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Multi-year belowground data of 
minirhizotron facilities in Selhausen
Lena Lärm  1,4 ✉, Felix Maximilian Bauer  1,4 ✉, Normen Hermes  1, Jan van der Kruk1, 
 Harry Vereecken  1, Jan Vanderborght  1, Thuy Huu Nguyen  2, Gina Lopez2, 
Sabine Julia Seidel2, Frank Ewert  2,3, Andrea Schnepf1 & anja Klotzsche  1 ✉

The production of crops secure the human food supply, but climate change is bringing new challenges. 
Dynamic plant growth and corresponding environmental data are required to uncover phenotypic crop 
responses to the changing environment. There are many datasets on above-ground organs of crops, 
but roots and the surrounding soil are rarely the subject of longer term studies. Here, we present what 
we believe to be the first comprehensive collection of root and soil data, obtained at two minirhizotron 
facilities located close together that have the same local climate but differ in soil type. Both facilities 
have 7m-long horizontal tubes at several depths that were used for crosshole ground-penetrating radar 
and minirhizotron camera systems. Soil sensors provide observations at a high temporal and spatial 
resolution. The ongoing measurements cover five years of maize and wheat trials, including drought 
stress treatments and crop mixtures. We make the processed data available for use in investigating the 
processes within the soil–plant continuum and the root images to develop and compare image analysis 
methods.

Background & Summary
As a result of climate change, ensuring food security for the vastly growing human population is one of the 
major challenges of the 21st century. While climate change is exerting increasing pressure on the availability 
of natural resources such as water and soil nutrients, there is an increasing demand on food production. To 
ensure food security for the growing world population, agricultural production will have to increase by at least 
60% by 20501. The yield of agricultural crops therefore needs to be increased and yield stability under changing 
conditions must be preserved, if current consumption patterns are maintained. A comprehensive understanding 
of all processes within agro-ecosystems is crucial to identify the key parameters to maintain yield stability and 
increase yield. The main source of water and nutrients for plants is the rhizosphere and the surrounding soil. 
Key parameters for potential improvements in water and nutrient efficiency could be revealed through a com-
prehensive understanding of the soil–plant continuum and its processes. This includes parameters describing 
the root architecture, influencing processes such as root water, and nutrient uptake, which governs the yield2. 
Field phenotyping, especially incorporating below ground information is crucial for breeders to capitalize on 
developments in genetics, since information identified under controlled environment are often not accounting 
for “real-world“ field conditions3. In-field observations also enable to investigate quantitative traits, particu-
larly those related to root features that influence drought stress tolerance. Therefore, field phenotyping facilities 
including below ground information provide precious data for breeders4. Additionally, knowledge about soil 
heterogeneity is crucial to understanding the distribution in soil water and nutrient content.

The data presented here include information about crop-relevant subsoil data – such as soil water content, 
soil water potential, soil temperature, and root development – on a high temporal-spatial resolution for multiple 
crop growing periods.

There are several techniques to observe roots non-destructive. The whole root system development can 
be observed with rhizotrons, equipped with a clear window on the side. Rhizotrons exist in various shapes 
for greenhouse and in-field observation5,6. If installed above ground, these rhizoboxes allow for the sampling 
and imaging of root systems through easily accessible windows and apertures at the side7,8. In the past, several 
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in-field rhizotrons often took the form of covered underground cellars or walkways with transparent windows 
or side walls for observing root development. In order to avoid expensive construction and maintenance costs, 
transparent – minirhizotrons (MR) – were introduced, enabling the in situ observation of the root in a fixed 
position, but at several depths9. By installing transparent tubes with an inclination, they could be accessed from 
the surface. These rhizotubes were subsequently also used in rhizotron facilities, where they were installed hori-
zontally from the trench walls at different depths to ensure that root distributions and root development could be 
observed in a larger soil volume than only at the side walls10. It is important that the installation of the rhizotubes 
is causing as little soil disturbance as possible. Especially in fine textured soil, less soil compaction around the 
tube, caused by the installation process, might alter the root growth11. These influences on the collected root data 
can be reduced to a negligible minimum when auger with the same diameter as the rhizotubes are used to drill 
holes for tube insertion, the soil is re-compacted according to previous bulk density measurements and a resting 
period is respected after tube installation (6–17 month)11–14. The permanent installation and maintenance of MR 
at several depths has only been done on very rare occasions due to the high manufacturing effort involved10,15. 
However, this kind of MR facility enables insights into processes within the soil–plant continuum at the plot 
scale, while offering high instrumentation for multifaceted observations at high spatial and temporal resolution.

One way to observe the root growth is imaging the roots and surrounding soil through the transparent 
rhizotubes with a special camera system. To analyze the resulting root images, various methods from root 
counting to single root analysis were performed with several manual or semi-automated software tools14,16–18. 
Depending on the targeted phenotypic traits and root image quality it is not always feasible to extract it manually 
from the images14,19. In contrast to genotype analysis, which can be performed with various high-throughput 
methods, the phenotyping of corresponding plant architecture and anatomy is still a bottleneck20. Image analysis 
based on the convolutional neural network (CNN) is the most promising way to close this gap21. In particular, 
CNNs are used to automatically detect different plant organs by segmenting them from the background22. While 
this is already established for above-soil organs of plants, applying these techniques to extract information about 
the root system remains challenging, especially under field conditions23,24. This is mainly due to the lack of 
availability of root image data, which are required to train a segmentation model, compared to shoot image data. 
Capturing shoot images is inexpensive and easy, while in-field root imaging is time- and labor-intensive (image 
acquisition time is 5–10 minutes on average per tube)19,25.

In addition to the root information, soil sensors measure point information on soil water content, soil water 
potential and soil temperature. Moreover, the spatial soil water content per depth can be measured with a 
ground-penetrating radar (GPR)26,27 between two neighboring rhizotubes.

The two MR facilities28 in Selhausen, Germany, enable longer term studies of the soil–plant continuum on 
two different soils in the same climate. To investigate the different components of the soil–plant continuum, 
these MR facilities offer unique conditions to record 4D subsoil information for multiple growing seasons under 
different field conditions and agronomic treatments. Detailed information about soil water content (SWC), soil 
water potential, and soil temperature was obtained at two locations within different soil types by the soil sen-
sors mentioned above. Furthermore, morphological root information was obtained in situ, including relevant  
root system traits such as length, diameter, branching frequency, etc. Root traits were acquired with cameras,  
taking images through horizontal transparent rhizotubes installed at several depths28,29. Since all measures to  
avoid altered root growth due to tube installation were taken, the root parameters are expected to have at most 
negligible deviations in this respect.

The data collected in this study can be used to develop, calibrate, and validate models of the soil–plant contin-
uum across different scales30 with regard to different root zone components such as soil processes, including flow 
processes31,32, root development33, and biopores34 as well as different model compilations such as single-plant 
and33 multi-plant modeling35 or soil water content and root water uptake modeling36,37. The data include agro-
nomically relevant information for breeding water-efficient cultivars and for field management under various 
conditions, which can be directly used by, for example, agronomists and biologists. Furthermore, the root image 
data provided here can be used to train and benchmark neural networks, since deep learning-based technolo-
gies are a fast and continuously developing branch of plant and agronomic data analysis. The images presented 
in this paper, which correspond to the root data, are – to the best of our knowledge – the largest available MR 
image collection, covering several years, cultivars, and agronomic treatments. In this context, the advantage of 
this image collection is twofold. Firstly, we provide more than 160,000 MR images in one freely available and 
categorized data set. Secondly, we simultaneously publish reference data that can be used for validation. On the 
one hand, this will help machine learning scientists to develop models, capturing more heterogeneity. On the 
other hand, soil and plant scientists will benefit directly from the analyzed data. The data set was acquired for 
the years 2016, 2017, 2018, 2020, and 2021, and will be continued in the future. The data set will thus be added to 
each year. Data for the years 2012–2015 are partly available, but are not included in this publication. The related 
above-ground data, including measurements on crop development, transpiration fluxes, and assimilation rates, 
will be published in a corresponding paper.

Methods
Minirhizotron facilities. The data for this publication were acquired at two MR facilities, allowing us to 
observe root growth through the rhizotubes and to measure 4D geophysical data. A detailed description of the 
construction of the MR facilities is provided in Cai et al.28. Here, we provide a basic overview of the facilities and 
the data acquisition.

The MR facilities are situated within the TERENO (TERrestrial ENvironmental Observatories) Eifel/
Lower Rhine observatory near Selhausen, Germany (50°52′N, 6°27′E) (see Fig. 1a). The Selhausen test site 
was mentioned in various studies ranging from geophysical observations and soil physics to root and plant 
modeling36,38–42. The weather station (SE_BDK_002) is located within the Selhausen test site. The recorded 
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parameters are used to calculate the evapotranspiration with a temporal resolution of 10 min. The data are 
available in the TERENO Data Discovery Portal (https://ddp.tereno.net/ddp/). The soil at the two MR facilities 
was deposited by fluvio-glacial sediments of the river Rur catchment during the Pleistocene28,41,43. Different 
river sediments were deposited at each MR facility. The upper terrace sediments consist of gravely, partly 
stony, and silty sand, and it is here where the upper terrace MR facility (Rut) is located. It is classified as Orthic  
Luvisol with a high stone content (>50%) (Yu et al.27) according to the World Reference Base for Soil Resources 
(IUSS Working Group WRB, 2007). The soil at the lower terrace is classified as Cutanic Luvisol (Ruptic, Siltic) 
(Bauer et al.39), and it is here where the lower terrace MR facility (Rlt) is located. The soil organic content  
and total soil nitrogen (derived from 2020) were 1.14% and 0.116% (0–0.3 m), 0.66% and 0.081% (0.3–0.6 m), 
and 0.42% and 0.059% (0.6–1 m) in Rlt as well as 1.39% and 0.128% (0–0.3 m, with a stone weight of 45%) in  
Rut. The sand, silt, and clay contents are on average 16%, 63%, and 21% (0–1 m, Rut) and 32%, 53%, and 15%  
(0–0.3 m, Rut). The different soils cause a 4° morphology incline from Rut towards Rlt (see Cai, et al.28. Due  
to regular tilling and plowing, a 0.3-m-thick plow layer (Ap horizon) was present in the upper 0.3 m of the two 
MR facilities (see Fig. 1b,c).

To compare different agronomic treatments under the same soil and atmospheric conditions, the two MR 
facilities were divided into three plots (Fig. 2a). Within the individual plots, three horizontal rhizotubes were 
installed at each of six different depths between 0.1 m and 1.2 m, each with a length of 7 m. The rhizotubes were 
embedded at a distance of 0.75 m in the horizontal axis (Fig. 2a). For each crop growing season, a crop row 
orientation perpendicular to the rhizotubes was chosen. To perform the measurements within the rhizotubes 
an access trench was built within the ground in front of the plots, from which the rhizotubes can be reached. At  
Rut, the soil was excavated and refilled while installing the rhizotubes, which was due to the high stone con-
tent. A plastic foil was installed down to 1.3 m depth to separate the plots. At Rlt, the soil is undisturbed since  
the installation was performed by drilling. The soil was precisely compacted layer by layer to the same bulk 
density as the undisturbed soil (see Cai, et al.28. For Rut, the differences in excess length is negligible, as they  
are less than <0.02 m. In contrast, for Rlt, excess lengths are up to 0.10 m. This was taken into account during  

Fig. 1 Overview of the location of the minirhizotron(MR)-facilities (a) Map of the apparent electrical 
conductivity (ECa in [mS/m]) measured with the electromagnetic induction (EMI) (vertical diapoles, 9.7 cm 
depth of investigation, 135 cm coil distance) of the Selhausen test site. Provided by Brogi et al.42. (b) Aerial 
photograph of the Selhausen test site and the MR-facilities. Both maps are given in WGS 1984 UTM Zone 32 N 
[m]. For (a) and (b) the location of the MR-facilities is given by the blues rectangles, the upper terrace facility 
(Rut) and the lower terrace facility (Rlt), the location of the access trench is indicated with a grey rectangle. (c,d) 
Photos of the soil profiles of the loamy soil at the Rlt (c) and of stony soil at the Rut (d).
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the processing of the data. Due to soil erosion and soil compaction after tillage and seedbed preparation, the 
depths of the rhizotubes vary between the individual measurement seasons. The individual rhizotube depths 
are provided in the repository “Additional_Information”44.

In addition to the measurements (GPR and root images) that can be performed within the rhizotubes, var-
ious soil sensors are embedded within the soil (see Soil Sensor Data section). Above ground at Rlt, there is a 
monitoring system for spectral electrical impedance tomography (sEIT)45.

A water reservoir is installed to provide rainwater for irrigation.

Study design. The MR facilities allow an in situ investigation of the soil–plant continuum. To observe the 
impact of drought stress and planting density on different crops and the impact of crop mixtures on root devel-
opment, various agronomic treatments were carried out for the different plots. This includes, depending on the 
growing season, surface water treatment (sheltered, natural/rainfed & irrigated), planting density, sowing date, 
and different crop cultivar mixtures. In this study, we present the data of multiple crop growing seasons between 
the years 2016 and 2021. An overview of the individual crop growing seasons and the agricultural treatments is 
provided in the repository “Additional_Information”44.

During the 2016 crop growing season, the goal was to compare different drought stress levels for winter 
wheat (Triticum aestivum, cv. Ambello). A shelter was therefore installed on Plot 1 for both MR facilities. The 
shelter had a cover, which was removed when no precipitation was forecasted. Plot 2 was left under natural 
conditions and is also referred to as the rainfed plot. For Plot 3, irrigation pipes were installed and the soil was 
irrigated regularly. The individual irrigation values can be found in the “Additional_Information”44. For crop 
growing seasons 2017 & 2018, Zea mays (cv. Zoey) was chosen and the shelter needed to be removed due to 
the height of the crop. This resulted in two rainfed plots (Plot 1 and Plot 2). As before, Plot 3 was irrigated. 
In 2018, the influence of the sowing date and the planting density was investigated on Plot 1 for Rut and Rlt,  
respectively.

Since the 2020 crop growing season, the focus of research was on comparing the different crop root architec-
tures of cultivars – purely sown and in a cultivar mixture with alternating rows. To explore the beneficial effects 

Fig. 2 Overview of the Minirhizotron (MR)-facilities. (a) Schematic setup of the MR-facilities indicating that at 
each of the plots a different agricultural treatment was applied for the different growing seasons. The direction 
of the crop rows is perpendicular to the direction of the rhizotrubes (red arrow). The measurements are carried 
out from the access trench. (b) View within the access trench. (c) Overview of one exemplary plot within the 
MR-facilities with the horizontal crosshole GPR ZOP measurement set up. Transmitter and receiver antennae 
are labeled Tx and Rx, respectively. Root image measurement are acquired using camera system attached to an 
index handle. (d) Sensor location for one exemplary plot.

https://doi.org/10.1038/s41597-023-02570-9


5Scientific Data |          (2023) 10:672  | https://doi.org/10.1038/s41597-023-02570-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

of mixing deep and shallow rooting cultivars, one cultivar chosen was always a deep rooting, while the other one 
was a shallow rooting cultivar. The surface water treatment was therefore uniform for all three plots. Irrigation 
was only applied to all crops under heavy drought conditions when the crops showed severe drought stress 
symptoms. For the 2020 crop growing season, two different Zea mays cultivars (cv. Sunshinos and cv. Stacey) 
were sown on Plot 1 and Plot 3, respectively. The cultivar mixture was sown on Plot 2. For the 2021 growing 
season, winter wheat (Triticum aestivum) with two different cultivars (cv. Milaneco and cv. Trebelir) was again 
sown on Plot 1 and Plot 3, respectively. The mixture was sown on Plot 2. In 2021, irrigation was not required 
since the winter wheat was sufficiently supplied by precipitation and the crops did not show any stress symptoms 
(Fig. 3). In order to perform destructive measurements above and below ground in 2020 and 2021, a replication 
field (extra field (EF)) next to Rlt was sown. The EF had the same dimension and plot design as the MR facilities 
and was located on the west side of the facility (see Above-Ground Data section).

Ground-penetrating radar data. Crosshole ground-penetrating radar data acquisition at the minirhizotron 
facilities. The time-lapse GPR data were collected using a 200 MHz PulseEKKO borehole system manufactured 
by Sensors and Software (Canada). Crosshole zero-offset-profiling (ZOP) measurements were carried out, with 
the transmitter (Tx) and receiver antennae (Rx) located within neighboring rhizotubes. Both antennae were 
simultaneously pulled in parallel positions along the length of the rhizotubes, with a spacing of 0.05 m between 
the individual ZOP positions. An electromagnetic (EM) wave is emitted by Tx, which is sent through the soil and 
then recorded by Rx. Changes in soil and root properties between the rhizotubes affect the measured GPR traces 
and, therefore, information about the medium parameters can be obtained (more information can be found in 
Klotzsche et al.26. Due to the different rhizotube lengths of both MR facilities, the length over which the ZOPs are 
collected is 6.70 m and 6.40 m, resulting in 115 and 109 traces for Rut and Rlt, respectively.

For a time-zero calibration, wide-angle reflection and refraction (WARR) measurements are carried out 
within the access trench. Here, Rx antennae are moved over a distance of 6.0 m with a step size of 0.1 m, while 
the Tx antennae are fixed at the zero location. At least four calibration measurements per MR facility and meas-
urement day were performed to capture daily variations of the time-zero (see GPR Data Processing section).

In contrast to the root images, which capture the soil in contact with the rhizotubes, the ZOP measurements 
investigate the soil between two rhizotubes. A 1D horizontal permittivity profile is thus obtained. For the meas-
urements seasons 2016–2018, only one horizontal permittivity plane was measured per depth. For Plot 1 and 
Plot 2, this were the slices between column C1 and C2, and for Plot 3 between column C2 and column C3. In 
2020, two main planes were measured per depth; occasionally only one plane was measured with the same con-
figuration as for the previous measurement seasons. Table 1 indicates that the number of horizontal permittivity 
planes was measured per measurement date.

Ground-penetrating radar data processing. From horizontal GPR crosshole ZOP measurements, we can derive 
the relative dielectric permittivity εr, which can be transformed into SWC using appropriate petrophysical rela-
tionships. All the required pre-processing steps are explained in detail by Klotzsche et al.26. Here, we highlight 
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the most important aspects. Firstly, a dewow filter is applied, which reduces low-frequency noises on the GPR 
data. Secondly, a time-zero (T0) correction of the ZOP data is performed and thirdly, the first breaks (FB) of the 
signals are estimated (Fig. 4a).

Following this processing procedure, the EM wave travel times between the neighboring rhizotubes for 
each ZOP position are obtained. Since the horizontal spacing between the neighboring rhizotubes (drhizotubes) 
is known to be 0.75 m, the EM wave velocity v for each ZOP position can be calculated using the obtained 
travel times (ttravel), see Fig. 4b. As suggested by Jol46, when considering low-loss and non-magnetic soils the  
EM velocity v can be transformed into the relative dielectric permittivity εr of the bulk material with

2016 2017 2018 2020 2021

no fac date pl date pl date pl date pl date pl

1
Rut 03.02.2016 12 26.04.2017 15 25.04.2018 15 19.03.2020 12 — —

Rlt 03.02.2016 — 26.04.2017 14 25.04.2018 14 — — 25.11.2020 29

2
Rut 30.03.2016 15 03.05.2017 15 02.05.2018 15 12.05.2020 30 — —

Rlt 30.03.2016 10 03.05.2017 14 02.05.2018 14 — — 02.12.2020 30

3
Rut 08.04.2016 15 10.05.2017 14 09.05.2018 15 28.05.2020 30 — —

Rlt 08.04.2016 15 10.05.2017 14 09.05.2018 14 — — 14.12.2020 29

4
Rut 14.04.2016 15 17.05.2017 15 14.05.2018 15 03.06.2020 30 — —

Rlt 14.04.2016 15 17.05.2017 14 14.05.2018 14 — — 14.01.2021 29

5
Rut 20.04.2016 15 23.05.2017 15 24.05.2018 15 10.06.2020 30 — —

Rlt 20.04.2016 15 23.05.2017 11 24.05.2018 14 — — 27.01.2021 29

6
Rut 28.04.2016 15 31.05.2017 15 20.06.2018 15 17.06.2020 25 — —

Rlt 28.04.2016 15 31.05.2017 14 20.06.2018 14 — — 10.02.2021 29

7
Rut 04.05.2016 15 07.06.2017 15 27.06.2018 15 06.07.2020 29 04.03.2021 30

Rlt 04.05.2016 15 07.06.2017 14 27.06.2018 14 — — — —

8
Rut 12.05.2016 15 14.06.2017 15 04.07.2018 15 15.07.2020 30 — —

Rlt 12.05.2016 15 14.06.2017 14 04.07.2018 14 — — 09.03.2021 —

9
Rut 19.05.2016 15 21.06.2017 15 09.07.2018 15 23.07.2020 5 11.03.2021 30

Rlt 19.05.2016 15 21.06.2017 14 — 14 — — 11.03.2021 —

10
Rut 25.05.2016 15 05.07.2017 15 11.07.2018 15 27.07.2020 30 19.03.2021 24

Rlt 25.05.2016 15 05.07.2017 14 11.07.2018 14 — — 19.03.2021 —

11
Rut 02.06.2016 15 12.07.2017 15 18.07.2018 15 05.08.2020 5 30.03.2021 15

Rlt 02.06.2016 14 12.07.2017 14 18.07.2018 14 — — 30.03.2021 29

12
Rut 09.06.2016 15 19.07.2017 15 19.07.2018 15 — — 15.04.2021 30

Rlt 09.06.2016 15 19.07.2017 14 19.07.2018 14 — — 15.04.2021 —

13
Rut 13.06.2016 15 27.07.2017 15 20.07.2018 15 — — 14.07.2021 30

Rlt 13.06.2016 15 27.07.2017 14 20.07.2018 14 — — 22.07.2021 —

14
Rut 20.06.2016 15 02.08.2017 15 25.07.2018 15 — — 28.07.2021 30

Rlt 20.06.2016 14 02.08.2017 14 25.07.2018 14 — — 28.07.2021 29

15
Rut 27.06.2016 15 09.08.2017 15 01.08.2018 15 — — 04.08.2021 30

Rlt 27.06.2016 14 09.08.2017 14 01.08.2018 14 — — 04.08.2021 28

16
Rut 04.07.2016 15 14.08.2017 15 08.08.2018 15 — — 18.08.2021 15

Rlt 27.06.2016 15 09.08.2017 15 01.08.2018 15 — — 04.08.2021 30

17
Rut 20.07.2016 15 23.08.2017 15 15.08.2018 15 — — — —

Rlt 20.07.2016 15 23.08.2017 14 15.08.2018 14 — — 25.08.2021 30

18
Rut 27.07.2016 15 30.08.2017 15 22.08.2018 15 — — — —

Rlt 27.07.2016 15 30.08.2017 14 22.08.2018 14 — — 31.08.2021 23

19
Rut 01.08.2016 15 06.09.2017 15 05.09.2018 15 — — 10.09.2021 30

Rlt 01.08.2016 15 06.09.2017 14 05.09.2018 14 — — 10.09.2021 19

20
Rut 08.08.2016 15 13.09.2017 15 17.09.2018 15 — — 29.09.2021 30

Rlt 08.08.2016 15 13.09.2017 14 17.09.2018 14 — — — —

21
Rut 15.08.2016 15 20.09.2017 15 24.09.2018 15 — — 03.11.2021 30

Rlt 15.08.2016 15 20.09.2017 14 24.09.2018 14 — — 03.11.2021 27

22
Rut — — 27.09.2017 15 02.10.2018 15 — — — —

Rlt — — 27.09.2017 14 02.10.2018 14 — — — —

Table 1. Detailed overview of the GPR data acquired during growing season 2016, 2017, 2018, 2020 and 2021.
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v c
(1)rε

=

where c is the speed of light (0.3 m/ns).
Because of the presence of the soil sensors and pertaining cables in the first 0.75 m away from the facility 

wall, GPR measurements were made between 1 and 7 m away from the facility wall. Close to the surface (depth 
of 0.1 m) the radar wave interferences of the critically refracted air wave and the direct wave26 occur. Therefore, 
these data were excluded. Additionally, at Rlt, an sEIT system is installed and the metal parts interfere with the 
GPR waves. Therefore, at a depth of 0.2 m, where the sEIT system is located, the data were also excluded.

GPR-derived permittivity can be transformed into the soil water content (SWC), which provides a parameter 
that is directly used in soil science. This is achieved by using different conversion formulas, which are based on 
empirical relationships and petrophysical, volumetric mixing models (see Huisman et al.47 and Steelman et al.48). 
In this data descriptor, we provide the permittivity values to ensure that the conversion can be chosen by the user 
of the data. In the past, we have used two conversions, the Topp’s equation49 and the complex refractive index 
model (CRIM)48 (see Klotzsche, et al.26 and the Dielectric Permittivity to Soil Water Content section).

Root images. Root image acquisition at the minirhizotron facilities. Images of roots and the surrounding 
soil were captured through the transparent rhizotubes. The amount of images obtained varied depending on the 
vegetation and the progress of root development. To save resources, the depth of measurement was continuously 
increased at the beginning of each growing season as root depth increased. Meticulous care was taken not to omit 
any root depth at which roots were already present. A measurement produces always 40 images per tube. Half of 
the images were taken 80° clockwise and the other half were taken 80° counter-clockwise from the top point of 
the rhizotubes. Two different camera systems were used over time to take the images. The camera used in 2016, 
and for most measurements in 2017, was manufactured by Bartz (Bartz Technology Corporation). The camera 
used for some of the images taken in 2017 and for all images taken in 2018, 2020, and 2021 was produced by VSI 
(Vienna Scientific Instruments GmbH).The photographed area differs depending on the camera (Table 2). Table 3 
provides a detailed overview of the images taken over the different growing seasons.

Root image data processing. The post processing of the images was performed by an automated analysis pipe-
line including neural network segmentation and automated feature extraction following the analysis pipeline 

GPR data processing
a) Signal processing

Dewow filter

Time-zero correction
(T0)

First break estimation
for each ZOP position Time [ns]

A
m

pl
i tu

de

raw data
dewowed data

FB

T0

b) Permittivity estimation

Calculation travel times

Calculation EM velocity

Calculation of horizontal 
permittivity planes

(1)

(2)

(3)

Fig. 4 GPR processing steps.
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of Bauer et al.50. Neural network training and image segmentation were performed with the “RootPainter”51 
software. Firstly, the roots were segmented by a CNN. As part of the process, the roots are separated from the 
background and extracted as binary image data. A small subset of the root images is used as training data to 
train the CNN. The evaluation of the models was performed with the F1-score (>0.7 for each model used). More 
information on the models can be found in Bauer et al.50. The resulting neural network model was then used for 
the segmentation of the roots. The segmentation of the images was performed in a batch process. Secondly, the 
morphological features were extracted by the automated feature extraction program “RhizoVision Explorer”52. 

camera system Bartz VSI

resolution (px) 1508 × 1020 2060 × 2060

real size (mm) 16.5 × 23.5 20 × 20

wavelength (nm) 400–780 400–780

growing season 2016 & 2017 2017 & 2018 & 2020 & 2021

Table 2. Overview of the camera-systems and experiment timeline of minirhizotron images acquisition.

2015/16 2017 2018 2020 2020/21

no fac date img date img date img date img date img

1
Rut 16.11.2015 719 08.06.2017 480 23.05.2018 440 02.07.2020 1,160 24.02.2021 1,480

Rlt 16.11.2015 720 08.06.2017 584 23.05.2018 720 13.08.2020 1,760 14.01.2021 600

2
Rut 26.11.2015 1,070 29.06.2017 1,800 30.05.2018 480 13.08.2020 1,800 03.03.2021 1,440

Rlt 26.11.2015 1,073 22.06.2017 1,800 30.05.2018 720 — — 27.01.2021 920

3
Rut 17.12.2015 1,799 06.07.2017 1,800 07.06.2018 960 — — 11.03.2021 1800

Rlt 17.12.2015 1,439 29.06.2017 2,160 07.06.2018 1,075 — — 04.02.2021 1,280

4
Rut 02.02.2016 1,518 13.07.2017 1,800 18.06.2018 1,280 — — 01.04.2021 440

Rlt 21.01.2016 1,795 06.07.2017 2,160 18.06.2018 1,436 — — 24.02.2021 1,320

5
Rut 12.02.2016 1,789 20.07.2017 1,800 26.06.2018 1,400 — — 08.04.2021 2,160

Rlt 12.02.2016 1,798 13.07.2017 2,160 26.06.2018 1,800 — — 03.03.2021 1,280

6
Rut 26.02.2016 1,795 27.07.2017 1,200 05.07.2018 1,638 — — 22.04.2021 1,560

Rlt 26.02.2016 2,155 20.07.2017 2,160 18.07.2018 2,156 — — 10.03.2021 1,640

7
Rut 14.03.2016 1,792 02.08.2017 1,840 18.07.2020 1,760 — — 21.05.2021 2,160

Rlt 14.03.2016 2,158 27.07.2017 1,430 01.08.2018 2,159 — — 07.04.2021 2,000

8
Rut 26.03.2016 1,837 10.08.2017 1,959 01.08.2018 1,680 — — 01.06.2021 520

Rlt 24.03.2016 2,155 02.08.2017 2,157 23.08.2018 2,159 — — 21.05.2021 1,960

9
Rut 07.04.2016 2,157 23.08.2017 2,120 16.08.2018 1,676 — — 07.06.2021 240

Rlt 07.04.2016 2,158 10.08.2017 2,154 — — — — 01.06.2021 1,960

10
Rut 13.04.2016 2,160 12.09.2017 1,800 — — — — — —

Rlt 13.04.2016 2,157 24.08.2017 2,159 — — — — — —

11
Rut 29.04.2016 2,154 — — — — — — — —

Rlt 29.04.2016 2,157 12.09.2017 2,150 — — — — — —

12
Rut 06.05.2016 2,154 — — — — — — — —

Rlt 06.05.2016 2,144 — — — — — — — —

13
Rut 13.05.2016 2,151 — — — — — — — —

Rlt 13.05.2016 2,155 — — — — — — — —

14
Rut 20.05.2016 2,156 — — — — — — — —

Rlt 20.05.2016 2,155 — — — — — — — —

15
Rut 27.05.2016 2,152 — — — — — — — —

Rlt 27.05.2016 2,153 — — — — — — — —

16
Rut 03.06.2016 2,108 — — — — — — — —

Rlt 03.06.2016 2,153 — — — — — — — —

17
Rut 09.06.2016 2,114 — — — — — — — —

Rlt 09.06.2016 2,083 — — — — — — — —

18
Rut 16.06.2016 2,111 — — — — — — — —

Rlt 16.06.2016 2,142 — — — — — — — —

19
Rut 23.06.2016 2,087 — — — — — — — —

Rlt 23.06.2016 2,006 — — — — — — — —

Table 3. Detailed overview of the images taken at the growing season 2016, 2017, 2018, 2020 and 2021.
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This includes multiple automated steps for thresholding obstacles and filling holes smaller than 0.2 mm as well 
as the skeletonization of the roots and the feature derivation from the skeletonized roots.

The root system parameters provided by the automated analysis include the total root length, branch points, 
branching frequency, diameter (average, maximum, median), network area, perimeter, amount of root tips, 
volume, and surface area50 (Fig. 5).

Soil coring in the extra field. Soil coring was performed in the EF (extra field established next to Rlt) 
dedicated to destructive belowground measurements in 2020 (maize) and 2021 (winter wheat). The soil next to 
Rut is not homogeneous, which is why a representative replica was not feasible. The maize roots were extracted 
once on July 14, 2020 when the crops were in BBCH 65, whereas the winter wheat roots were extracted on June 
16, 2021 when the crops were in BBCH 69. The soil was cored using a root auger with an inner diameter of 0.9 m 
and a length of 1.0 m, and the cores were drilled directly around the plant. The soil core was then divided into 

Root image processing

Images acquisition 
at MR-facilities

Features:
- total root length
- root volume
- surface area
...

automatic 
segmentation
with RootPainter

converting segmented 
to binary images

Automatic feature 
extraction with 
RhizoVision Explorer

small image 
sample

Training with
RootPainter

Neural network
model

Fig. 5 Root image processing steps.
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0.1 m pieces and filled into plastic bags. For maize in 2020, four replicates were taken in Plot 1 and four replicates 
in Plot 3 of the EF (no core was taken in the cultivar mixture treatment – Plot 2). For winter wheat in 2021, one 
replicate was taken in Plot 1, one in Plot 3, and two in Plot 2 of the EF (one core for each variety in the cultivar 
mixture). The soil samples were then put into refrigerators and processed step by step. The samples were later 
soaked in tap water, washed, and passed through several sieves with mesh sizes of 1.00 mm, 0.83 mm, and 0.5 mm 
until the coarsest soil and residues were cleared. The roots were subsequently stored in tap water at 3 °C until they 
were scanned with an EPSON scanner (HP Expression 1100XL). The roots of each sample were laid (preferably 
without overlaps) into an acrylic glass plate filled with tap water and were subsequently scanned. The images of 
the scanned roots were processed using a similar procedure as for the minirhizotron images, resulting in the total 
length estimation of the roots and the root length density53.

Soil sensor data. All plots within the two MR facilities have the same layout. Each plot contains three hori-
zontal rhizotubes per depth but the soil sensors are distributed into four columns, with the middle section divided 
into two columns, column C2a and C2b (see Fig. 2c). For each column, there are four TDR-sensors installed for 
each of the six depths. For the tensiometers and the soil water potential and soil temperature sensors, one sensor 
is installed for each depth. The distribution over the four columns is shown in Fig. 2c.

To measure the soil water potential for dry soil conditions and to acquire the soil temperature, MPS-2 sensors 
manufactured by Decagon Devices, Inc., US are used. The soil water potential is measured in a range of −9 kPa 
to −100,000 kPa (pF 1.96 to pF 6.01) with a resolution of 0.1 kPa. The accuracy is of ±(25% of reading + 2 kPa) 
over the range of −9 to −100 kPa and proven to be higher for drier conditions until permanent wilting point 
(−1,500 kPa) under lab conditions and −4,500 kPa under field conditions by the manufacturer. The soil temper-
ature is measured in a range of −40 °C to 60 °C with a resolution of 0.1 °C. The soil water potential for wet soil 
conditions is measured using T4 pressure transducer tensiometers manufactured by UMS GmbH, Germany. The 
measurement range is −85 kPa to + 100 kPa with an accuracy of ± 0.5 kPa. To acquire and record the soil sensor 
data, all sensors – with the exception of the TDR sensors – are connected to a DataTaker DT85 manufactured 
by Omni Instruments Ltd, UK. The TDR sensors were manufactured by the institute’s technicians and consist of 
three rods, with a length of 200 mm and a spacing of 26 mm. The TDR sensors are connected to institute-made 
multiplexers (50C81-SDM), providing a lower relative error (>1%) then commercial system. To acquire and 
record the data, the multiplexers are connected to a TDR100 Time-Domain Reflectometer manufactured by 
Campbell Scientific, Inc., US. Because of the high stone content at Rlt the relationship of SWC and dielectric  
permittivity measured by the TDR was calibrated in the lab28. For information on SWC calculation see Dielectric 
Permittivity to Soil Water Content section.

Soil water content using a mobile frequency domain reflectometry device. In addition to the 
soil sensors (see Soil Sensor Data section), the soil water content was measured using the mobile FDR device 
that employs the HH2 moisture sensor with the ThetaProbe ML3 (ecoTech Umwelt-Messsysteme GmbH, Bonn, 
Germany). Due to the nature of the soil at Rut, the soil moisture was only measured for the topsoil, while for the 
Rlt and EF, the soil water was measured at depths of 0 m, 0.30 m, 0.6 m, and 0.9 m. In total, the soil water was 
measured ten times in each plot of the Rut, six times in each plot of the Rlt, and eleven times in each plot of the EF 
over the crop growing season. The sensor was always placed between crop rows.

Soil sampling. In September 2020, a new irrigation tank was installed at Rlt and undisturbed soil samples 
were taken from the trench for the new tank. The samples were taken from several depths and analyzed in the 
in-house soil physics lab. The soil hydraulic parameters were measured using the HYPROP (Meter, München, 
Germany) method54 and a WP4 Dewpoint Potentiometer (Decagon Devices, WA, USA). The saturated hydrau-
lic conductivity was derived using the KSAT system (Meter, München, Germany). Soil texture was determined 
according to DIN ISO 11277 using the pipette method combined with wet sieving55.

The soil hydraulic properties can be found in the “Additional_Information”44.

Data records
All data were uploaded to Geonetwork in accordance with ISO 19115. The data were persistently stored and will 
be regularly updated (see Usage Notes). The data were subdivided according to the characteristics of the sensing 
method and data type. GPR data56, root data57 root images58, and soil sensor data59 are each available with a DOI, 
providing a link to a repository. Within these repositories, the data were subdivided by year of measurement. In 
the GPR data56 repository, one folder for each year contains two CSV files – one for all measurements performed 

repository data label size

GPR_Data FACILITY_ YYYY_GPR_EPS.csv 2.68 MB

Root_Data FACILITY_YYYY_ROOT PARAMETER.csv 21.6 MB

Root_Images FACILITY YYYYMMDD_TUBE_WINDOW_MEASUREMENT_INITIALS.jpg 199 GB

Soil sensors_Data FACILITY_ SENSOR YYYY_ALL.csv 103 MB

Additional_Information experiment, irrigation and soil overview (CSV) 1 MB

Table 4. Overview of the repository content and data labelling. The labels always contain the facility name 
(Rut or Rlt) and the year the data haven been obtained. For the root images, each image is also labeled according 
to exact date (year (YYYY), month (MM), day (DD)), tube and position it was taken.
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on each facility in the corresponding year. The root image data repository contains a CSV file for each root trait 
measured in the corresponding year and facility.

The root images58 were organized by year and facility. For each measurement date, one folder (labeled: 
YYYYMMDD) contains all images measured on that date in the corresponding facility. The sensor data59 repository 
contains one file for each sensor type and facility, corresponding to the year the data were obtained. The file names 
are explained in Table 4 and the repository structures in Fig. 6. The data can be downloaded using the following links:

GPR data56: https://doi.org/10.34731/cg3t-nb88,
Root data57: https://doi.org/10.34731/7x05-2r96,
Root images58: https://doi.org/10.34731/5zwe-t974,
Soil sensor data59: https://doi.org/10.34731/ffsk-sy65,
Additional Information44: https://doi.org/10.34731/st8e-4082.

Some root image data have been previously used and published. Root length data from 2016 were used by 
Nguyen et al.60. Root length data obtained from the images and the soil moisture values, measured by TDR and 
MPS-2 sensors on both facilities in 2016 and 2017 were used by Morandage et al.29. The root image data of Rut 
from June 8, July 13, and September 12, 2017 were used by Nguyen et al.61. However, the root lengths used in 
these three studies were obtained by a different method and are based on a manual single root annotation62. The 
root length data of Rut and Rlt from 2017 were published by Bauer et al.50 to validate the analysis pipeline used 
to extract all root data. The GPR data and the mean soil water content values calculated from TDR sensors from 
2016 and 2017 have already been partly used by Klotzsche et al.26.

technical Validation
Ground-penetrating radar data. The GPR permittivities56 were manually checked for plausibility and 
unreliable data were excluded. Implausible permittivity outliers were manually detected and removed.

Root images. The root data57 derived from the minirhizotron images58 were automatically analyzed by 
the pipeline following Bauer et al.50 using deep neural networks and automated feature extraction51,52. Using 
this approach, part of the total root length data has been representatively compared to a manual annotation of 
the images. Approximately 36,500 images were used for validation. The correlation of total root length values 
obtained from the same images by manual annotation and automated analysis is very high (r = 0.9)50.

Soil sensor data. The data59 of the different sensor types were filtered for the different measurement ranges 
listed in the Methods Soil Sensor Data section. To remove outliers, we applied a Hampel filter, which involves a 
sliding window being moved over the data. As a window size, we used 10 data points for each size of the element, 
which corresponds to 5 h for the tensiometers and MPS-2 to 10 h for the TDR sensors. For the element, we calcu-
lated the median and the standard deviation. If the element deviated more than one time the standard deviation, 
then the element is replaced by the median63. Additionally, the data from the different soil sensors were manually 
checked for plausibility and unreliable data were excluded. The TDR sensor data were filtered for errors in the 
TDR wave recordings and data for different dates and sensors were excluded.

Usage Notes
Figure 7 provides information on which periods of data are available for the different measurement seasons 
and the different measurement techniques. In 2019, no crops were sown on the MR facilities due to a project 
change. In 2020 and 2021, the data sets do not cover the whole growing period due to technical issues within the 
access trench and the measurement systems. Different measurement intervals were used for the different meas-
urement techniques. For the root images and the GPR measurements, weekly measurements were performed 
when possible during the vegetation period. The interval was adjusted to a biweekly period for the root images 

GPR_DATA ROOT_DATA ROOT_IMAGES SENSOR_DATA
ADDITIONAL_
INFORMATION

YEAR YEARYEARYEAR

FACILITY_YEAR_GPR_ESP.csv FACILITY_YEAR_Branch_Points.csv

FACILITY_YEAR_Branching_Frequency.csv

FACILITY_YEAR_Diameter(maximum).csv

FACILITY_YEAR_Diameter(median).csv

FACILITY_YEAR_Network_Area.csv

FACILITY_YEAR_Perimeter.csv

FACILITY_YEAR_Root_Tips.csv

FACILITY_YEAR_Surface_Area.csv

FACILITY_YEAR_Total_Length.csv

FACILITY_YEAR_Volume.csv

FACILITY

MEASUREMENT
DATE

FACILITY_DATE_TUBE_WINDOW
_MEASUREMENT_INITIALS.jpg

FACILITY_SENSOR_YEAR_ALL.csvF
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F

Experiment_overview..csv

...
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Fig. 6 Folder structure of the repositories.
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when the root growth stagnated. The availability of the sensor data (TDR, Tensiometer & MPS-2) depends on 
the technical state of the measuring devices, and in 2020 and 2021 there were problems with the data recording 
system. The measurements should be recorded as continuous measurements with measuring intervals of 30 min 
for tensiometers and MPS-2 sensors and 1 hour for TDR sensors. All timestamps are UTC + 1.

Soil sensor data. Due to the measurement interval and the sensitivity of the TDR permittivity time series 
results, we suggest applying a median filter or similar filters to the TDR data set to smooth the data as well as to 
remove the outliers, as mentioned above.

Dielectric permittivity to soil water content. Using the geophysical measurement techniques men-
tioned in this study, we provide the dielectric permittivity of the soil. Point information is provided by the TDR 
measurements and spatial information along the rhizotubes is provided by the GPR measurements. The dielectric 
permittivity can be converted to the soil water content. In the past, literature using TDR and GPR data measured 
within the MR facilities have used the empirical Topp’s equation49 and the petrophysical relationships referred 
to as the complex refractive index model (CRIM) (see47). The Topp’s equation is valid for sandy loam to clay and 
requires the bulk permittivity of the soil (εr) to derive the soil water content (SWC):

SWC 5 3 10 2 92 10 5 5 10 4 3 10 (2)r r r
2 2 4 2 6 3ε ε ε= − . × + . × − . × + . × .− − − −

For the petrophysical relationship CRIM, which considers the different dielectric components of the soil (air, 
soil matrix, and soil water), we obtain

ε φ ε φ

ε
=

− − −

−
.SWC

(1 )
1 (3)

r s

w

For the CRIM approach, additional parameters such as the porosity φ and the permittivity of the soil matrix 
εs, air (εa = 1) and water (εw = 84, at 10 °C) are necessary. The permittivity of the soil matrix is 4.7 and 4.0 for Rut 
and Rlt, respectively64. The porosity in the plow layer is considered to be 0.33 and 0.4 for Rut and Rlt, respectively. 
For underlying subsoil, the porosity is considered to be 0.25 and 0.35, respectively38. In particular, for Rut, we 
recommend using the CRIM relationship instead of the Topp’s equation due to the high stone content.

Soil hydraulic parameters. To provide information on, for example, rhizosphere modeling, we provide an 
overview of the soil hydraulic parameters, which were derived for the MR facilities using different methods. In 
Cai et al.36, soil hydraulic parameters (SHP) for both MR facilities can be estimated. These were derived by inverse 
modeling using soil water content, potential measurements, and root observations of winter wheat. Yu et al.27 and 
Jadoon et al.40 estimated the SHP using hydrogeophysical inversion for Rut and Rlt, respectively. The SHP for Rlt 
was derived by an inverse parameter estimation using a 1-dimensional CO2 transport and carbon turnover model, 
with direct soil sampling and laboratory analysis by Bauer et al.39.

Updates. The data corresponding to this paper will be updated regularly on a yearly basis once the analysis is 
finalized. The updated data can be downloaded from these DOIs:

GPR data: https://doi.org/10.34731/renq-an61,
Root data: https://doi.org/10.34731/jnhr-ke36,
Root images: https://doi.org/10.34731/jgd1-tq27,
Soil sensor data: https://doi.org/10.34731/rb0q-a208,
Additional Information: https://doi.org/10.34731/ke7b-a021.

Above-ground data. The related above-ground data are managed by the Crop Science group of the Institute 
of Crop Science and Resource Conservation (INRES), University of Bonn, and will be available upon demand in 
a future data paper. These data have been partially published in Nguyen et al.60,61,65. The data measured within the 
EF were carried out by the project partner at INRES.

Measurement- season
technique interval 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Root Images weekly
GPR weekly
TDR continuous 
MPS-2 continuous 
Tensiometer continuous 
FDR occasionally
Root Images weekly
GPR weekly
TDR continuous 
MPS-2 continuous 
Tensiometer continuous 
FDR occasionally

EF FDR occasionally
Legend: measurement interval complete measurement incomplete no measurements

RLT

2016 2017 2018 2020 2021
Site

2015

RUT

Fig. 7 Data availability for the measurement seasons 2016–2021.
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code availability
Custom code was used to process the data. For the GPR Data we used MATLAB version: 9.13. 0 (R2022b) to run 
the codes. The root image processing and soil sensor data is run with Python 3.10.10. Processing codes for the 
roots images can be found in the Supporting Material for Bauer et al. at https://doi.org/10.34731/pbn7-8g89. The 
soil water content data measured with the FDR device was processed using R version 4.0.2.

The custom codes can not be made publicly accessable due to copyright issues, but are available upon request, 
by contacting the corresponding or senior author.
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