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Global co-expression network 
for key factor selection on 
environmental stress RNA-seq 
dataset in Capsicum annuum
Junesung Lee    & Seon-In Yeom    ✉

Environmental stresses significantly affect plant growth, development, and productivity. Therefore, 
a deeper understanding of the underlying stress responses at the molecular level is needed. In this 
study, to identify critical genetic factors associated with environmental stress responses, the entire 
737.3 Gb clean RNA-seq dataset across abiotic, biotic stress, and phytohormone conditions in Capsicum 
annuum was used to perform individual differentially expressed gene analysis and to construct gene 
co-expression networks for each stress condition. Subsequently, gene networks were reconstructed 
around transcription factors to identify critical factors involved in the stress responses, including the 
NLR gene family, previously implicated in resistance. The abiotic and biotic stress networks comprise 
233 and 597 hubs respectively, with 10 and 89 NLRs. Each gene within the NLR groups in the network 
exhibited substantial expression to particular stresses. The integrated analysis strategy of the 
transcriptome network revealed potential key genes for complex environmental conditions. Together, 
this could provide important clues to uncover novel key factors using high-throughput transcriptome 
data in other species as well as plants.

Introduction
Environmental stress is a major challenge for plants as it affects their growth, development, and productivity1,2. 
Plants encounter various types of stress, including abiotic factors, such as drought, heat, and salinity, as well 
as biotic factors, such as pathogen attacks and insect infestations3. These stressors induce complex molecular 
responses in plants leading to changes in gene expression, signaling pathways, and physiological adaptations4,5. 
Multiple studies have been conducted to identify genes involved in responses to diverse environmental stressors 
and one of the primary approaches utilizes transcriptome data for large-scale data analysis.

RNA-seq is one of the main methods used to generate transcriptome data and has been used successfully 
in numerous studies to discover key genetic factors6. Along with RNA-seq, differential expression gene (DEG) 
analysis is a powerful approach to highlight gene expression changes. DEG has been widely used to identify key 
genes involved in responses to different treatments7. Gene expression patterns can also be utilized to analyze 
gene-gene interactions and to identify key regulatory factors in pathways and gene clusters8.

DEG-based gene co-expression networks (GCNs) play crucial roles in understanding the complex regulatory 
mechanisms underlying biological systems. These networks capture the relationships among genes based on 
their expression patterns under various conditions and/or in various tissues. By analyzing the co-expression pat-
terns of genes, researchers gain insights into functional modules, regulatory pathways, and disease mechanisms9. 
In pepper, key resistance genes were identified successfully through GCN analysis, which proved to be effective 
for identifying core regulators among the entire pool of resistance genes10. However, research that analyzes com-
plex stress-based networks to identify key genetic factors are lacking.

In this study, we introduce a method to identify key genes using GCNs based on RNA-seq data. By integrat-
ing and reconstructing individual networks around specific functions, this approach builds on the foundation of 
conventional RNA-seq analysis by placing greater emphasis on GCN construction. To demonstrate the efficiency 
of this method, we analyzed RNA-seq data from the pepper under environmental stress conditions11–13. Through 

Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, 
Jinju, 52828, Korea. ✉e-mail: sunin78@gnu.ac.kr

Analysis

OPEN

https://doi.org/10.1038/s41597-023-02592-3
http://orcid.org/0000-0002-8076-7935
http://orcid.org/0000-0002-8385-0179
mailto:sunin78@gnu.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-02592-3&domain=pdf


2Scientific Data |          (2023) 10:692  | https://doi.org/10.1038/s41597-023-02592-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

this analysis process, we identified key regulatory genes that form the hub of the network and demonstrated the 
efficiency of the analysis method by identifying defense response genes that are highly expressed in the stress 
environment14,15.

Results
Strategies for data analysis.  This study uses a research methodology that involves constructing a network 
from RNA-seq data to identify regulators associated with the desired phenotype. Genes identified through this 
process are expected to play important roles. The dataset used in this study included abiotic and biotic stressors 
as well as phytohormone conditions. The procedural framework is shown in Fig. 1. The overall workflow includes 
data acquisition, quality control, expression profiling, functional analysis, and sequential construction of a GCN.

Data preprocessing and transcriptome data variation analysis.  We obtained abiotic (204.7 Gb), 
biotic (344.6 Gb), and phytohormone (188 Gb) datasets from the NCBI Sequence Read Archive database 
(Table 1). Each dataset was processed to obtain 637.6 Gb after the removal of adapter sequences using the 
Cutadapt program and quality trimming. These data were used to perform read mapping and the mapped reads 
were normalized to fragments per kilobase of transcript per million mapped reads (FPKM) for inter-sample 
comparisons. Principal component analysis (PCA) was performed for each stress group to assess the variation 
between samples. In addition, DEG analysis was performed to verify data integrity. In the abiotic stress dataset, 
the heat and cold stress samples formed separate clusters, whereas the drought and salinity stress samples were 
grouped together (Fig. 2a). In the biotic stress dataset, each stress condition formed a distinct cluster (Fig. 2b). In 
the phytohormone dataset, except for the ethylene (ET) treatment, the treatments showed similar trends at early 
time points but showed significant variation at later time points (Fig. 2c).

DEG-based GCN construction.  To investigate changes in gene expression, we compared the expression 
levels at each time point to the corresponding mock condition. Among the samples, the Phytophthora capsici 
(Pc)-treated group exhibited the highest number of differentially expressed genes (DEGs) with 13,838 genes iden-
tified, whereas the pepper mottle virus (PepMoV)-treated group had the fewest DEGs with 545 genes (Table 1). 
We identified 12,782, 15,774, and 11,558 DEGs in the abiotic, biotic, and phytohormone groups, respectively, all 
of which met the criteria of log2FC > |1| and FDR < 0.05.

Across the abiotic stress groups, 2,096 DEGs were commonly identified. The cold stress-specific group had 
the highest number of DEGs with 2,482 genes (Fig. 2d). In the biotic stress group, there were 5,196 Pc-specific 
DEGs, and 229 genes were commonly identified across all six biotic stress conditions (Fig. 2e). Regarding phyto-
hormones, 931 genes were commonly identified, and there were 3,710 ET-specific DEGs (Fig. 2f). Furthermore, 
we conducted GCN analysis using the DEGs to identify potential hub genes that interact with other genes 
and key regulatory modules associated with the stressors. The GCN analysis revealed connected gene mod-
ules with coordinated expression patterns indicating their interactions during the stress responses (Fig. 3). We 
constructed 14 networks using 345 samples and the network with the highest number of nodes was in the Pc 

Fig. 1  The GCN construction strategy. The methods used for each step are listed to the right of the step. For 
further details, please see the Methods section of the manuscript.
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network, which consisted of 11,369 nodes. This network revealed the most extensive connectivity with a total of 
2,686,735 edges, whereas the average network had 4,456 nodes and 523,531 edges.

Building an integrated network with gene set enrichment analysis (GSEA).  We constructed an 
integrated network by merging networks based on DEGs to identify key regulatory genes associated with abi-
otic and biotic stressors. The abiotic stress-integrated network consisted of 10,881 nodes and 2,365,260 edges 
(Fig. 4a), whereas the biotic stress-integrated network consisted of 13,290 nodes and 4,149,084 edges (Fig. 4d). 
Each network was functionally classified based on stress-related genes. Subsequently, hub genes were selected by 
focusing on transcription factors (TFs) in each network to identify key interacting genes. These core networks 
were reconstructed based on stress-related gene ontologies (GOs), and the reconstructed abiotic stress network 
consisted of 233 nodes and 443 edges, and the reconstructed biotic stress network consisted of 597 nodes and 
3,323 edges (Fig. 4b,e). From these networks, we were able to classify interactions between stress-related genes 
that are strongly regulated by stress-related TFs.

We also performed a heatmap analysis to infer gene function and examine expression patterns within each 
network. In the abiotic stress heatmap, genes were grouped into five clusters. Cluster 1 included genes with 
strong expression in the mock condition, but reduced expression under heat stress. Cluster 2 included genes 
with strong expression under salinity and drought stress conditions. Clusters 3 and 4 included genes with strong 
expression under cold stress, and cluster 5 included genes with strong expression under heat stress. Interestingly, 
many genes with strong expression under heat stress were in the nucleotide binding and leucine-rich repeat 
(NLR) gene group, which is a major part of the disease-resistance gene family (Fig. 4c).

Similarly, in the biotic stress environment, genes were grouped into eight clusters. Cluster 2 had the highest 
number of genes and the most pronounced changes in gene expression in the presence of Pc. We also observed 
a strong expression of NLR genes in the presence of Pc (Fig. 4f). Based on these results, genes in the networks 
associated with stress are likely to perform resistance functions. In addition, the presence of numerous NLR 
genes, which are known for their resistance functions, confirms the usefulness of this analysis to identify key 
genetic factors across different studies.

Discussion
This study presents a novel and effective approach that utilizes high-throughput RNA-seq data to identify key 
genetic factors involved in plant responses to environmental stress. Environmental stressors pose significant 
challenges to plants by affecting their growth, development, and productivity. To overcome these challenges and 
develop stress-tolerant crops, a deeper understanding of the underlying molecular responses is essential.

In this study, we used RNA-seq data to analyze gene expression changes in response to different environ-
mental stressors, including abiotic stress, biotic stress, and phytohormone treatments. Stressors induce complex 
molecular responses in plants leading to changes in gene expression, signaling pathways, and physiological 
adaptations. We used three primary analytical approaches: (1) DEG analysis, (2) GCN construction, and (3) 
integrated network construction. DEG analysis is a powerful method to identify genes that change expression 
significantly under specific stress conditions. By comparing gene expression levels between stress-treated and 
control samples, a significant number of DEGs associated with each stress condition were identified.

Integration of the DEG-based GCNs plays a crucial role in understanding the complex regulatory mecha-
nisms underlying biological systems. These networks capture the relationships between genes based on their 
expression patterns under different conditions and/or in different tissues. By analyzing the co-expression 

Treatment
Cleaned 
data (Gb)

Number of 
DEGs

Number of 
nodes

Number of 
edges

Accession 
numbers

Abiotic stress

Cold 38.1 9,626 7,664 1,922,716 SRP187794

Salinity (NaCl) 43.2 5,463 4,302 145,024 SRP187794

Heat 34.3 8,869 6,309 270,163 SRP187794

Drought (Man) 41.0 3,402 2,571 78,221 SRP187794

Biotic stress

P. capsici (Pc)a 33.1 13,838 11,369 2,686,735 SRP438321

P. infestans (Pi)b 27.0 5,648 3,954 223,552 SRP106410

TMV_P0 (P0)c 6.3 2,792 2,319 87,686 SRP119199

PepMoVd 9.9 545 383 4,672 SRP119199

Xcv1e 85.3 6,320 5,276 1,084,241 SRP438321

Xag8raf 11.6 5,809 5,068 255,855 SRP438321

Phytohormones

ABA (abscisic acid) 40.4 2,515 1,766 49,994 SRP265260

ET (ethylene) 38.5 8,347 5,648 267,252 SRP265260

MeJA 34.6 2,564 1,910 39,738 SRP265260

SA (salicylic acid) 32.8 5,590 3,847 213,586 SRP265260

Table 1.  Transcriptome characteristics. aPhytophthora capsici. bPhytophthora infestans. cTobacco mosaic virus. 
dPepper mottle virus. eXanthomonas campestris pv. Vesicatoria race 1. fXanthomonas axonopodis pv. glycines 8ra.
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patterns of genes, researchers can gain important insights into functional modules, regulatory pathways, and 
disease mechanisms. The results of this study demonstrated the successful construction of GCNs for each stress 
condition and highlighted the interplay between stress-responsive genes and potential regulatory factors. The 
networks provided valuable information on gene interactions and revealed key regulators in stress responses.

In addition, the integrated network approach proved particularly valuable because it allowed abiotic 
and biotic stress networks to be merged and allowed the identification of key interacting genes regulated by 
stress-related TFs. Thus, a comprehensive view of stress-responsive gene networks was formed that led to the 
identification of core regulatory modules associated with stress responses. Network analysis has been used suc-
cessfully in several studies to identify gene clusters of interest, for example, in the pepper, it was used to identify 
key genes within the RLP gene family10. In this study, using an integrated network construction approach, we 
successfully identified TFs and NLR genes that respond to each stress condition confirming the acquisition of 
these key factors in the pepper16. In previous reports, NLR genes were found to be responsive to abiotic and 
biotic stresses, and the results of the present study also showed strong changes in their expression17–19. This 
research method proves to be a valuable tool for obtaining robust candidate resistance genes because it can be 
used effectively to identify important resistance-related genes.

In conclusion, this study presents a comprehensive and systematic approach to identifying key genetic factors 
associated with plant responses to environmental stress. The integration of high-throughput RNA-seq data, DEG 
analysis, and GCNs provides valuable insights into stress-responsive gene interactions and regulatory mech-
anisms. The results will contribute to our understanding of plant stress responses and have the potential to 
advance the development of stress-tolerant crops to meet the challenges posed by environmental stressors in 
agriculture.

Methods
Description of the RNA-seq data used in this study.  This study was conducted to select genes that 
respond to abiotic and biotic stresses using stress response RNA-seq to validate the efficiency of the assay. 
Responses four abiotic stressors (cold, salinity, drought, and heat), two oomycete pathogens (P. capsici and P. infes-
tans), two viruses (PepMoV and TMV-P0), two bacteria (Xcv1 and Xag8ra), and four phytohormones (ABA, ET, 
MeJA, and SA) were compared to determine the response of different environments (Table 1). All RNA-seq data 
were acquired from the NCBI Sequence Read Archive: abiotic stress (SRP18779420), biotic stress (SRP10641021, 
SRP11919922, SRP43832123), signal molecule (SRP26526024). The gene expression patterns used in this study were 
obtained from the information registered in the Gene Expression Omnibus (GEO) of the NCBI (GSE14903725, 
GSE13282426, and GSE24023427).

Data preprocessing and quality control.  In the read quality control step of this study, adapter trimming 
was performed using Cutadapt28, and reads with Phred scores below 20 were filtered out using Trimmomatic29. To 
remove residual adapter sequences from the reads, Cutadapt was used to specifically target the Illumina universal 
adapter, which is used widely in Illumina sequencing to facilitate proper attachment of sequencing primers to 
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Fig. 2  Principal components analysis (PCA) and differential expression gene (DEG) analysis under abiotic, 
biotic, and phytohormone stress conditions. PCA scatter plots of the abiotic stress condition (a), the biotic 
stress condition (b), and the phytohormone stress condition (c). DEG-based Venn diagrams of the abiotic stress 
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DNA fragments. For further quality control, Trimmomatic was utilized to filter out reads with low-quality bases, 
and the following parameters were applied during this step: LEADING: 3, TRAILING: 3, SLIDINGWINDOW: 
4: 20, and MINLEN: 36. These settings ensured that any read with a Phred score below 20 (indicating a base call 
accuracy of 99%) would be excluded from subsequent analysis. For read alignment, HISAT230 was employed 
using default parameters. The reference genome assembly used was the Capsicum annuum 2.0 version which was 
downloaded from PGENOME (http://peppergenome.snu.ac.kr).

Differential expression gene (DEG) analysis.  Transcript abundance was quantified using fragments per 
kilobase of transcript per million mapped reads (FPKM). Quantification was performed manually. DEG anal-
ysis was performed using the DESeq2 package31 in R. The following criteria were used to identify differentially 
expressed genes (DEGs): genes with an adjusted p-value (FDR) less than 0.05 and a log2fold change (log2FC) 
greater than |2|. DEGs were analyzed further for their functional implications.

Co-expression network construction and visualization.  Based on the DEGs, we constructed a 
co-expression network using the DGCA R package32. DGCA evaluates interactions between genes based 
on co-expression patterns and forms a network structure. The network was constructed based on gene pairs 
with a correlation of 0.9 or more, and the TFs and GOs of the nodes in each connection were classified10. The 
co-expression network generated by DGCA was visualized using Cytoscape33. We constructed an integrated net-
work by focusing on the genes shared within individual stress networks. The network was then reconstructed 
around the TFs for core network analysis, and direct correlation genes were obtained around the hub gene for 
analysis.

Functional annotation and enrichment analysis.  In this study, OmicsBox 2.0 (https://www.biobam.
com/omicsbox/) was used to functionally annotate the identified DEGs. OmicsBox 2.0 matched DEGs with avail-
able databases to retrieve functional annotations based on sequence homology and other relevant information. 
To further explore the functional implications of the DEGs, enrichment analysis was conducted using the goseq 
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package34 in R. The goseq package incorporates the gene length bias inherent in RNA-seq data and performs 
gene ontology (GO) enrichment analysis. We focused on the stress-related gene ontology (GO: 50896) category 
to investigate genes associated with stress responses and adaptation. We reconfigured the integrated networks 
by focusing on the abiotic and biotic stress-related GO terms. We then performed expression profiling based 
on genes associated with stress-related GO terms. Heatmap analysis was performed to evaluate gene expres-
sion within a network. The expression levels of each gene were assessed using Z-scores to determine differences 
between treatment groups. To normalize expression levels based on treatment conditions, average values were 
calculated for each time point. This normalization allowed for comparative analyses of gene expression patterns 
across different treatments. For visualization, we used the ComplexHeatmap R package35.

Data availability
All the data generated in this study has been uploaded to Figshare (https://doi.org/10.6084/m9.figshare.23659218.v2)36. 
The data has been organized into the following categories: Z-score, DEG, gene ontology, gene correlation information, 
and network node/edge information. Detailed information can be found in the description within the Figshare.

Code availability
The R code used in this study is provided at Figshare and Github (https://github.com/Lee-June-Sung/Co-
expression_network_using_DGCA.git).
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