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a Satellite Imagery Dataset 
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Yong Li  2,3 ✉ & Pan Hui  1,4,5 ✉

Cities play an important role in achieving sustainable development goals (SDGs) to promote economic 
growth and meet social needs. Especially satellite imagery is a potential data source for studying 
sustainable urban development. However, a comprehensive dataset in the United States (U.S.) covering 
multiple cities, multiple years, multiple scales, and multiple indicators for SDG monitoring is lacking. 
to support the research on SDGs in U.S. cities, we develop a satellite imagery dataset using deep 
learning models for five SDGs containing 25 sustainable development indicators. The proposed dataset 
covers the 100 most populated U.S. cities and corresponding Census Block Groups from 2014 to 2023. 
Specifically, we collect satellite imagery and identify objects with state-of-the-art object detection 
and semantic segmentation models to observe cities’ bird’s-eye view. We further gather population, 
nighttime light, survey, and built environment data to depict SDGs regarding poverty, health, 
education, inequality, and living environment. We anticipate the dataset to help urban policymakers 
and researchers to advance SDGs-related studies, especially applying satellite imagery to monitor long-
term and multi-scale SDGs in cities.

Background & Summary
Nowadays, more than 50% of the population lives in cities, producing 80% of the GDP worldwide1,2. Therefore, 
cities play an increasingly important role in achieving United Nations Sustainable Development Goals3 (SDGs), 
which aim to prosper economic growth and meet social needs. According to the report “The United States 
Sustainable Development Report4”, cities in the United States (U.S.) perform poorly on a series of SDGs (e.g., 
Boise city lags behind in quality education, and Raleigh city shows high poverty rate5). Currently, monitoring 
sustainable development in U.S. cities heavily relies on door-to-door surveys such as the American Community 
Survey6,7 (ACS) data. First, ACS data for constructing the SDG index in U.S. cities is economically costly as the 
annual budget can reach millions of dollars8. Second, the current SDG index dataset for U.S. cities is meant for 
a single year and only focuses on the city level, which hinders monitoring of multi-scale and multi-year SDG 
progress9. Alternatively, built upon the rapid development of remote sensing and deep learning techniques, sat-
ellite imagery showing nearly real-time and bird’s-eye view information in cities has been broadly investigated 
as a data source for SDG monitoring10–17. Therefore, monitoring SDGs in cities with satellite imagery is of great 
significance in promoting sustainable urban development.

However, a long-term and multi-scale satellite imagery dataset, which reveals the yearly change in SDGs 
in multiple years and in different spatial (administrative) scales for city SDG monitoring, is still lacking. For 
instance, some satellite imagery datasets about SDGs focus on either country level or cluster level (25–30 house-
holds) spatially and only contain data of a single year18, which barely match the requirements of long-term 
and multi-scale SDG monitoring in cities. Other open-source satellite imagery datasets, such as SpaceNet19 
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or ForestNet20, merely contain the dataset for one single SDG. Besides, other survey data for SDG, such as 
UNESCO Survey on Public Access to Information and Survey Module21 on SDG Indicator 16.b.1 & 10.3.1, are 
based on questionnaires. At last, although plenty of survey data in the U.S. will aid in SDG monitoring, it would 
be difficult for urban policymakers and researchers to extract the critical information easily. Motivated by the 
SustainBench22 in low-income countries, and to fulfill the data requirements for SDG monitoring in U.S. cities, 
we propose a comprehensive long-term and multi-scale satellite imagery dataset with 25 SDG indicators for five 
SDGs (SDG 1, SDG 3, SDG 4, SDG 10, and SDG 11). Moreover, the dataset covers about 45,000 Census Block 
Groups (CBGs) in the 100 most populated U.S. cities from 2014 to 2023. Using satellite images and SDG data in 
the U.S., urban policymakers and researchers can develop various models or assumptions regarding SDG mon-
itoring remotely. And further, the dataset from the U.S. can aid urban policymakers and researchers in inferring 
SDG progress in low-income countries, which mostly lack SDG-related survey data.

Figure 1 presents the scheme of our produced dataset with two components: the satellite imagery data con-
taining the detected objects and land cover semantics obtained with state-of-the-art deep learning models and 
the corresponding SDG indicators in 100 cities from 2014 to 2023. For the satellite imagery data, we  incorporate 
the daytime satellite imagery with the spatial resolution of 0.3 m and several objects (such as truck and bas-
ketball court23–26) detected as well as several land cover semantics (forest and road27) inferred with the models 
transferred from the computer vision community. The detected objects refer to the countable artificial objects 
and venues visible in satellite images in cities, while the land cover is mostly the uncountable environmental 
information. For SDGs, we collect the indicators that can be inferred from satellite images in urban scenarios. 
Specifically, indicators for SDG 1 “No poverty”, SDG 3 “Good health and well-being”, SDG 4 “Quality edu-
cation”, SDG 10 “Reduced inequalities”, and SDG 11 “Sustainable cities and communities”3,28 are included in 
our dataset. The indicators are generated from multi-source data, including nighttime light (NTL) data from 
Earth Observation Group (EOG)29, WorldPop population data30, ASC data6,7, and OpenStreetMap (OSM) built 
infrastructure31,32.

At last, this paper advances the SDG-related community by generating a long-term and multi-scale satellite 
imagery dataset in urban scenarios by collecting and processing satellite images and SDG indicators from multi-
ple sources, which is a time-consuming and laborious work, and the alignment of satellite image visual attributes 
and SDG data. The dataset aims to help urban policymakers and researchers, who might not have the platform 
to collect and process the large volume of data, to conduct numerous SDG studies spanning poverty, health, 
education, inequality, and built environment. More importantly, as the first urban satellite imagery dataset for 
multiple SDGs monitoring with interpretable visual attributes (e.g., cars, buildings, roads, etc.), it can aid in 
further achieving sustainable cities with high interpretability and advancing urban sustainability progress. The 

Fig. 1 Schemetic overview of the target dataset.
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satellite imagery and the visual attributes extracted by the computer vision models in the dataset can serve as 
the input for various kinds of research regarding SDGs, and the SDG indicators act as output. Specifically, we 
recommend the following potential applications:

•	 Researchers can design deep learning models to predict various long-term SDGs (income, poverty, and built 
environment) in cities from historical satellite images.

•	 Researchers can also estimate various SDG progresses by utilizing multi-scale satellite imagery visual attrib-
utes at the CBG and city levels and reveal the linkage between the multi-scale satellite imagery and SDGs.

•	 Researchers can propose a spatiotemporal framework that simultaneously utilizes long-term and multi-scale 
satellite imagery for SDG monitoring, which sheds light on satellite imagery fusion of temporal and spatial 
dimensions.

Methods
We aim to provide a comprehensive and representative dataset that includes satellite imagery and corresponding 
SDG indicators covering long terms and multiple scales. To ensure that the indicators can thoroughly depict 
sustainable urban development, we select five SDGs altogether: SDG 1 No poverty (five indicators), SDG 3 Good 
health and well-being (five indicators), SDG 4 Quality education (five indicators), SDG 10 Reduced inequalities 
(two indicators), and SDG 11 Sustainable cities and communities (eight indicators). Overall, the target dataset 
generation process includes collecting, processing, and aligning multi-source data, and the overall workflow is 
presented in Fig. 2. We first select the 100 most populated cities and gather the corresponding CBG/city bound-
aries. Second, we collect satellite imagery, population, NTL, OSM, and ACS data from multiple sources. At last, 
we process the multi-source data and produce the final output data at the CBG and city levels, containing basic 
geographic statistics, satellite imagery attributes, and SDG indicators.

Determining the area-of-interests and boundary extraction. We select the 100 cities with the most 
population in the contiguous United States, which is explored on the ACS 2021 population data33. The population 
in the 100 cities varies from 222,194 to 8,467,513, with a mean population of 642,002. The city-of-interests and 
population in descending order are shown in Table 1.

Fig. 2 Overall workflow of the dataset generation process.
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Then we collect city geographic boundary files from the U.S. Census Bureau TIGER/Line shapefiles34. The 
shapefiles are divided by states, and each shapefile contains the city name (called “place” in the file), state name, 
Federal Information Processing Standard state code, and geographical boundary coordinates. We use the python 
packet shapely to access the shapefiles and extract the boundary coordinates using the city and state names. The 
geographic coordinate system is WGS84.

Next, we determine the corresponding CBGs within the cities. The boundaries of all CBGs in the U.S. are 
gathered from SafeGraph Open Census Data7. The CBG boundaries for the years 2014~2019 are the same, and 
the U.S. government adjusts the CBG boundary for the year 2020.

For each city, we overlap the CBG boundaries on the city boundary, and every CBG whose area intersection 
with city boundary takes up more than 10% of the corresponding CBG area is considered contained in the 
city. This process uses Python packets shapely and geopandas. The geographic lookup table between cities and 
corresponding CBGs is shown in Table 2. Till this step, we have the selected 100 most populated cities and cor-
responding CBGs spatially contained as the area-of-interests in our target dataset.

Processing of satellite imagery. Satellite imagery provides a near real-time bird’s-eye view of the earth’s 
surface. Combined with machine learning techniques, satellite imagery has been widely used in predicting socio-
economic status, especially in urban research, which includes poverty/asset prediction11,14,17, urban pattern min-
ing15, commercial activity prediction16,35, and population prediction12,36. Inspired by the interpretable feature 
generation from satellite imagery14, we provide satellite imagery visual attributes in our dataset to promote the 

City Population City Population City Population City Population

New York 8,467,513 Los Angeles 3,849,306 Chicago 2,696,561 Houston 2,287,047

Phoenix 1,624,539 Philadelphia 1,576,251 San Antonio 1,451,863 San Diego 1,381,600

Dallas 1,288,441 San Jose 983,530 Austin 964,000 Jacksonville 954,624

Fort Worth 940,437 Columbus 907,310 Indianapolis 882,327 Charlotte 879,697

San Francisco 815,201 Seattle 733,904 Denver 711,463 Oklahoma 687,691

Nashville-Davidson 678,845 El Paso 678,422 Washington 670,050 Boston 654,281

Las Vegas 646,776 Portland 642,218 Detroit 632,589 Louisvill -Jefferson 628,577

Memphis 628,118 Baltimore 576,498 Milwaukee 569,326 Albuquerque 562,591

Fresno 544,500 Tucson 543,215 Sacramento 525,028 Mesa 509,492

Kansas 508,415 Atlanta 496,480 Omaha 487,299 Colorado Springs 483,969

Raleigh 469,502 VirGinia Beach 457,672 Long Beach 456,063 Miami 439,906

Oakland 433,797 Minneapolis 425,338 Tulsa 411,905 Bakersfield 407,581

Wichita 395,707 Arlington 392,802 Aurora 389,675 Tampa 387,037

New Orleans 376,971 Cleveland 368,006 Anaheim 345,935 Henderson 322,202

Stockton 322,107 Lexington -Fayette 321,793 Corpus Christi 317,768 Riverside 317,257

Santa Ana 309,468 Orlando 309,193 Irvine 309,014 Cincinnati 308,913

Newark 307,216 St. Paul 307,176 Pittsburgh 300,454 Greensboro 298,250

St. Louis 293,310 Lincoln 292,648 Plano 287,037 Durham 285,439

Jersey 283,943 Chandler 279,445 Chula Vista 277,211 Buffalo 276,804

North Las Vegas 274,146 Gilbert 273,138 Madison 269,162 Reno 268,843

Toledo 268,504 Fort Wayne 263,814 Lubbock 260,990 St. Petersburg 258,214

Laredo 258,014 Irving 254,190 Chesapeake 251,269 Winston-Salem 250,337

Glendale 249,627 Enterprise CDP 245,286 Scottsdale 242,754 Garland 241,870

Boise 237,457 Norfolk 235,089 Arlington CDP 232,965 Spokane 229,065

Fremont 227,523 Richmond 226,604 Santa Clarita 224,588 San Bernardino 222,194

Table 1. City-of-interests and corresponding population in our dataset.

City Name City GeoID Track Code Block Group CBG Code

New York 1600000US3651000 17500 2 360050175002

New York 1600000US3651000 14100 1 360050141001

New York 1600000US3651000 14500 2 360050145001

⋯

Los Angeles 1600000US0644000 216401 1 060372164011

Los Angeles 1600000US0644000 216401 2 060372164012

Los Angeles 1600000US0644000 216402 1 060372164021

⋯

Table 2. Example of the geographic lookup table between cities and CBGs in the produced dataset.
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research of SDG monitoring. The processing of satellite imagery consists of three parts: imagery collection, object 
detection, and semantic segmentation.

First, we collect the satellite imagery in our dataset from Esri World Imagery37. It provides users access to 
the World Imagery of different versions created over time. The imagery is in RGB format collected from differ-
ent satellites and of different spatial resolutions marked by different zoom levels, which split the entire world 
into different numbers of tiles. Overall, the imagery collection process includes generating image tile numbers 
according to the boundary of each city as well as the desired zoom level (spatial resolution) and downloading 
images with the tile numbers from the satellite imagery archive. In our target dataset, we set the zoom level to 19, 
which is about 0.3 m/pixel. We also select the Esri World Imagery archive of June from 2014 to 2023 to collect 
the satellite images of the 100 most populated cities, which generates altogether 12,269,976 images each year.

Second, many aspects of cities are related to people’s lives and can reveal SDG progress. Transportation in the 
city is integral to urban development38, and further, transportation and mobility were recognized as central to 
sustainable development at the 2012 United Nations Conference on Sustainable Development39. Sports & leisure 
are highly correlated to citizens’ life quality40,41. Children and young people benefit largely from sports, which are 
inseparable from a quality school education, promoting SDG 3 and SDG 442. The building characteristics (e.g., 
building type) can reveal the population and income status in urban areas43,44, and the impact of buildings on 
human well-being can not be neglected. Therefore, the buildings, cars, and other objects in satellite imagery con-
tain certain correlations with SDG indicators. In our dataset, we consider 17 objects from the abovementioned 
aspects: transportation, sports & leisure, and building.

The urban object categories are presented in Table 3. We use the YOLOv5s model45,46 pre-trained on the MS 
COCO dataset47 and finetune it on xView dataset23 and DOTA v2 dataset25 to detect objects in the collected satellite 
imagery. The default parameters48 are used for finetuning the object detection models. We aggregate the number of 
objects detected from satellite images at the CBG and city levels to show visual object attributes at multiple scales.

Third, land cover information such as forests or water can also depict the urban environment and is not 
included in the detected objects. Therefore, we add the land cover semantic information inferred from satellite 
imagery in our generated dataset. We use the Vision Transformer (ViT)-Adapter-based semantic segmentation 
model49–51 pre-trained on the ADE20K dataset52 and finetune it on LoveDA dataset27 to generate semantic infor-
mation from the collected satellite imagery, which includes background, building, road, water, barren, forest, 
and agriculture. Moreover, we compute the pixel-level percentage of each semantic information presented in 
Table 3 in each satellite imagery and aggregate them at the CBG and city levels, respectively.

Processing of basic geographic statistics. For each CBG/city, we present the population, area, centroid 
coordinates, and geographic boundary, which describe the essential information for the selected area-of-interests. 
Specifically, we collect the population data from 2014 to 2020 from the WorldPop project30,53. The population data 
is downloaded at a resolution of 3 arc (approximately 100 m at the Equator). We use Python packets shapely and 
gdal to crop the population data with the CBG/city geographic boundary and sum up the cropped pixel values as 
the total population. The area (km2) is calculated from the CBG/city boundary data with Python packet geopan-
das. The geographic centroid can also be computed with Python packet geopandas.

Processing of SDG indicators. There are five SDGs (SDG 1, SDG 3, SDG 4, SDG 10, and SDG 11) concern-
ing poverty, health, education, inequality, and built environment collected in our produced dataset at the CBG/
city level. SDG 1 “No poverty” focuses on income and population in poverty status. The indicators for “No pov-
erty” are collected from ACS data. SDG 3 “Good health and well-being” and SDG 4 “Quality education” highlight 
people’s health insurance status and population with different academic degrees, and corresponding indicators 
are extracted from ACS data. SDG 10 “Reduced inequalities” intends to reduce inequality, and the indicators are 
from ACS data and from NTL combined with population data with a recent algorithm for monitoring regional 
inequality through NTL54. Finally, SDG 11 “Sustainable cities and communities” reflects the living conditions in 
CBG/city, and the related indicators are calculated from OSM historical data and ACS data. Altogether, we collect 
25 indicators across five SDGs. The indicators and relevant SDG targets are described in Table 4. Specifically, there 
are eight SDG targets included in this dataset:

•	 Target 1.2: By 2030, reduce at least by half the proportion of men, women, and children of all ages living in 
poverty in all its dimensions according to national definitions.

•	 Target 1.4: By 2030, ensure that all men and women, in particular the poor and the vulnerable, have equal 
rights to economic resources, as well as access to basic services, ownership and control over land and other 
forms of property, inheritance, natural resources, appropriate new technology and financial services, includ-
ing microfinance.

•	 Target 3.8: Achieve universal health coverage, including financial risk protection, access to quality essential 
healthcare services, and access to safe, effective, quality, and affordable essential medicines and vaccines for 
all.

Objects Detected
passenger vehicles, swimming pools, planes, airports, trucks, railway vehicles, ships, engineering vehicles, bridges, 
roundabouts, vehicle lots, soccer fields, basketball courts, ground track fields, baseball diamonds, tennis courts, 
buildings (number of buildings)

Land Cover Semantics road, forest, building (pixel percentage), water, barren, agriculture, background

Table 3. Visual attributes extracted from satellite images.
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•	 Target 4.1: By 2030, ensure that all girls and boys complete free, equitable, and quality primary and secondary 
education leading to relevant and effective learning outcomes.

•	 Target 4.3: By 2030, ensure equal access for all women and men to affordable and quality technical, vocational 
and tertiary education, including university.

•	 Target 10.2: By 2030, empower and promote the social, economic and political inclusion of all, irrespective of 
age, sex, disability, race, ethnicity, origin, religion or economic or other status.

•	 Target 11.2: By 2030, provide access to safe, affordable, accessible and sustainable transport systems for all, 
improving road safety, notably by expanding public transport, with special attention to the needs of those in 
vulnerable situations, women, children, persons with disabilities and older persons.

•	 Target 11.3: By 2030, enhance inclusive and sustainable urbanization and capacity for participatory, integrated 
and sustainable human settlement planning and management in all countries.

Indicators for SDG 1 “No poverty”. SDG 1 aims to end poverty in all its forms everywhere3. Our target dataset 
incorporates income and poverty status data to represent the SDG 1 indicators in cities. Specifically, median 
household income, population above poverty (number of population whose income in the past 12 months is at 
or above poverty level), population below poverty (number of population whose income in the past 12 months is 
below poverty level), and population with a ratio of income to poverty level (the total income divided by poverty 
level) under 0.5 and between 0.5 to 0.99 are collected to describe the income & poverty in CBG/city. The poverty 
threshold is computed by the Census Bureau according to the family size and ages of family members every 
year with variations to Consumer Price Index. The threshold is a country-specific value and does not change 
geographically55. Moreover, population above/below poverty and population with different ratios of income to 
poverty level are measurements of poverty status.

We collect the median household income, population above/below poverty, and population with a ratio of 
income to poverty level under 0.5 and between 0.5 to 0.99 at the CBG level from the ACS data6,7,56. Then, we 
generate the city-level indicators: population above/below poverty and population with a ratio of income to pov-
erty level under 0.5 and between 0.5 to 0.99 by aggregating all the CBG data within the city. Median household 
income at the city level is related to the income distribution of the population in cities and is gathered directly 
from ACS data57. The boundary files and ACS data are both collected from the U.S. Census Bureau. And ACS 
data denotes the city as “place” as in the boundary files, and the ACS definition of a city boundary is the same as 
the U.S. Census Bureau TIGER/Line shapefiles.

Indicators for SDG 3 “Good health and well-being”. SDG 3 aims to ensure healthy lives and promote well-being 
for all populations at all ages3. In our target dataset, we use the population data with no health insurance cov-
ering all ages to represent SDG 3 indicators because health insurance is correlated to the health status of the 
population in urban regions58,59. Specifically, civilian noninstitutionalized population, population with no health 
insurance under 18, between 18 to 34, between 35 to 64, and over 65 years old are collected from ACS data7 to 
describe the health insurance at the CBG and city levels.

Indicators for SDG 4 “Quality education”. SDG 4 aims to ensure inclusive and equitable quality education and 
promote lifelong learning opportunities for all3. Therefore, indicators directly depicting city education status can 
be selected here. In dataset generation, we collect from ACS data7 population enrolled in college, population that 
graduated from high school, population with a bachelor’s degree, a master’s degree, and a doctorate for indica-
tors of school enrollment & education attainment to monitor SDG 4.

SDG Target Indicator SDG Target Indicator

1.2 Population Below Poverty 1.2 Population Above Poverty

1.2 Population With A Ratio Of Income To Poverty Level Under 0.5 1.2 Population With A Ratio Of Income To Poverty Level 0.5 to 0.99

1.4 Median Household Income

3.8 Population With No Health Insurance Under 18 3.8 Population With No Health Insurance Between 18 To 34

3.8 Population With No Health Insurance Between 35 To 64 3.8 Population With No Health Insurance Over 65 Years Old

3.8 Civilian Noninstitutionalized Population

4.1 Population Enrolled In College 4.3 Population That Graduated From High School

4.3 Population With A Bachelor’s Degree 4.3 Population With A Master’s Degree

4.3 Population With A Doctorate

10.2 Light Gini 10.2 Income Gini

11.2 Driving Road Density 11.2 Cycling Road Density

11.2 Walking Road Density 11.3 POI Density

11.3 Building Density 11.3 Land Use

11.3 Entropy Index 11.3 Index of Dissimilarity

Table 4. Relationship between the SDG targets and the selected indicators.
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Indicators for SDG 10 “Reduced inequalities”. SDG 10 aims to reduce inequality within and among countries3. 
We use income Gini60 and light Gini54 to monitor the process of SDG 10. The income Gini reveals the inequality 
status of income and is collected from ACS data. Light Gini can present the distribution of NTL per person and 
thus indirectly reveal regional development inequality. Similar to the income Gini, the lower the light Gini is, 
the more equally the region develops, which means the region moves towards eliminating inequality in SDG 
10. The results in the original paper54 report the light Gini at a 1-degree grid cell, which can not be directly used 
in urban scenarios. Therefore, we calculate the light Gini following the method54. Specifically, the NTL per 
person is calculated by dividing the NTL value by the population number in all grids in each CBG/city. Then, 
the Gini index60 of NTL per person in the CBG/city boundary is computed as the light Gini. The NTL is the 
Visible Infrared Imaging Radiometer Suite (VIIRS) data29,54 with a spatial resolution of 15 arc seconds (500 m at 
the Equator). We download the VIIRS Nighttime Lights version 2 Median monthly radiance (the unit for light 
intensity is nW /cm2/sr) with background masked from EOG29,61–63. Compared with income Gini from tradi-
tional income survey data, light Gini measures the NTL inequality in urban regions by considering NTL as an 
indicator for economic development, which is a different measurement of inequality54.

Indicators for SDG 11 “Sustainable cities and communities”. SDG 11 aims to make cities and human settlements 
inclusive, safe, resilient, and sustainable3. We incorporate indicators related to the built environment and land 
use in the target dataset. Specifically, we generate building density, driving/cycling/walking road density, POI 
density, land use information, and residential segregation (index of dissimilarity and entropy index) as indica-
tors to monitor SDG 11.

The source data of urban built environment and land use is collected from OSM31,64,65. We collect the U.S. 
state-level historical Protocolbuffer Binary Format files from Geofabrik32 from 2014 to 2023. Then we apply 
Python packet pyrosm to extract the building, driving road, cycling road, walking road, POI, and land use infor-
mation in cities and CBGs by corresponding boundary polygons. For calculating building density, we divide 
the number of buildings by the area of CBG/city. For each of the three kinds of road density, we divide the total 
length of each kind of road by the corresponding area of CBG/city. The POI density, which is defined as the ratio 
of the number of all POIs and the area of CBG/city, can show urban venues with human information. The OSM 
POIs include all OSM elements with tags “amenity”, “shop” or “tourism”. The amenity tag is useful and important 
facilities for the urban population, which include Sustenance, Education, Transportation, Financial, Healthcare, 
Entertainment, Arts & Culture, Public Services, Waste Management, and Others. The shop tag includes loca-
tions of all kinds of shops and the sold products, such as Food & Beverages, General Store, Mall, Clothing, Shoes, 
Accessories, Furniture, etc. The tourism tag is the places for tourists, such as Museum, Gallery, Theme Park, Zoo, 
etc. Moreover, we generate the land use indicators (commercial, industrial, construction, and residential) by 
calculating the area percentage of each kind of land use in the area of CBG/city.

The indicators for the built environment quantitatively measure the density of buildings and roads. It should 
be noted that the indicators for SDG 11 are imperfect since the actual quality of buildings and roads is not pro-
vided in the dataset. Users can use the building/road/POI indicators as side information for depicting urban 
development.

Residential segregation is related to inclusivity in U.S. cities66. We calculate the index of dissimilarity67
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where k is the number of racial/ethnic groups, pij is the proportion of jth race/ethnicity in CBG/city i. We include 
groups of the White, Black, Asian, and Hispanic population at the CBG or city level.

Limitations. The limitations of our dataset include errors from multiple data sources, partial coverage of SDG 
progress, and the shortcomings of selected indicators.

The errors from data sources include measurement errors in satellite imagery, ACS data collection, OSM, 
WorldPop population, and NTL data. The measurement errors in satellite imagery processing are mainly from 
the object detection and semantic segmentation tasks, and the accuracy metrics are shown in Table 5. And the 
errors in other data sources are usually tolerable in each field and the quality assessment can be referred to liter-
ature69 for ACS data, literature70–73 for OSM, literature74 for WorldPop, and literature62 for NTL data. ACS data 
uses sampling error to measure the difference between the true values for the entire population and the estimate 
based on the sample population. And the magnitude of sampling error is measured by the margin of error69. 
ACS provides a margin of error for all ACS estimate data which we collect as SDG indicators in our dataset. The 
dataset users can freely access the margin of error values of the ACS-oriented indicators in our dataset from the 
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ACS official website. OSM data is a Volunteered Geographic Information (VGI) and is frequently updated by 
volunteers. In terms of the road network, OSM is about 83% complete globally70. The building completeness for 
OSM in San Jose city in the U.S. is about 72% and confirms the validity of OSM building density in our dataset71. 
Some cities show a large jump in building number in a consecutive year due to lagging annotations. The POIs 
in OSM are compared with the Foursquare POIs and 60% of the POIs can be matched with high accuracy72. At 
last, the accuracy of the OSM land use dataset73 for the U.S. is above 60%. The population data from WorldPop 
has a coefficients of determination75 R2 greater than 0.95 when evaluated on the population data in China74. The 
nighttime light intensity also shows a high consistency (R2 greater than 0.97) compared with different nighttime 
light datasets62.

And the provided dataset does not cover the whole SDG aspects, and thus cannot be used as the sole meas-
urement for SDG monitoring. However, the dataset still has great reference value and aids decision-making for 
urban researchers and policymakers.

At last, some indicators cannot always be the best indicators for corresponding SDGs. For example, the 
indicator health insurance for SDG 3 (Good health and well-being) may not be the best measurement of health 
status because health insurance usage is affected by the income or wealth of the insurance owners.

Data records
The produced dataset can be accessed through the Figshare repository76 and is stored in tabular format. 
The live version with potential updates is available in the GitHub repository (https://github.com/axin1301/
Satellite-imagery-dataset). We split the output dataset into seven categories, as shown in Fig. 2: basic geographic 
statistics, satellite imagery attributes, and five SDGs described in Fig. 1 to help users quickly access and utilize 
the data. Moreover, for each category, the dataset also contains records at two spatial levels (city and CBG). First, 
to help the users understand the area-of-interests, we provide samples of the geographic lookup table between 
the cities and CBGs in Table 2, and the basic statistics of CBGs and cities in Tables 6, 7. Second, to demonstrate 
the extracted visual attributes from the satellite imagery, we show samples of objects detected and land cover 
semantics from the satellite imagery at the CBG level in Table 8. At last, the samples of SDG indicators at the 
CBG level are demonstrated in Tables 9–13, respectively, which include SDG 1 “No poverty”, SDG 3 “Good 
health and well-being”, SDG 4 “Quality education”, SDG 10 “Reduced inequalities”, and SDG 11 “Sustainable 
cities and communities”. The city name and CBG code are used to mark the geographical location of each SDG 
indicator.

Data table formats. Basic geographical statistics. Tables 6, 7 provide the population, area, geographic cen-
troid, and geographic coordinate boundary of the area-of-interests in this dataset, where the area, geographic 
centroid, and boundary are invariant to time, while the population is time-varying.

Satellite imagery attributes. We have object numbers and land cover semantic attributes processed from satel-
lite imagery of the years 2014 to 2023. The object categories include planes, airports, passenger vehicles, trucks, 
railway vehicles, ships, engineering vehicles, bridges, roundabouts, vehicle lots, swimming pools, soccer fields, 
basketball courts, ground track fields, baseball diamonds, tennis courts, and buildings (number of buildings). 
The land cover semantic attributes contain background, building (pixel percentage), road, water, barren, forest, 
and agriculture. There are altogether 24 visual attributes obtained from satellite imagery, which are shown in 
Table 8, where the objects detected consist of 17 columns and the land cover semantics consist of 7 columns. For 
visualization convenience, we only show the samples at the CBG level.

SDG 1. We provide median household income, population above/below poverty, population with a ratio of 
income to poverty level under 0.5, and population with a ratio of income to poverty level between 0.5 to 0.99 for 
“No poverty” indicators in Table 9 for the years 2014 to 2023 at the CBG level.

SDG 3. We offer civilian noninstitutionalized population, population with no health insurance under 18, pop-
ulation with no health insurance between 18 to 34, population with no health insurance between 35 to 64, and 
population with no health insurance over 65 years old for “Good health and well-being” indicators in Table 10 
for the years 2014 to 2023 at the CBG level.

SDG 4. We provide population enrolled in college, population that graduated from high school, population 
with a bachelor’s degree, a master’s degree, and a doctorate for “Quality education” indicators in Table 11 for the 
years 2014 to 2023 at the CBG level.

SDG 10. We provide income Gini and light Gini for “Reduced inequalities” indicators in Table 12 for the 
years 2014 to 2023 at the CBG level. The income Gini measures the regional inequality from the perspective of 

Model Dataset Accuracy(%) Precision(%) Recall(%) mAP@0.5(%) mIoU(%)

Object Detection
xView 66.7 53.2 37.7 37.1 —

DOTA v2 47.7 77.0 51.8 58.2 —

Semantic Segmentation LoveDA 71.1 — — — 52.7

Table 5. Evaluation metrics for the object detection and semantic segmentation models.
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income, and the light Gini shows the regional nighttime light inequality through remote sensing technology. 
Since the income Gini at the CBG level is not available in ACS data, the corresponding values are omitted.

SDG 11. We provide building density, driving/cycling/walking road density, POI density, land use informa-
tion (commercial, industrial, construction, and residential), and residential segregation (index of dissimilarity 
and entropy index) for “Sustainable cities and communities” indicators in Table 13 for the years 2014 to 2023 
at the CBG level, where the index of dissimilarity has 6 columns: White-Black/ White-Asian/ White-Hispanic/ 
Black-Asian/ Black-Hispanic/ Asian-Hispanic. Since there is no data for proportions of the population with 
different races or ethnicities at the CBG level, the index of dissimilarity for CBG is omitted.

technical Validation
Population percentage of city-of-interests. Our dataset selects the 100 most populated cities in the 
contiguous United States. We demonstrate the comparison of overall population in our city-of-interests and in 
all U.S. cities33 in Fig. 3. We find that the population in selected cities takes up 52% of the total population in U.S. 
cities.

Visual attributes extraction from satellite imagery. We use state-of-the-art object detection and 
semantic segmentation models in the computer vision community to extract the visual attributes from satellite 
imagery. The training datasets, i.e., xView, DOTA v2, and LoveDA datasets, for the deep learning models are fre-
quently used in satellite imagery interpretation tasks. We prepare the training datasets according to the models’ 
requirements and transfer the trained models to the satellite images we collect. Following the evaluation methods 

Geographic Area Basic Geographical Statistics

City Name CBG Code Year Population Area Centroid Boundary

Albuquerque 350010001071 2014 1,965 2.50 (−106.48718, 35.12321) (−106.49789 35.13066, −106.49730 35.13067,…)

Albuquerque 350010001071 2015 1,992 2.50 (−106.48718, 35.12321) (−106.49789 35.13066, −106.49730 35.13067,…)

Albuquerque 350010001071 2016 2,020 2.50 (−106.48718, 35.12321) (−106.49789 35.13066, −106.49730 35.13067,…)

⋯

Table 6. Example of basic geographic statistics of CBGs in the produced dataset.

Geographic Area Basic Geographical Statistics

City Name City GeoID Year Population Area Centroid Boundary

Albuquerque 1600000US3502000 2014 577,889 489 (−106.64648, 35.10534) (−106.64882 35.14807, −106.64878 
35.14818,…)

Albuquerque 1600000US3502000 2015 585,825 489 (−106.64648, 35.10534) (−106.64882 35.14807, −106.64878 
35.14818,…)

Albuquerque 1600000US3502000 2016 593,571 489 (−106.64648, 35.10534) (−106.64882 35.14807, −106.64878 
35.14818,…)

⋯

Table 7. Example of basic geographical statistics of cities in the produced dataset.

Geographic Area Objects Detected Land Cover Semantics

City Name CBG Code Year Passenger Vehicle Swimming Pool ⋯ Road Forest ⋯
Albuquerque 350010001071 2014 411 48 ⋯ 0.0391 0.395 ⋯
Albuquerque 350010001072 2014 111 42 ⋯ 0.0712 0.00979 ⋯
Albuquerque 350010001081 2014 273 28 ⋯ 0.124 0.000537 ⋯
⋯

Table 8. Example of visual attributes from satellite images at the CBG level in the produced dataset.

Geographic Area SDG 1 (No Poverty)

City Name CBG Code Year
Median Household 
Income

Population 
Above Poverty

Population 
Below Poverty

Population With A Ratio Of  
Income To Poverty Level Under 0.5

Population With A Ratio Of Income 
To Poverty Level 0.5 to 0.99

Albuquerque 350010001071 2014 70,625 1,358 169 61 108

Albuquerque 350010001071 2015 79,276 1,293 133 57 76

Albuquerque 350010001071 2016 95,000 1,531 151 81 70

⋯

Table 9. Example of indicators for SDG 1 at the CBG level in the produced dataset.
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in the computer vision community27,77,78, we also present the evaluation metrics for the object detection and 
semantic segmentation models on the evaluation datasets in Table 5. Specifically, we show the accuracy, precision, 
and recall for all object categories, as well as the mean Average Precision under Intersection over Union (IoU) 
threshold 0.5 (mAP@0.5) for the object detection models on xView and DOTA v2 datasets and the accuracy and 
mean IoU (mIoU) for the semantic segmentation model on LoveDA dataset. For purposes of comparison, the 
state-of-the-art model SAC79 reaches a mAP@0.5 of 27.2%, which is lower than the 37.1% of our object detec-
tion model on xView dataset. For the DOTA v2.0 dataset, the best mAP is obtained by DCFL80 reaching 57.66%. 
However, since the image split and experiment settings in the object detection model training processes might be 
different, the direct comparison of performance metrics of our models and the state-of-the-art literature on xView 
and DOTA v2.0 datasets is for reference only. For the semantic segmentation task, the mIoU of our model 52.8% 
is close to the state-of-the-art model UperNet81 with an mIoU of 52.44%. Such results guarantee the usefulness 
and credibility of our produced data. In addition, to test the robustness of our trained models qualitatively, we ran-
domly select satellite images with their corresponding object detection and semantic segmentation results, which 
are shown in Fig. 4. We visualize the object detection results in satellite imagery in Fig. 4a, where buildings and 
passenger vehicles are identified. For the satellite imagery semantic segmentation model, the ViT-Adapter-based 
model shows high performance in recent semantic segmentation tasks, and the example of segmentation result is 
shown in Fig. 4b. The results prove the effectiveness of transferring the pre-trained models to our satellite imagery.

SDG indicators prediction from satellite imagery visual attributes. Visual information in satel-
lite imagery correlate with income/daily consumption11,14,82, commercial activity16,83–86, education level12, and 

Geographic Area SDG 3 (Good Health and Well-being)

City Name CBG Code Year

Civilian 
Noninstitutionalized 
Population

Population With No 
Health Insurance 
Under 18

Population With No 
Health Insurance 
Between 18 To 34

Population With No 
Health Insurance 
Between 35 To 64

Population With No 
Health Insurance 
Over 65 Years Old

Albuquerque 350010001071 2014 1,527 0 10 62 0

Albuquerque 350010001071 2015 1,426 0 8 67 0

Albuquerque 350010001071 2016 1,682 0 22 38 0

⋯

Table 10. Example of indicators for SDG 3 at the CBG level in the produced dataset.

Geographic Area SDG 4 (Quality Education)

City Name CBG Code Year

Population 
Enrolled In 
College

Population That 
Graduated From 
High School

Population With 
A Bachelor’s 
Degree

Population 
With A Master’s 
Degree

Population 
With A 
Doctorate

Albuquerque 350010001071 2014 77 171 267 242 108

Albuquerque 350010001071 2015 50 140 233 259 97

Albuquerque 350010001071 2016 77 207 276 250 108

⋯

Table 11. Example of indicators for SDG 4 at the CBG level in the produced dataset.

Geographic Area SDG 10 (Reduced Inequalities)

City Name CBG Code Year Light Gini Income Gini

Albuquerque 350010001071 2014 0.761 —

Albuquerque 350010001071 2015 0.405 —

Albuquerque 350010001071 2016 0.392 —

⋯

Table 12. Example of indicators for SDG 10 at the CBG level in the produced dataset.

Geographic Area SDG 11 (Sustainable Cities and Communities)

City Name CBG Code Year
Building 
Density

Driving/Cycling/
Walking Road 
Density

POI 
Density Land Use

Index of 
Dissimilarity

Entropy 
Index

Albuquerque 350010001071 2014 20.3 8.28/9.63/9.87 1.59 0/0/0/33.7% — 0.702

Albuquerque 350010001071 2015 39.9 8.87/11.6/11.9 1.99 0/0/0/33.7% — 0.674

Albuquerque 350010001071 2016 39.9 8.71/11.5/11.7 1.99 0/0/0/33.7% — 0.786

⋯

Table 13. Example of indicators for SDG 11 at the CBG level in the produced dataset.
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health outcome12,87. Therefore, we validate the possibility of inferring SDG indicators from corresponding satellite 
imagery. Specifically, for each CBG, the visual attributes (see Table 3) of satellite imagery are fed into a regression 
model to infer the SDG indicators. We select median household income, population with no health insurance 
at all ages, population that graduated from high school, and POI density in 2018 as the indicators for poverty, 
health status, education, and commercial activity, respectively. We experiment on whether those indicators can be 
inferred from the satellite images by applying Gradient Boosting Decision Trees (GBDT)88 on the satellite imagery 
visual attributes and the indicators selected above as output at the CBG level. The ground truth data for training 
and validation of the regression models are the collected SDG indicators in our dataset. We randomly split the 100 
cities into 80 training cities and 20 validation cities, and thus all the CBGs in one city are grouped into the same 
fold. The regression results are shown in Fig. 5, where we can see that the coefficient of determination75 R2 of the 
predicted median household income and POI density with regard to the ground truth are higher than the R2 for 
health and education indicators. Specifically, GBDT has a prediction performance of R2 reaching about 0.155 and 
0.338 for median household income and POI density, respectively. These results are consistent with the findings 
in previous research11,14,16,82 that socioeconomic status can be inferred from satellite imagery, confirming the 
validity of the provided dataset and demonstrating the potential to monitor SDGs from satellite imagery. While 
the education and health indicators are predicted with low precision, which encourages dataset users for future 
enhancement. At present, most research on predicting socioeconomic status from satellite imagery focuses on 
income/poverty (SDG 1) and commercial activity (POI density in SDG 11). The studies for inferring regional 
health or education status are very few, and the performance of relevant prediction models is much lower than the 

Fig. 3 Comparison of the overall population in city-of-interests in our dataset and population in all U.S. cities.

Fig. 4 Visualization of the (a) object detection and (b) semantic segmentation results. (Zoom-in is recommended 
to visualize the bounding box classes in (a)).
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performance of income prediction (see Fig. 5), which makes the health and education-related SDG monitoring a 
promising research direction in the future.

Usage Notes
This study aims to provide a long-term and multi-scale dataset in cities covering the satellite imagery attributes 
and SDG indicators for urban policymakers and researchers to advance SDG monitoring. Specifically, the satel-
lite imagery attributes in our dataset can be used as input for proposing machine learning models to predict the 
SDG indicators. Moreover, the SDG data in our dataset can also provide insights into how SDGs evolve in time or 
scale. Since our dataset contains various aspects of cities, we recommend the following potential research appli-
cations: introducing new methods for predicting poverty/income, health, education, inequality, and living envi-
ronment status of people in cities from long-term or multi-scale satellite images. Researchers are also encouraged 
to discover the underlying relationship between various SDG progresses and satellite images in cities.

The dataset files at the CBG level has about 400,000 lines of data, which might take a long time to load in 
Excel. Thus, we recommend loading the data with a Python script that can handle large datasets. For the object 
numbers inferred from the satellite imagery, the confidence level above 0.2 is counted.

Code availability
The Python codes to collect, process, and plot the dataset as well as the supplementary files for this study are 
publicly available through the GitHub repository (https://github.com/axin1301/Satellite-imagery-dataset). 
Detailed instruction for the running environment, file structure, and codes is available in the repository.

Received: 14 February 2023; Accepted: 15 September 2023;
Published: 4 December 2023

Fig. 5 SDG indicators prediction results from satellite imagery visual attributes with GBDT at the CBG level 
in 2018. (a) Median household income (log), (b) Population (log) with no health insurance at all ages, (c) 
Population (log) that graduated from high school, and (d) POI density (log).
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