gene/Protein Disease Organism

Europe PMC Annotation

Gene/Protein — 324 113

Disease 47 — 18

Organism 19 110 —

Table 6. Europe PMC dictionary-based entity annotation follows a sequential manner to annotate the entities. 
For example, we apply the Gene/Proteins dictionary before the Disease dictionary, making the Gene/Protein 
terms unavailable for the disease tagger. We minimise the false positive identifications through this approach. 
This table shows the number of wrong entity type assignments by the Europe PMC approach corrected by the 
manual annotators. Europe PMC misses a small percentage of the Disease and Organism entities due to the 
sequential approach. We are showing Europe PMC annotation in the rows and the manually corrected ones in 
the columns.
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The titles of sections within a research article can vary widely but typically fall into a small number of catego-
ries. For example, “Methods” and “Methods and Reagents” are both classed as Methods sections. In the Europe 
PMC annotation pipeline, section titles are normalised to a set of 17 titles42. Fig. 12 shows the entity distribution 
across these sections. As anticipated, we found a high frequency of entity mentions in an article’s main sections, 
which demonstrates the value of full-text annotation versus using only abstracts43. This entity distribution may 
help design a targeted annotation approach when resources are limited.

Code availability
The code is available at the repository https://gitlab.ebi.ac.uk/literature-services/public-projects/europepmc-corpus/ 
and also on Figshare40. The scripts include cleaning and formatting the annotations from Hypothes.is platform and 
generates the dataset in IOB format for input to deep learning algorithms.
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