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a Spitzoid tumor dataset with 
clinical metadata and Whole Slide 
Images for Deep Learning models
andrés Mosquera-Zamudio  1,2 ✉, Laëtitia Launet3, Rocío del amor3, Anaïs Moscardó1, 
adrián Colomer3,4, Valery Naranjo3,4 & Carlos Monteagudo1,2 ✉

Spitzoid tumors (ST) are a group of melanocytic tumors of high diagnostic complexity. Since 1948, 
when Sophie Spitz first described them, the diagnostic uncertainty remains until now, especially in the 
intermediate category known as Spitz tumor of unknown malignant potential (STUMP) or atypical Spitz 
tumor. Studies developing deep learning (DL) models to diagnose melanocytic tumors using whole 
slide imaging (WSI) are scarce, and few used ST for analysis, excluding STUMP. To address this gap, we 
introduce SOPHIE: the first ST dataset with WSIs, including labels as benign, malignant, and atypical 
tumors, along with the clinical information of each patient. Additionally, we explain two DL models 
implemented as validation examples using this database.

Background & Summary
Sophie Spitz was an American pathologist recognized for describing in 1948 a specific type of melanocytic tumor 
in 13 children and young patients, which she named “juvenile melanomas”1. According to her description, this 
type of neoplasm has the peculiarity of resembling melanoma due to its histological features, but the clinical 
outcome is usually benign. Out of the 13 cases that she studied, only one died due to malignant clinical behavior, 
while the remaining cases had favorable outcomes. This study has been cited more than 800 times and has chal-
lenged how melanomas and nevi have been diagnosed since then. Therefore, as a tribute to her work, melano-
cytic tumors with these histopathologic features are nowadays known as Spitzoid tumors (ST).

The STs, which represent 1-2% of all melanocytic tumors, are one of the most challenging entities in histo-
pathological diagnosis2,3. The discrepancy between the histopathological appearance and the clinical evolution 
can lead to misdiagnosis and result in under or overtreatment4. STs are defined as melanocytic proliferations 
with large epithelioid or spindle-shaped melanocytes with large nuclei, vesicular chromatin, and prominent 
nucleoli2. This entity is divided into three categories. The benign group is called Spitz Nevus (SN), the malignant 
type Spitzoid Melanoma (SM), and the third one is an intermediate category due to its prognostic uncertainty, 
called Spitzoid Tumor of Unknown Malignant Potential (STUMP) or Atypical Spitz Tumor2. (See Fig. 1 to see 
representative examples of ST).

Researchers have spent decades attempting to clarify the differences between these three categories and 
trying to improve prediction accuracy5. Nowadays, the pathologist’s interpretation of Hematoxylin and Eosin 
(H&E) stained glasses remains the gold standard in diagnosis2,6. Despite the high interobserver variability in 
diagnosing ST, certain histological characteristics support its categorization7. Table 1 summarizes the main fea-
tures distinguishing the three types of STs.

Many molecular studies trying to ensure the nature of an ST and approximate its clinical behavior have 
been performed. The most frequent alterations (50%) in spitzoid melanocytic tumors are genetic rearrange-
ments derived from kinase fusions of ALK, ROS1, BRAF, RET, MET, NTRK1, NTRK3, MAP3K8, or MAP3K38,9. 
HRAS mutations can also be found in these tumors. Furthermore, the genetic studies have helped to separate 
different entities, like BAP1-inactivated melanocytic tumors, which were initially considered a subgroup of ST 
since their histologic features overlap with STUMP10–12. Also, the presence of TERT promotor mutations favors 
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the malignant potential of these neoplasms2,8,13. Notwithstanding all these findings, there is still no genetic trait 
that clearly differentiates these tumors according to their benign or malignant clinical behavior, especially in 
STUMPs, where their correct diagnosis remains a conundrum, and the interpretive diagnosis by the pathologist 
in the H&E slide prevails over other complementary diagnostic techniques.

In the Digital Pathology era, novel and promising advances have been made by implementing deep learning 
(DL) models for image recognition in histological whole slide images (WSIs)5,14,15. A WSI is a digital scanning 
technology that captures and converts glass slides for use in pathology, histology, and other healthcare fields into 
high-resolution digital images. A digital image can be viewed, analyzed, and shared electronically, which makes 
diagnosis, research, and collaboration between healthcare professionals more efficient and accurate. It is esti-
mated that by 2030, several algorithms will be part of the pathology laboratory workflow, where the diagnostic 
accuracy will increase, and the diagnosis and tumor grading will be more standardized by decreasing subjectiv-
ity, especially in tumors of high diagnostic complexity that lead to crucial inter-observer variability among other 
improvements in the pathology field5.

Most studies on DL models for melanocytic tumors have utilized clinical and dermatoscopic images16–19. 
However, a small group of studies has focused on using WSIs and comparing the performance of pathologists 
vs. DL models regarding diagnostic accuracy, prognosis prediction, and histological feature detection19. Only 
three studies have focused on Spitz tumors but excluded STUMP20–22. Hart et al.22 developed a convolutional 
neural network to differentiate between ST and conventional melanocytic lesions with a classification accuracy 
at the patch level of 0.99 +0.2. The other two were done by Del Amor et al. The first one used a semi-weakly 
supervised DL framework based on inductive transfer learning to differentiate malignant and benign samples 
in Spitzoid lesions20 achieving an accuracy of 0.92 and 0.80 for the source and the target models, respectively. 
The other two studies presented a multi-resolution framework to automatically assess morphological features 
at different resolution levels and combine them to provide a more accurate diagnosis, demonstrating that this 
method outperforms single-resolution frameworks in ST classification21.

To the authors’ best knowledge, there is no publicly available dataset that allows the study of ST in WSIs. In 
this paper, we introduce the dataset previously used by Del Amor et al. in their publications regarding ST20,21. 

Fig. 1 Representative patches extracted from WSIs presenting ST; (a-b): SN containing large uniform 
melanocytic cells devoid of mitotic activity in an organized fashion; (c-d) STUMP with deep mitosis;  
(e-f): SM with numerous mitotic figures and pagetoid spread.

Feature Spitz Nevus STUMP Spitz Melanoma

Dimensions <5 to 6 mm 5 - 10 mm >5 mm often >10 mm

Symmetry Yes Rare No

Circumscription Well demarcated Well or poorly demarcated Poorly demarcated

Ulceration No Very Rare May be present

Mitotic rate <2 / mm2 2-6 / mm2 >6 mm2

Atypical Mitosis No No Yes

Deep Mitosis No May be present Yes

Necrosis No No Yes

High-grade Nuclear Atypia No No Yes

Kamino Bodies Yes Rare Extremely Rare

Pagetoid Spread If any, central and Focal Greater than SN Extensive

Table 1. Main histological features in the diagnosis of Spitz Tumors.
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This dataset of ST cases (called “SOPHIE” in remembrance of Sophie Spitz) will include Hematoxylin and 
Eosin (H&E) stained WSI and clinical information, which will help researchers to explore and develop meth-
ods to improve diagnosis and classification of ST. This dataset comprises 61 H&E stained ST WSIs from 58 
patients with clinical information. Additionally, the dataset includes a Python script that was developed for the 
semi-weakly supervised DL study done by Del Amor et al.20.

Methods
Study approval. The Ethics Committee of the University Clinic Hospital of Valencia approved the study 
(n° 2020/114) as part of the Clarify Project (from the European Union’s Horizon 2020 Program for Research 
and Innovation, under the Marie Skłodowska Curie grant agreement No. 860627), which was conducted in con-
formity with the principles of the Declaration of Helsinki. The dataset of this retrospective study was conducted 
following the ethical guidelines and regulations set forth by our Institutional Review Board (IRB) which required 
the patient informed consent including data sharing and open access publication. We ensured that all data used 
in this research was de-identified and handled in a secure and confidential manner to protect the participants’ 
rights and welfare.

Selection and preparation of the slides. The SOPHIE dataset was collected at the Department of 
Anatomical Pathology of the Hospital Clínico Universitario de Valencia - HCUV (Valencia, Spain) between the 
years 1988 and 2020. A total of 61 H&E slides from 58 patients were collected from the hospital archives accord-
ing to the pathology reports.

Expert labels. The slides were re-evaluated by a dermatopathologist (CM) with more than 30 years of expe-
rience in the field and by two general pathologists (AMZ, AM) in order to confirm the diagnosis of every case 
and to label each image. Specifically, 30 of the 58 patients under study were diagnosed as SN, 18 as SM, and 10 
as STUMP.

Digitization and Pre-processing. The formalin-fixed paraffin-embedded (FFPE) tissue blocks and slides of all 
selected cases were collected from the institution’s archives.

After selecting the slides for digitization, a qualified pathologist (AMZ, AM) oversaw the process. Once the 
digitization was completed, the same pathologists thoroughly assessed each image to ensure it met the necessary 
quality standards. If a WSI did not meet the pathologists’ criteria, they took corrective actions. This involved 
either re-scanning the original slide or, if necessary, using the corresponding FFPE block to obtain a new slide 
for digitization..

The digitization process was carried out using Roche’s scanner, Ventana iScan HT, equipped with a 
40 × objective lens (0.227 M/pixel) and saved in.tif file format. The digitization covered a maximum magnifica-
tion of 40 × , including all levels down to 5 × .

clinical Data Acquisition. The clinical data were obtained from the records in the HCUV’s hospital infor-
mation system, with the previously signed consent of each patient. The variables included in the database are 
shown in Table 2. Personal identifiers were removed, and data aggregation techniques were employed to prevent 
the identification of individual patients.

Data Records
The complete SOPHIE dataset is available at the public figshare repository23. The dataset consists of three com-
ponents. There is a file containing the WSIs, a spreadsheet referred to as “SOPHIE_DATASET.xlsx” which 
includes the clinical data tabulated according to Table 2 along with the histopathological diagnosis for each case, 
and a file with the codes associated with the dataset written in Python referred to as “paper_dataset.zip”.

Image Data. WSIs are grouped into three categories according to the histopathological diagnosis, and each 
file is named according to the following format: Spitz Nevus (SN_00XX), Spitzoid Melanoma (SM_00XX), and 
Spitzoid Tumor of Unknown Malignant Potential (STUMP_00XX).

In the SM group, there are two notable cases that involve multiple Whole-Slide Images (WSI).
SM_0015: This case is represented by two WSIs, “SM_0015A” and “SM_0015B.” Each image corresponds to 

different regions within the same tumor because the size of the tumor overpasses the dimensions of one FFPE 
block. By having multiple WSIs, we can gain insights into the spatial variation and heterogeneity present within 
this specific tumor, enhancing our understanding of its characteristics.

SM_0016: In this case, we have “SM_0016A” representing the primary tumor. Additionally, “SM_0016B” 
and “SM_0016C” showcase the lymph node metastases from the same patient. This multi-slide representation 
allows us to explore the metastatic spread and identify potential differences between the primary tumor and the 
metastatic sites.

By including multiple WSIs for these cases, we aim to provide a more comprehensive view of tumor behavior. 
This explicability allows researchers and clinicians to analyze and interpret the dataset more effectively, contrib-
uting to a deeper understanding of the complexities in the classification and behavior of SM cases.
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Technical Validation
To validate the dataset proposed in this paper, we present a CNN-based approach for Spitzoid lesions analysis 
that leverages the SN and SM WSIs at hand along with the experts’ annotations, previously published20. The 
experiments were two-fold, starting with a source model to identify tumor regions trained with experts’ segmen-
tation, and a target model for the overall classification of WSIs into benign or malignant, pre-trained with the 
weights of the source model to provide it with prior histological knowledge. Note that the presented models were 
trained following a 4-fold cross-validation strategy to optimize both models and were tested on 30% of the over-
all dataset, that is to say, 15 images. The learning curves for the source and the target models are shown in Fig. 2.

Data pre-processing. In this approach, the WSIs were accessed at a 10 × resolution. Because of the particu-
larly large size of WSIs, these were first cropped into smaller patches of 512 × 512 pixels, each with a 50% overlap. 
The Otsu’s thresholding method was then applied to the magenta channel of the images to separate tissue from 
the background, allowing to discard patches with less than 20% of tissue and thus reducing possible noise in the 
input data. This process is depicted in Fig. 3-(A).

Patch-level ROI identification. For this first validation task to identify patches with tumor to select 
regions of interest (ROIs) using the pixel-level annotations, we refined a CNN feature extractor based on the 
VGG16 architecture pre-trained in ImageNet24. In particular, the first convolutional block of the architecture was 

Field Explanation Value

Age (years) Age at the time of diagnosis Years

Sex Type of sex
1. Female

2. Male

Tumor location Location of the primary tumor

1. Head and neck

2. Trunk

3. Upper limb and shoulder

4. Lower limb and hip

5. Not recorded or specified

Local recurrence New growth at the primary site after excision
1. Absent

2. Present

Regional relapse Spread into near lymph nodes or tissues

1. Absent

2. Satellite/in transit metastasis

3. Lymph node metastasis

4. Lymph node AND satellite/in transit metastasis

Distant metastasis Tumor dissemination to distant sites

1. Absent

2. Skin, soft tissue and/or non-regional lymph node

3. Lung

4. Non-Central Nervous System and visceral sites

5. Central Nervous System

Follow up Follow up according to the last date

1: Alive and well

2: Alive with local recurrence

3: Alive with regional relapse

4. Alive with distant metastasis

5: Dead of tumor

6: No follow up

Table 2. Clinical Variables.

Fig. 2 Learning curves for the source and target models. (a) Accuracy and loss for the source model trained at 
the patch level. (b) Accuracy and loss for the target model trained at the biopsy level.
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frozen, while the next blocks were re-trained to fit the specific application, and an attention module as proposed 
in20 was added to the output feature map to focus on the key features25. The tumorous patches identification is 
then determined with the projection head module, consisting of a global max pooling layer.

The ROI identification source model was trained for m epochs with a batch size of 64, using the stochastic 
gradient descent optimizer with a learning rate of 0.001 to minimize the binary cross-entropy loss function. In 
this approach, we reached an accuracy of 0.9231 on the test set, and 0.9285, 0.9202, 0.8942 for the sensitivity 
of the malignant class, specificity and F1-score metrics, respectively. The confusion matrix of the ROI model is 
shown in Fig. 4(a).

WSI-level tumor classification. The second validation task consisted of performing a WSI-level classifi-
cation of the Spitzoid lesions into benign or malignant. For this purpose, we trained a classification model under 
a multiple instance learning (MIL) scenario where each WSI corresponds to a bag composed of n instances, i.e., 
the tumor patches within the WSI, predicted with the previously described patch-level ROI prediction model.

As shown in Fig. 3-(B), to train this target model, we used the previous source model weights to lever-
age prior knowledge of histology-specific features and transfer it to the new model application with inductive 
learning, then fine-tuning it for this specific application. Thanks to this backbone, an embedding vector was 
generated for each instance in a bag and combined with the tile-level attention to weigh the patches according 
to their importance in the final WSI-level prediction. These patch embeddings were then aggregated with an 
attention-based trainable aggregation function26 to classify the entire WSI into benign or malignant.

This WSI-level classification model was trained for 100 epochs with the same learning rate and loss function 
as the ROI identification model presented in the previous section, with a batch size of 1, that is to say, one slide 
per batch. This approach achieved an accuracy of 0.80 on the test set for WSI-level classification, with a sensitiv-
ity of malignant cases, specificity and F1-score of 0.67, 0.89, and 0.73, The confusion matrix of the WSI model is 
shown in Fig. 4(b).respectively.
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Fig. 3 Technical validation experiments. (A) Data pre-processing carried out before training models.  
(B) Source model: ROI identification at patch-level; (C) Target model: slide-level classification using bags 
of instances, leveraging the pre-trained source model. Note that the methodological core is similar in both 
approaches.
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Usage Notes
The choice of using 10x resolution over 20x in our model is based on computational efficiency and clinical rel-
evance. While 20x offers mode detail, 10x provides a broader field-of-view, allowing for comprehensive tissue 
analysis. Furthermore, 10x simulates the pathologist’s approach for the initial screening of the slide. Notably, 
even at 10x, our model effectively identifies tumors, regardless of their size. This approach ensures a balance 
between efficiency, clinical orientation, and diagnostic accuracy.

Limitations. The dataset has some limitations. Firstly, the number of images is relatively small compared 
to other types of tumors, considering that the prevalence of these tumors is only 1% of all melanocytic tumors2. 
Moreover, the percentage of images representing STUMP or SM is even lower.

While the technical validation of this dataset focuses solely on SN and SM WSIs, it successfully demonstrates 
the effectiveness of DL models in this limited context. By showcasing the utility of DL models with this subset, it 
highlights the potential for applying similar approaches to include STUMP data and other related cases. As such, 
this validation lays the groundwork for future investigations that can encompass a broader range of melanocytic 
tumors, further expanding the dataset’s applicability and potential impact in the field.

Additionally, it is important to acknowledge that these images were digitized using a single scanner, which 
could potentially impact the generalizability of the results.

Despite these limitations, this dataset still provides valuable insights into the rare category of melanocytic 
tumors and can serve as a foundation for further research and analysis.

code availability
The file code is in the figshare repository23 as “paper_dataset.zip”. They are mainly two folders. The folder “First_
step” has the file “Train_Patch_level_model.py”. This file contains the necessary statements to perform patch-level 
classification for regions of interest and non-interest.

In the folder “Second_step,” three files are located. The file “WSI_prediction_MIL” contains the main function-
alities for training an algorithm based on Multiple Instance Learning (MIL). This script calls several functions 
stored in the “DataGenerator” and “utils_1.” files. The file “DataGenerator” holds the necessary functions for 
loading data in the form of bags required for a Multiple Instance Learning algorithm. In the “utils_1” folder, all 
the necessary functions for extracting metrics, calculating loss, and more can be accessed. These functions are 
utilized in the “WSI_prediction_MIL” file.
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