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a twenty-year dataset of high-
resolution maize distribution  
in China
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& Wenping Yuan  1 ✉

China is the world’s second-largest maize producer, contributing 23% to global production and playing a 
crucial role in stabilizing the global maize supply. Therefore, accurately mapping the maize distribution 
in China is of great significance for regional and global food security and international cereals trade. 
However, it still lacks a long-term maize distribution dataset with fine spatial resolution, because 
the existing high spatial resolution satellite datasets suffer from data gaps caused by cloud cover, 
especially in humid and cloudy regions. This study aimed to produce a long-term, high-resolution maize 
distribution map for China (China Crop Dataset–Maize, CCD-Maize) identifying maize in 22 provinces 
and municipalities from 2001 to 2020. The map was produced using a high spatiotemporal resolution 
fused dataset and a phenology-based method called time-Weighted Dynamic time Warping. a 
validation based on 54,281 field survey samples with a 30-m resolution showed that the average user’s 
accuracy and producer’s accuracy of CCD-Maize were 77.32% and 80.98%, respectively, and the overall 
accuracy was 80.06% over all 22 provinces.

Background & Summary
Food security is the foundation of human survival and national security. According to the Food and Agriculture 
Organization (FAO), nearly 10% of the world’s population suffered from hunger in 20201. With the rising global 
population, global food demand will increase by 100–110% in 2050 compared to 20052, which may significantly 
challenge food security3,4. Maize is one of the most widely planted cereals in the world, and sustainable maize 
production plays a crucial role in meeting the rapidly growing food demand and ensuring national and global 
food security. Maize represents an important source of food for humans and animals and industrial raw mate-
rial5,6. Since 2001, maize has surpassed rice as the world’s second-largest cereal1. In 2019, maize accounted for 
about 12% of global crop production1.

Large-scale and long-term distribution maps of maize are essential for maintaining food security and achiev-
ing sustainable development7,8. Distribution maps of maize are not only crucial data for simulating maize yield9, 
but also the basis for identifying maize phenology10,11. Additionally, a distribution map of maize can be used as a 
reference for predicting future maize distributions by exploring the driving forces of crop distribution patterns12. 
Because of the use of fertilizers such as nitrogen, a large amount of long-term existed greenhouse gas N2O is 
associated with the maize planting process13,14. Therefore, the distribution map of maize can also be an impor-
tant source of data for simulating greenhouse gas emissions from agricultural ecosystems and plays an impor-
tant role in determining the regional budget for greenhouse gases15,16. In addition, compared with C3 plants, a 
C4 crop type such as maize has stronger photosynthetic capacity17. To accurately estimate the global crop gross 
primary productivity, mapping the long-term spatial distribution of maize is necessary18.

As the world’s second-largest maize producer, China produced 260.95 million tons of maize in 2019, account-
ing for 22.72% of global maize production1. However, in recent years, climate change and extreme weather 
events have profoundly affected China’s agricultural production19–21. Specifically, maize can be cultivated in 
various geographical regions and environmental conditions, including large areas with no irrigation22, and is 
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highly sensitive to climate change. Studies have shown that from 1979 to 2016, for every 1 °C increase in temper-
ature, China’s maize yield decreased by 1.7%23. In addition, Yuan et al.24 found that the planting area of maize in 
China has significantly increased with the improvement of economic returns, leading to substantial changes in 
its spatial distribution pattern. Therefore, long-term and accurate monitoring of maize distribution is of great 
significance for reducing economic losses and ensuring food security25.

At present, methods based on remote sensing data are the basic approach for identifying the regional-scale 
maize planting area and its dynamics. Remote sensing data has the advantages of temporal and spatial con-
tinuity, high updating frequency, and low acquisition cost. Currently, many studies have attempted to map 
the distribution of maize at the provincial and national levels in China based on remote sensing data26,27. For 
example, Zhang et al.26 mapped the distribution of maize in 11 provinces in Northeast and North China in 
2010 using MODIS (Moderate Resolution Imaging Spectroradiometer) data with a spatial resolution of 250 m. 
Luo et al.27 generated a 1000-m spatial resolution dataset of the distribution of rice, wheat, and maize in China 
from 2000 to 2015 based on MODIS data, by comparing the phenological periods of each pixel with the ref-
erence phenological periods of the three crops. However, China is one of the countries with the most severe 
cropland fragmentation issues28. Since the implementation of the household contract responsibility system in 

Fig. 1 Location of study area and field survey samples. Red dots indicate maize samples and blue dots indicate 
non-maize samples, including other crops, forests, shrubs, water, buildings, and sheds. All samples were 
collected in 2019 through field surveys and © Google Earth.

Fig. 2 Changes in maize planting area in 22 provinces and municipalities in China from 2001 to 2020.
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1979, the absolute average allocation of land has exacerbated the degree of cropland fragmentation, resulting 
in extremely scattered cropland in China29–31. The report shows that the average cropland area per household 
in China was 0.58 hectares in 201432. In addition, there are significant differences in planting habits among 
Chinese households, as farmers are free to choose which crops to plant, leading to high heterogeneity in crop 
types. Thus, one MODIS pixel with resolutions of 250 to 1000 m typically covers the fields of 10 to 172 house-
holds, resulting in a large amount of misclassification that affects the accuracy of maize maps31.

There have been several efforts to generate distribution maps of maize using high spatial resolution satellite 
datasets, which can effectively avoid mixed-pixel issues. You et al.33 produced annual crop maps for the main 
crops (maize, soybean, and rice) of Northeast China from 2017 to 2019 based on Sentinel-2 data at 10-m res-
olution, with an overall accuracy of 81–86%. Recently, Shen et al.22 obtained a 30-m resolution maize map for 
22 provinces of China from 2016 to 2020 using Landsat and Sentinel-2 satellite data, with an average overall 
accuracy of 79.13%. These studies have focused more on recent years’ maize mapping. However, a long-term 
high-resolution dataset of maize distribution in China is still lacking. The limitation is mainly due to the lack 
of corresponding long-term high spatiotemporal resolution remote sensing data. Although Landsat data have a 
high spatial resolution (30 m) and a long-term span, their temporal resolution is low (16 days) and tends to be 
affected by cloud contamination. In Southern China, for example, from 1984 to 2017, there were fewer than 10 
cloud-free observations per year, making it challenging to accurately map maize due to the lack of critical crop 
growth information34. Sentinel-2 data (10 m or 20 m, 5 days) can balance spatial and temporal resolution well 
but lack historical time series due to the more recent launch of the satellite (e.g., Sentinel-2A was launched in 
2015).

A fused data product has the potential to overcome the above problems. It can fuse frequently revisited but 
coarse spatial resolution images and infrequently revisited but high spatial resolution images to reconstruct 
long-term high spatiotemporal resolution images, providing data support for improving crop classification 
accuracy35–40. For example, Yin et al.41 produced a rice distribution map of the Sanjiang Plain by fusing MODIS 
and Landsat data, and the results showed that the overall accuracy improved by 6.07% based on the fused 
data compared to using only Landsat data. Ding et al.42 used a fusion of MODIS and Landsat data to identify 
rice in Nanchang County of China and achieved an overall accuracy of 93.66%. However, these studies were 
conducted on small reference datasets and the long-term identification of maize over large regions based on 
fused data still lacking. Recently, a study has combined MODIS data and Landsat data to generate a long-term 
high spatiotemporal resolution fused dataset of Normalized Difference Vegetation Index (NDVI) (Integrating 
ENvironmental VarIable spatiotemporal fusion dataset, InENVI) over a large regional scale, which can be used 
for high-precision crop mapping43.

Therefore, based on the newly produced high spatiotemporal resolution and long time series (2001–2020) 
NDVI fused dataset (i.e., InENVI) in China, this study produced high-resolution maps of maize distribution 
from 2001 to 2020 by the Time-Weighted Dynamic Time Warping (TWDTW) method. The specific objec-
tives were: (1) to generate a publicly available database of long-term high-resolution maize distribution maps 
in China; (2) to evaluate the accuracy of the maize distribution dataset using field surveys, Google Earth sam-
ples, unmanned aerial vehicle images (UAV), and county-level statistical data; and (3) to analyse the temporal 
and spatial variation characteristics of maize distribution in China. The generated dataset provides important 
foundational data for estimating maize production, identifying maize phenology, and monitoring food security.

Fig. 3 Standard seasonal curves of maize in 22 provinces in 2019, including (a) summer maize and (b) spring 
maize.
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Methods
Study area. Based on agricultural statistical data, 30 provinces and municipalities in mainland China planted 
maize in 2020. This study focused on mapping maize in 22 of these provinces and municipalities, accounting for 
over 99% of the total maize planting area in China for 2020, including Anhui, Gansu, Hebei, Heilongjiang, Henan, 
Inner Mongolia, Jiangsu, Jilin, Liaoning, Ningxia, Shaanxi, Shandong, Shanxi, Tianjin, Xinjiang, Chongqing, 

Province Class Maize Other UA (%) PA (%) OA (%)

Gansu
Maize 190 82 82.97 69.85

79.46
Other 39 278 77.22 87.70

Hebei
Maize 2137 156 83.77 93.20

89.16
Other 414 2549 94.23 86.03

Heilongjiang
Maize 921 130 56.50 87.63

83.26
Other 709 3251 96.15 82.10

Henan
Maize 1145 544 55.83 67.79

76.43
Other 906 3556 86.73 79.70

Inner Mongolia
Maize 1756 237 72.38 88.11

79.75
Other 670 1816 88.46 73.05

Jilin
Maize 811 36 84.48 95.75

94.04
Other 149 2106 98.32 93.39

Liaoning
Maize 1906 28 82.98 98.55

91.57
Other 391 2647 98.95 87.13

Ningxia
Maize 592 498 89.97 54.31

71.67
Other 66 835 62.64 92.67

Shaanxi
Maize 327 95 89.10 77.49

89.00
Other 40 765 88.95 95.03

Shandong
Maize 4837 504 83.20 90.56

88.58
Other 977 6645 92.95 87.18

Shanxi
Maize 485 175 83.62 73.48

87.27
Other 95 1366 88.64 93.50

Tianjin
Maize 74 34 88.10 68.52

76.72
Other 10 71 67.62 87.65

Xinjiang
Maize 69 21 54.33 76.67

75.16
Other 58 170 89.01 74.56

Table 1. Confusion matrices of the distribution map of maize in northern provinces. The rows in the confusion 
matrices mean the number of field identified samples, and the columns mean the number of surveyed samples.

Province Class Maize Other UA (%) PA (%) OA (%)

Anhui
Maize 603 96 68.37 86.27

78.06
Other 279 731 88.39 72.38

Chongqing
Maize 12 0 24.00 100.00

64.81
Other 38 58 100.00 60.42

Guangxi
Maize 13 6 26.00 68.42

66.41
Other 37 72 92.31 66.06

Guizhou
Maize 34 25 64.15 57.63

73.65
Other 19 89 78.07 82.41

Hubei
Maize 158 99 45.80 61.48

80.97
Other 187 1059 91.45 84.99

Hunan
Maize 9 0 27.27 100.00

76.24
Other 24 68 100.00 73.91

Jiangsu
Maize 168 41 82.35 80.38

81.88
Other 36 180 81.45 83.33

Sichuan
Maize 76 30 60.80 71.70

77.87
Other 49 202 87.07 80.48

Yunnan
Maize 270 9 48.74 96.77

79.28
Other 284 851 98.95 74.98

Table 2. Confusion matrices of the distribution map of maize in southern provinces. The rows in the confusion 
matrices mean the number of field identified samples, and the columns mean the number of surveyed samples.
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Guangxi, Guizhou, Hubei, Hunan, Sichuan, and Yunnan (Fig. 1). In 2020, the 22 provinces produced a total of 
259 billion tons of maize, with a total planting area of 40.93 million hectares (http://www.moa.gov.cn/), which 
increased by about 17.05 million hectares from 2001 (Fig. 2). The major maize planting provinces in China, 
including Heilongjiang, Jilin, Shandong, Inner Mongolia, Henan, Hebei, and Liaoning, accounted for over half of 
the total planting area in China.

Fig. 4 Classification maps at UAV sites of Ningxia (a1,a2), Shaanxi (b1,b2), and Inner Mongolia (c1,c2). All 
UAV pictures were taken in August 2018. Red indicates the identified maize pixel. The coordinates of the 
center points of a1 and a2 are (105°48′36″ E, 37°32′24″ N); the coordinates of the center point of b1 and b2 are 
(109°44′04″ E, 34°33′0″ N); the coordinates of the center point of c1 and c2 are (110°27′0″ E, 40°33′13″ N).

https://doi.org/10.1038/s41597-023-02573-6
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In China, maize can be divided into spring maize and summer maize based on the sowing season. Summer 
maize is mainly planted in the Huang-Huai-Hai region, including Henan, Shandong, Jiangsu, and Anhui; Hebei, 
Shanxi, Shaanxi, and Xinjiang plant both spring maize and summer maize; other provinces mainly plant spring 
maize. Summer maize is usually rotated with other winter crops (such as summer maize-winter wheat rota-
tion). The planting time is typically from late May to mid-to-late June, with harvest occurring from mid-to-late 
September to early October. Spring maize is only planted once a year, with a wide range of planting times across 
different regions, from March to May. The harvest time varies depending on the planting time, mostly from 
August to October.

Fig. 5 County-level comparison of identified and statistical planting areas of all provinces. (a–t) show  
2001–2020. The red dashed lines indicate the 1:1 line, and the red solid lines indicate the regression lines.

https://doi.org/10.1038/s41597-023-02573-6
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Fused dataset. In this study, the latest fused InENVI NDVI dataset was used to generate the maize distri-
bution maps in China43. This dataset is based on the nonlinear relationship between MODIS NDVI and Landsat 
NDVI to reconstruct high spatial resolution NDVI data43. The dataset has a wide spatial coverage (China), long 
time series (2001–2020), and high spatiotemporal resolution (30 m, 8 days), making it a high-quality dataset for 
long-term identification of maize planting areas.

agriculture data. This study assessed the accuracy of a maize distribution map through field surveys and 
statistical data. In 2019, field surveys were conducted at 600 randomly selected sites across 11 provinces in China. 
In August 2018, three UAV (eBee, senseFly Ltd., Switzerland) images covering approximately 0.1 square kilome-
ters and containing about 6000 spatial resolution 30 × 30 m pixel samples were collected in Ningxia, Shaanxi, and 
Inner Mongolia. Additionally, maize fields and other land cover types were interpreted using high-resolution sat-
ellite images from Google Earth in 22 provinces for 2002, 2005, 2007, 2008, 2011, 2012, 2013, and 2019. In total, 
54,281 samples with a spatial resolution of 30 × 30 m were obtained through field surveys and visual interpreta-
tion of Google Earth. Among them, 22,070 samples were maize, and 32,211 samples were other crops, forests, 
shrubs, water, buildings, and sheds.

In addition, this study evaluated the accuracy of the identified maize distribution using county-level and 
provincial-level statistical data obtained from the National Bureau of Statistics (NBS) of China (http://data.stats.
gov.cn/). Accuracy assessment was conducted using county-level statistical data from 17 provinces from 2001 
to 2020.

time-weighted dynamic time warping. In this study, the TWDTW method proposed by Maus et al.44  
and Dong et al.45 was used to identify the spatial distribution of maize in China, which run annually. The 
TWDTW method is an improved version of the Dynamic Time Warping (DTW) algorithm, which measures the 
similarity between two non-linear time series curves by calculating the distance value. Assuming that the time 
series X = {x1, x2, …, xn} is the curve of an unknown pixel, and the time series Y = {y1, y2, …, ym} is the standard 
curve of a known maize pixel, and the lengths of the two curves are n and m respectively. The DTW algorithm 
measures the similarity between the two given time series using the Euclidean distance and can flexibly warp and 
stretch the time series X to align with the time series Y. Use dbase(i, j) to represent the distance matrix obtained by 
calculating the Euclidean distance between any two points in sequence X and sequence Y. The calculation is as 
follows46:

∣ ∣d x y (1)base i j i j( , ) = −

Among them, xi ∈ X ∀ i = 1, 2, …, n, yj ∈ Y ∀ j = 1, 2, …, m. Each matrix element d(i, j) represents the alignment 
distance between xi and yi.

On the basis of the distance matrix dbase(i, j), the cumulative distance matrix is obtained by recursively sum-
ming the minimum distance di, j:

Fig. 6 County-level comparison of identified and statistical planting areas in each province. (a) R2, (b) RMAE, 
and (c) Slope of county-level identified maize areas compared to agricultural statistical data in 17 provinces for 
2001–2020.
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d d min d d d{ , , } (2)i j base i j i j i j i j, ( , ) 1, 1, 1 , 1= + − − − −

The DTW algorithm calculates the distance between two sequences by finding a warping path with the 
smallest stretching or compressing distance in the cumulative distance matrix, and the points on the path 
are the points where the two sequences are warped and aligned. The final distance is used to characterize the 
similarity between the time series X and Y. TWDTW improves DTW by adding time weights, which avoids 
over-stretching or compressing the curves during time matching and ignoring the seasonal variation of crops. 
The calculation of the distance matrix dbase(i, j) in TWDTW becomes:

∣ ∣ω= + −d x y (3)base i j i j i j( , ) ,

ω =
+ α β− −e

1
1 (4)

i j g t t, ( ( , ) )i j

This study calculated the time weights using a logistic model with parameters suggested by Belgiu and Csillik 
(2018), where the steepness and midpoint were set to 0.1 and 50, respectively, indicating lower penalties for time 
warping less than 50 days and higher penalties for time warping more than 50 days.

First, this study created a potential maize distribution map based on the NDVI time series, where pixels 
with NDVI greater than 0.3 at any time during the maize growing period to reduce the number of identi-
fied pixels. Then, fifty field samples of maize were randomly selected in each province and their NDVI time 
series were averaged to obtain the standard seasonal curve of NDVI for spring and summer maize (Fig. 3).  
The similarity between the standard NDVI seasonal curve and the seasonal curve for the unknown land 
cover type was calculated for each pixel, with higher similarity indicating a higher probability of the identi-
fied pixels as maize. For the provinces planted both spring and summer maize, we calculated the similarity 

Fig. 7 Spatial comparison of (a) R2 and (b) RMAE of identified and statistical planting areas, and (c) trend 
change in average R2 and RMAE from 2001 to 2020 over the 17 provinces with the county-level statistical area.
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between the seasonal curve and the two standard curves for each pixel separately, and took the one with 
the higher similarity as the correct similarity for the pixel. Finally, we selected the n pixels with the highest 
similarity to the standard curve as the identified maize pixels. The total area of all selected n pixels should 
be equal to the planting area of maize in the given province. The similarity threshold for each province was 
determined using the provincial statistical area of maize.

Statistical analysis. In this study, the identification accuracy of maize was evaluated based on the field 
surveys conducted in 2019. Fifty field samples were randomly selected to determine the standard seasonal curve 
of maize. The remaining samples were used to calculate three accuracy indicators, including Producer’s Accuracy 
(PA), User’s Accuracy (UA), and Overall Accuracy (OA). PA represents the percentage of the surveyed maize 
samples correctly identified as maize; UA represents the percentage of identified maize that are actually confirmed 
as maize samples by field survey; OA is calculated as the percentage of correctly identified samples. The three 
accuracy metrics can be calculated as:

TP
TP FP

PA 100%
(5)

=
+

×

=
+

×TP
TP FN

UA 100%
(6)

= +
+ + +

×TP TN
TP TN FP FN

OA 100%
(7)

where TP is the number of correctly classified maize samples, TN is the number of correctly classified non-maize 
samples, FP is the number of non-maize samples classified as maize, and FN is the number of maize samples 
classified as non-maize.

In addition, this study compared the identified maize planting area with the county-level statistical area. The 
coefficient of determination (R2), the slope of the regression line between the identified area and the statistical 

Fig. 8 Distribution of maize planting frequency in China from 2001 to 2020. Panels 1–5 on the right and 
bottom are the zoomed-in maps, indicating the local details of different provinces and regions, including 
Northeast, North China, South China, Southwest, and Xinjiang.
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area, and the relative mean absolute error (RMAE) were calculated for the 17 provinces with county-level statis-
tical data. The calculation formulas of R2 and RMAE are as follows:

R
IA SA
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where SAi and IAi are the statistical area and identified area of the ith county, and n represents the number of 
counties in a given province.

Data Records
The 30 m CCD-Maize dataset from 2001 to 2020 is available at https://doi.org/10.57760/sciencedb.0849047. The 
dataset is provided in GeoTIFF format, with pixel values of 1 for maize and 0 for non-maize. A total of 440 
GeoTIFF files are stored under 20 folders, and each folder represents the maize maps of 22 provinces in a specific 
year from 2001 to 2020.

technical Validation
accuracy assessment. Field survey assessment. We quantitatively evaluated the accuracy of maize distri-
bution maps based on field survey samples from 2002, 2005, 2007, 2008, 2011, 2012, 2013, and 2019. On average, 
the OA of maize identification in 22 provinces was 80.06%, with UA and PA of 77.32% and 80.98%, respectively 
(Tables 1, 2). Jilin had the highest OA of 94.04%, while Chongqing had the lowest at 64.81% (Tables 1, 2). There 

Fig. 9 Proportion of patches with different numbers of pixels (0–108) on the maize map of each province, (a–t) 
indicates 2001–2020.
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was a large variation in UA and PA across provinces, with lower accuracy found in several provinces in Southern 
China, such as Hunan, Hubei, Jiangsu, Guangxi, Chongqing, and Guizhou (Table 2). In some provinces, such as 
Henan Province, the accuracy varies greatly between early years and recent years, with the OA of 82.72% in 2019 
and only 53.06% in 2013 (Table S1). Figure 4a1,b1,c1 show large maize fields captured by UAV in August 2018 
at three sites in Ningxia, Shaanxi, and Inner Mongolia, with most fields showing a dark green color indicating 
maize, and a small area of other crops (such as rice, displaying light green). As shown in Fig. 4, the maize distri-
bution map produced in this study accurately identified the location of maize and distinguished buildings and 

Fig. 10 Statistics of the proportion of patches with 10 or fewer pixels (small patches). (a) spatial distribution 
of the proportion of small patches, and (b) the distribution of the average proportion of small patches in all 
provinces from 2001 to 2020.
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wide roads. However, there were some misclassifications, with some light green rice fields being misclassified as 
maize (Fig. 4a2).

Statistical data assessment. The accuracy of the maize maps was further validated based on county-level sta-
tistical data in this study. A total of 17 provinces with county-level statistical data were used for validation, with 
the total number of counties ranging from 1131 to 1614. The results showed that the maize distribution maps 
produced in this study could effectively reproduce the spatial variability of the maize planting area (Fig. 5). From 

Fig. 11 Comparison of the maize map of this study and Shen et al.22. (a) Maize planting area mapping based 
on fused products of 2020 in China; (b1,c1) partial zoomed-in maps of the identification results of Shen et al.22; 
(b2,c2) partial zoomed-in maps of the identification results based on the fused dataset.

https://doi.org/10.1038/s41597-023-02573-6
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2001 to 2020, the identified areas and the statistical areas of maize showed a strong correlation, with the scatters 
concentrated near the 1:1 line. The slope of the regression line between the maize classified area and the statis-
tical area ranged from 0.881 to 0.974, the RMAE ranged from 0.279 to 0.497, and the R2 was above 0.65, with a 
maximum of 0.903 in 2018 (Fig. 5).

Moreover, this study also analyzed the consistency between the identified maize area and the statistical area 
for each province. The results showed that the average R2 of all provinces from 2001 to 2020 ranged from 0.477 
to 0.868, the slopes of the regression line ranging from 0.712 to 1.001, and RMAE ranging from 0.264 to 0.644 
(Fig. 6). As shown in Fig. 7a,b, large identification errors were found in the middle and lower reaches of the 
Yangtze River Plain (i.e., Jiangsu, Hubei) and mountainous regions (i.e., Gansu, Ningxia, Yunnan, Sichuan), with 
R2 below 0.6. The northeast region (i.e., Liaoning, Jilin) showed the best identification accuracy, with Liaoning 
achieving the highest R2 of 0.868, followed by Jilin with R2 of 0.813 (Figs. 6, 7a). The identification accuracy of 
major maize-producing provinces such as Jilin, Liaoning, and Inner Mongolia was higher than that of other 
provinces from 2001 to 2020. The identification accuracy of provinces such as Jiangsu, Shandong, Henan, and 
Gansu fluctuated greatly between 2001 and 2020. For example, the R2 of Jiangsu was only 0.203 in 2003 but 
reached 0.739 in 2019 (Fig. 6). From the interannual variation of the average identification accuracy, both R2 
and RMAE showed significant temporal trends, with R2 gradually increasing and RMAE gradually decreasing 
from 2001 to 2020 (Fig. 7c). In 2018, RMAE reached a minimum of 0.350, and R2 was 0.750. Overall, the maize 
distribution maps produced in this study accurately reproduced the spatial variability of maize planting area and 
also achieved good performance at the annual scale.

Spatiotemporal patterns of maize. Based on the maize distribution maps generated by this study, we first 
analyzed the ratio of pixels with continuous maize planting in China from 2001 to 2020. As shown in Fig. 8, the 
maize planting in China generally showed a high frequency of continuous planting, with 50.74% of pixels having 
continuously planted maize for over 10 years and 19.80% for less than 5 years. The frequency of continuous maize 
plantings varied largely across different regions. The Northeast and Northern China, two major maize production 
regions, had relatively high frequencies of continuous maize planting, with over 67.13% of pixels planted for more 
than 10 years (Fig. 8). In contrast, Hunan had the lowest frequency of continuous maize planting, with 56.12% of 
pixels planted for less than 5 years (Fig. 8).

In addition, we analyzed the distribution of different-sized patches based on the generated maize distribu-
tion maps in China (Fig. 9). As shown in Fig. 9, the proportion of large patches (defined in this study as patches 
with over 1,000 pixels, an area of about 90 hectares or larger) in major maize-producing provinces such as 
Hebei, Henan, Jilin, Liaoning, and Shandong were very high, reaching over 50%. However, in most southern 
provinces, such as Guangxi, Guizhou, Hubei, Hunan, Sichuan, Yunnan, and Chongqing, the proportion of large 

Fig. 12 Comparison of the overall accuracy of the maize planting distribution map in 2019 of this study and 
Shen et al.22.

Province Class Maize Other UA (%) PA (%) OA (%)

Heilongjiang
Maize 1018 520 44.40 66.19

78.52
Other 1275 5544 91.42 81.30

Jilin
Maize 364 126 85.85 74.29

87.52
Other 60 940 88.18 94.00

Liaoning
Maize 463 60 79.83 88.53

91.50
Other 117 1443 96.01 92.50

Table 3. Confusion matrices of the distribution map of maize in Northeast provinces using independent 
sample sets from You et al.33. The rows in the confusion matrices mean the number of field identified samples, 
and the columns mean the number of surveyed samples.
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patches was relatively low, at only 13.88%. The proportion of patches of different sizes in each province depends 
largely on the degree of cropland fragmentation in China. In this study, we used the proportion of small patches 
(defined in this study as patches with 10 or fewer pixels, an area of about 0.9 hectares or less) as an indicator to 
measure the fragmentation of maize distribution maps. From 2001 to 2020, the most severely fragmented areas 
were generally in South and Southwest China, while the degree of fragmentation in Northeast China was much 
smaller (Fig. 9).

Fig. 13 Comparison of the maize map in Heilongjiang for 2019 of this study and You et al.33. (a) Maize planting 
area mapping based on this study and You et al.33 (b,c) partial zoomed-in maps of this study and You et al.33.

Fig. 14 Comparison between the proportion of small patches and identification accuracy. (a) relationship 
between the proportion of the first and second types of small patches and the identification accuracy, 
(b) interannual relationship between the proportion of small patches and the identification accuracy the 
relationship between the changes, and (c) spatial comparison of the proportion of small patches and the 
identification accuracy.
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The fragmentation of maize maps can be further classified into three classes (Fig. 10a). Class I includes 
provinces with a small proportion of small patches (less than 15%), including Heilongjiang, Inner Mongolia, 
Jilin, Liaoning, Henan, Hebei, Shanxi, and Shandong, which are major maize planting provinces. Class II has 
a proportion of small patches between 15% and 30%, including Yunnan, Guizhou, Sichuan, Jiangsu, Hubei, 
and Gansu. Class III has a proportion of small patches greater than 30%, including Chongqing, Guangxi, and 
Hunan. Among them, Hunan has the highest proportion of small patches, reaching 67.52%, indicating that 
maize planting in this province is highly fragmented. Provinces with higher proportions of small patches (i.e., 
classes II and III) are mostly mountainous areas, where maize planting is more scattered. It should be noted that 
although Jiangsu is adjacent to Anhui, there is a significant difference in the proportions of small patches. This 
is because Jiangsu promotes rice planting to the north of the Huaihe River, where rice is widely planted, while 
maize planting is relatively less concentrated and more scattered, leading to a higher proportion of small patches 
(i.e., 24.33%). In contrast, in Anhui, north of the Huaihe River, maize is the main crop, while south of the Huaihe 
River, rice is the main crop, resulting in more concentrated maize planting and a lower proportion of small 
patches (i.e., 12.80%) (Fig. 10a). Additionally, the average proportion of small patches has gradually decreased 
from 2001 to 2020 (Fig. 10b), indicating a gradual reduction of cropland fragmentation in China.

Comparison with other studies. We compared the dataset produced in this study with an existing prod-
uct, a 30-m maize identification product for China from 2017 to 2020, produced by Shen et al.22, which was 
based on the NDVI composited from Landsat 7, Landsat 8 and Sentinel-2 images. Taking 2020 as an example, 
we selected study areas in Henan and Shandong (see the green boxes in Fig. 11a) and compared two products. As 
shown in Fig. 11b1,c1, the maize identification map of Shen et al.22 showed clear striping problems. This is due to 
the large number of missing values in these areas of Landsat and Sentinel-2 data, which cannot be fully restored 
by common filling interpolation methods48, thus affecting the identification accuracy45. Instead, the maize distri-
bution map produced in this study, which was based on the NDVI fused dataset, overcame this problem well, and 
the identified maize fields are more complete (Fig. 11b2,c2).

Based on field survey data of 2019, the average OA of this study is slightly higher than that of Shen et al.22. 
Specifically, the OA in Anhui and Jiangsu have significantly improved compared to Shen et al.22, while those in 
Gansu and Yunnan provinces have decreased (Fig. 12). In addition, this study calculated the average R2 at the 
county level from 2017 to 2020, and the results show that the average R2 based on the fused product was 0.877, 
which is higher than the identification accuracy of Shen et al.22, which was 0.822. Overall, the maize distribution 
maps produced in this study have achieved higher identification accuracy than the product of Shen et al.22.

Additionally, we further used independent sample sets from You et al.33 to verify the identification accuracy 
of our maize maps. On average, the OA of maize identification in 3 provinces was 85.85%, with UA and PA of 
80.95% and 82.80%, respectively (Table 3). Liaoning got the highest OA of 91.50%, while Heilongjiang achieved 

Fig. 15 Averaged filling percentage of fused data in the study area from 2001 to 2020.

https://doi.org/10.1038/s41597-023-02573-6


1 6Scientific Data |          (2023) 10:658  | https://doi.org/10.1038/s41597-023-02573-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

the lowest OA of 78.52% (Table 3). In addition, we compared our maize distribution map with You et al.’s33, 
and the overlap percentage in Heilongjiang, Jilin, and Liaoning are 72.37%, 77.56%, and 78.08%, respectively. 
Figure 13 shows the overlap percentage of two products in Heilongjiang in 2019. Our product was overestimated 
in high latitude areas, and the two products achieved high consistency in lower latitude areas.

Limitations and prospects. Although the long-term annual maize distribution map produced in this study 
performed well in spatial and interannual variability, there are still some uncertainties. In this study, the small 
patch proportion was used as an indicator of cropland fragmentation to analyze the relationship between crop-
land fragmentation and maize identification accuracy. As shown in Fig. 14a, there was a negative correlation 
between maize identification accuracy and the proportion of small patches, with decreased identification accu-
racy as the proportion of small patches increased. When the proportion of small patches was higher (greater than 
15%, i.e., Class II), the identification accuracy and the proportion of small patches showed a stronger correlation, 
i.e., the R2 of the Class II is 0.460, which is twice than that of Class I (0.212). In addition, the interannual variation 
of small patch proportion and identification accuracy shows a significant negative correlation, with an R2 of 0.806 
and a slope of −0.037 (Fig. 14b). In terms of spatial distribution, they also show a certain negative correlation, 
with an R2 of 0.305 and a slope of −0.007 (Fig. 14c). Vintrou et al.49 also found that the identification accuracy was 
linearly correlated with the average patch size calculated on the crop maps (R2 = 0.8), and the identification accu-
racy continued to improve as the average patch size increased. Numerous studies have consistently shown that 
a higher degree of cropland fragmentation leads to increased uncertainty in the accuracy of crop mapping50,51. 
Overall, our results indicated that the maize identification accuracy decreased as the degree of cropland fragmen-
tation increased. Therefore, it would be meaningless to identify the data in the other provinces and municipalities 
with limited and fragmentized maize areas.

The identification accuracy is also affected by the quality of remote sensing data. A recent study found that 
the number of cloud-free satellite images largely determines the recovery of vegetation index seasonal changes, 
which in turn affects the accuracy of crop classification45. Although the long-term, high spatiotemporal reso-
lution NDVI fused dataset used in this study has effectively recovered most of the missing data in the original 
Landsat data, the data recovery effect is still limited in some areas with severe cloud cover52. We calculated the 
proportion of Landsat missing values filled in the fused dataset in the study area from 2001 to 2020. As shown 
in Fig. 15, the filling percentage in Southern China was relatively high. Due to the influence of the East Asian 
summer monsoon in this region, there may be long periods of cloudy and rainy weather during the maize grow-
ing season, making it difficult to obtain cloud-free satellite images53. Taking Yunnan as an example, the average 
filling percentage from 2001 to 2020 was 75.26% (Fig. 15). When the filling percentage of the fused dataset is 
too high, it can cause some spectral distortion and blur52, which is an important factor to the low identification 
accuracy in these provinces.

The uncertainty of CCD-Maize is also highly related to the identification method used in this study, which 
is a phenology-based identification method. Maize has a very similar phenological cycle to many other summer 
crops, such as soybean, peanut, and rice, which greatly increases the difficulty of identifying maize. In most 
southern provinces, rice is the dominant summer crop and maize identification accuracy tends to be lower than 
in northern provinces (Fig. 7a,b). A previous study also found that maize had the lowest identification accuracy 
compared to rice and winter wheat distribution maps identified using the 250-m MODIS data27. Using only one 
index (such as NDVI) is not enough to fully distinguish maize from other summer crops22. To improve identi-
fication accuracy, further research is needed to explore the differences in vegetation indexes or surface albedo 
between maize and other summer crops. The red-edge bands from Sentinel-2 data are considered to be very use-
ful for vegetation monitoring and are widely used for crop classification54–56. Currently, multi-source data fusion 
mainly focuses on Landsat and MODIS data. In the future, using additional satellite data for spatiotemporal 
fusion, such as Sentinel-2, may improve fusion accuracy, leading to higher precision maize distribution maps.

Code availability
The classification of maize for each province in this study was performed on the local computer. The codes used 
is written in Python, Fortran, and Julia which are available from https://github.com/Pengqy97/TWDTW_codes.
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