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The floodplain inundation history of 
the Murray-Darling Basin through 
two-monthly maximum water 
depth maps
David J. Penton  1 ✉, Jin Teng1, Catherine Ticehurst1, Steve Marvanek1, Andrew Freebairn1, 
Cherry Mateo1, Jai Vaze1, Ang Yang1, Fathaha Khanam2, Ashmita Sengupta1 & Carmel Pollino1

With growing concerns over water management in rivers worldwide, researchers are seeking innovative 
solutions to monitor and understand changing flood patterns. In a noteworthy advancement, 
stakeholders interested in the changing flood patterns of the Murray Darling Basin (MDB) in Australia, 
covering an area of 1 million km2, can now access a consistent timeseries of water depth maps for 
the entire basin. The dataset covers the period from 1988 to 2022 at two-monthly timestep and was 
developed using remotely sensed imagery and a flood depth estimation model at a spatial resolution 
of ≈30 m, providing a comprehensive picture of maximum observed inundation depth across the MDB. 
Validation against 13 hydrodynamic model outputs for different parts of the MDB yielded a mean 
absolute error of 0.49 m, demonstrating reasonable accuracy and reliability of the dataset. The resulting 
dataset is best suited to system-wide analysis but might also be useful for those interested in the 
history of flooding at specific locations in the system. We provide the dataset, visualization tools, and 
examples to support ongoing research.

Background & Summary
Accurate and detailed flood depth data plays a vital role in understanding flood processes, assessing flood 
hazards, and managing ecosystem services effectively. However, acquiring such data through extensive hydro-
dynamic modelling can be financially burdensome. For instance, the National Flood Insurance Program of 
the United States of America has invested approximately $11 billion USD over five decades to develop Flood 
Insurance Risk Maps for a third of its river systems1. In response to the global challenge of obtaining flood infor-
mation, researchers have developed methods involving global datasets2, simplified solutions to hydrodynamic 
equations3 and hybrid remote-sensed approaches4, which are often distributed through information systems 
such as the Global Flood Inundation Map Repository and local hubs such as the US Flood Inundation Map 
Repository5. This work is a notable case study in this endeavour.

The Murray-Darling Basin (MDB) is a vast geographical region in the south-eastern part of Australia that 
encompasses the drainage basins of the Murray River and the Darling River, which are respectively Australia’s 
longest and second-longest rivers6. In total, the MDB covers approximately 14% of Australia’s land area. It pro-
vides around 40% of Australia’s total value of agricultural production each year7 and is of global ecological 
significance for its Ramsar-listed wetlands. The MDB has been the site of significant political debate between 
agricultural, social, and ecological interests8. At its heart, this debate is motivated partly by questions that remain 
over the volume of water that irrigators should divert for consumption and the volume of water that should be 
provided to maintain healthy rivers and functioning floodplain ecosystems9. Part of the debate is value-based 
– some people value ecosystems more or less than other people. However, there are also fundamental gaps in 
our understanding of how floodplain ecosystems function and how they change through cycles of floods and 
droughts.

What we do know is that floodplain ecosystems of the MDB rely on fluvial overbank flooding. Fluvial 
overbank flooding refers to the flooding that occurs when a river or stream overflows its banks and inundates 
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adjacent land areas. This type of flooding is common in low-lying areas and is important to maintain ecological 
processes. For example, flood frequency, timing, depth and duration are known to drive ecosystem processes 
such as Eucalyptus Camaldulensis (River Red Gum) growth, viability of Muehlenbeckia florulenta (Lignum) 
seeds and bird breeding events10,11. Many of these findings have been derived from greenhouse experiments 
(i.e. measuring the response to controlled conditions such as flooding seedlings for 40 days12) and/or local field 
studies (e.g. testing the viability of seeds in Morgan, South Australia13). Extrapolating these findings across the 
million square kilometres of the MDB is difficult or problematic because of a lack of consistent and systematic 
information on floodplain hydrology, among other things.

In recent years, techniques for generating consistent and systematic information for fluvial systems have 
advanced. For example, mapping of flood extent using optical remote sensing techniques have improved14 and 
become widely accessible (e.g. Geoscience Australia’s Water Observations15). The next step should be to provide 
the depth of floodwater systematically because the depth of floodwater is as important as extent when establish-
ing ecological relationships (as well as flood risks, impacts and recovery efforts). However, the depth of water 
during flood events is harder to obtain, or unavailable, especially when users require continuous data over large 
spatial domains at a fine spatial resolution (<50 m).

Traditionally, modellers have used two-dimensional hydrodynamic models to calculate floodwater depth, 
but the models require detailed flow, morphology, and roughness information, and the computational costs 
become prohibitively high for regions as large as the MDB. As such, there is currently no flood depth dataset 
available for the basin. Teng et al.16 conducted a comprehensive assessment of floodwater depth estimation 
models in semi-arid regions and found that the Floodwater Depth Estimation Tool (FwDET), first developed by 
Cohen et al.17 was the most suitable approach for this region.

We estimated flood water depth with FwDET and estimated the product accuracy using hydrodynamic mod-
els for a selection of floodplains. The resulting product provides spatial layers that represent maximum observed 
surface water extent and water depth within each two-month period across the MDB at a spatial resolution of 
≈30 m from January 1988 to December 2022.

The resulting dataset can be used to investigate links between flooding and ecological functions. It is best 
suited to analysing the whole MDB over significant periods of time. For example, the dataset is suited to studies 
interested in the physical and biological connectivity of the floodplain and how that connectivity has changed 
over time. It is also suited to developing empirical relationships between flooding and ecosystems processes. 
It might also be useful for those interested in the history of flooding at specific locations in the river system, 
although it would need to be cross-checked with local data to confirm its accuracy. An example of maximum 
floodwater depth calculated over the 35 years is shown in Fig. 1. Linear features running in an approximate 
north-south direction are visible in Fig. 1. This occurs along the swath edge of the Landsat 7 images (during its 
later years of operation) and are noise where the pixels are erroneously classified as water.

Other applications include development of coarse scale hydrodynamic models and ecosystem services val-
uations. Coarse scale hydrodynamic models provide insights into flood hazard and exposure18. When building 
hydrodynamic models, floodwater extents and depths are used for calibration and validation. Given the size 
of the MDB, a major factor limiting the generation of hydrodynamic models is the time consumed collating 
regionwide floodwater extents and depths, which this product provides. Similarly, this product aims to contrib-
ute valuable insights for ecosystem services valuations. Accurate estimations of water availability are crucial for 
assessing floodplain productivity and its various aspects, including floodplain grazing, tourism, mental health 
outcomes and First Nation’s cultural economies. These valuations help to understand the broader impacts of 
floodplain management and inform decision-making processes. By linking floodplain inundation to social and 
economic outcomes, typically at the local government level, we gain a comprehensive understanding of the ben-
efits derived from floodplain resources and support ongoing management strategies.

The findings presented in this study have significant broader impacts for communities, flood managers, 
decision/policy makers, and stakeholders in the MDB. The dataset of consistent timeseries water depths pro-
vides valuable insights into changing flood patterns and their impact on MDB’s floodplain ecosystems. Flood 
managers can improve flood management strategies, while decision/policy makers can develop effective flood 
mitigation plans. Communities can gain knowledge on flood risks to direct resilience efforts. Scientific organ-
isations and environmental conservation initiatives, can benefit from assessing the impacts of changing floods 
on biodiversity. This study facilitates evidence-based decision-making and collaboration, supporting ongoing 
research in the MDB.

Methods
Figure 2 shows the workflow that generated flood depth products using the FwDET algorithm. Details of the 
FwDET inputs, implementation, archiving, and visualisation are in the sections below.

Data inputs. Inputs to the FwDET algorithm were a spatial time series of two-monthly maximum sur-
face water extents19 and a digital elevation model (DEM) with bathymetry that covers the entire region20  
(left and middle in Fig. 2a). The two-monthly maximum surface water extents were based on classification of 
Digital Earth Australia’s Landsat Surface Reflectance collection21. The collection provided satellite images of high 
quality and resolution (30 m × 30 m) from 1988 until the present. The Landsat Surface Reflectance product con-
tained surface reflectance values for 7 spectral bands in the optical range (from the Landsat sensor aboard each 
of the Landsat missions). Sensors in the optical range could not see the ground surface through cloud. We found 
that the highest temporal frequency that would ensure there were cloud-free observations for almost all pixels was 
every two months. Hence, we selected the maximum observed extent for each two-monthly period.

There are many water indices that quantify the likelihood of surface water given the spectral properties 
of Landsat cells including the modified Normalised Difference Water Index22 and Fisher’s Water Index23.  
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These index values can then be compared to thresholds to classify Landsat cells as wet or dry. We used a 
multi-index method14 for water classification that selected appropriate water indices and thresholds for differ-
ent land types (e.g. river, floodplain, wetland) using a decision tree. The multi-index method had a water pixel 
accuracy of 90.5% and a dry-pixel accuracy of 94.8% (with an overall Kappa statistic of 0.88) when validated 
against 440 cloud-free plots of 300 m × 300 m size in the MDB. This has ranked it the best of 8 surveyed indices 
and thresholds for water classification in the MDB.

The resolution and accuracy of the DEM played a major role in the reliability of the estimated water depth. 
The selected DEM20 had a resolution of 2.698 × 10−4 degrees in WGS84 projection (approximately 30 m).  
The DEM19 was produced by merging and blending high resolution LiDAR DEMs with a hydrologically enforced 
Shuttle Radar Topography Mission (SRTM) DEM24 where LiDAR was not available. The high-resolution LiDAR 

Fig. 1 Maximum floodwater depth. The maximum floodwater depth for the Murray Darling Basin calculated 
from the two-monthly floodwater depth dataset.
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was aggregated to the common resolution using the mean of contributing cells. Off the shelf global low res-
olution DEMs such as SRTM, FABDEM (Forest And Buildings removed Copernicus DEM)25 and MERIT 
(Multi-Error-Removed Improved-Terrain)26 cannot represent large channels due to their coarse pixel resolu-
tion and post-processing is required to correction for errors along rivers. The SRTM product was specifically 
post-processed for the Australian region and hydrologically enforced. Hydrological enforcement used existing 
mapped drainage lines to modify the SRTM to properly represent flow paths in the landscape. The accuracy of 
the DEM was important as water depth was derived from the difference between water level and DEM derived 
ground level (panel b in Fig. 2).

The merging process was undertaken in a similar manner to other products for the Australian landscape27. 
The merging process blended DEMs so that the highest resolution/accuracy was achieved wherever possible and 
the abrupt changes at the border of two datasets attenuated within a 2 km buffer. The South Australian LiDAR 
DEM had accurate river bathymetry from Sonar acquisitions. Where bathymetry was missing in permanently 
inundated channels and wetlands, the channel depth was estimated using gauged water level from the Bureau of 
Meteorology’s Water Data Online. The channel depth was then added to the DEM to take into consideration the 

Fig. 2 Steps involved in building and distributing the flood water depth product for the Murray Darling 
Basin. The three panes show steps of the water depth product development. (a) Input data processing 
involves acquisition of two products: two-monthly maximum water surface extent (from Landsat)19 and a 
high-resolution Digital Elevation Model (combined from data sources)20, which we split into 23 regions for 
processing. (b) Floodwater Depth Estimation Tool (FwDET) algorithm v232 was used to identify the surface 
water elevation at the boundary (perimeter) of inundated areas. The perimeter water surface levels (elevations) 
were interpolated across inundated areas to provide continuous surface water levels. The depth was calculated 
by subtracting the Digital Elevation Model from the surface water levels and merging (recombining) across 
the Murray Darling Basin. (c) The resulting water depth rasters were archived in CSIRO’s Data Access Portal, 
and were also distributed through web services for machine access (i.e. Web Mapping Service) and presented 
through a geospatial visualisation platform for point-and-click visualisation of water depth across the 
floodplains of the Murray Darling Basin.
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areas that were under water when the DEM was collected20. Finally, the classified water pixels were assigned to 
the nearest DEM cell so that everything aligned.

The vertical accuracy of the LiDAR, which covered much of the floodplain areas, depended on the point 
density of the LiDAR acquisition, the accuracy of the ground control points and the density of ground cover 
points. There were around 10 sources of LiDAR collected over the last 20 years and available through Geoscience 
Australia or the Murray Darling Basin Authority. The accuracy varied between products; however, when com-
pared to survey points (accurate to 0.1 m), one LiDAR product had a root mean squared error (RMSE) of 
0.206 m for hard bare surfaces28. For regions away from the floodplain, the accuracy from SRTM was likely to 
be in the range of RMSE from 5 to 15 m29 with some improvements due to the hydrological enforcement and 
smoothening to remove vegetation features and noise30.

Application of the Floodwater Depth estimation Tool. The input datasets for the MDB (water extents 
and DEM) were broken into 23 regions to reduce processing memory requirements. The regions were defined 
along catchment boundaries to minimise splitting flooded areas that would create discontinuity. Specifically, the 
19 Murray-Darling Basin Sustainable Yields (MDBSY) project reporting region31 boundaries were used as a start-
ing point as they were already derived from hydrological basins. The maximum flood extent was overlaid over the 
MDBSY regions, which were either combined, subdivided and/or reshaped accordingly to derive the 23 regions 
used in the further processing. The rezoning was guided by the following principles:

 1. Where possible, the zones were split at points that maintained the contiguous areas of the maximum flood 
extent.

 2. Where splitting of maximum flood extent was unavoidable (e.g. the Murray trench), the split was imple-
mented where the flood extent was narrowest.

 3. Zone shape and size were optimised to avoid large areas of no-data occurring in the rectangular extent of 
each zone.

The resulting 23 analysis zones are shown in the top right panel of Fig. 2 (and included in with the final 
product as auxiliary data).

The FwDET v2.0 algorithm32 (hereafter referred to as FwDET) was then applied to generate water depths as 
shown in Fig. 2b. FwDET calculates water depth by first extracting boundary elevation of the flood extent from a 
DEM, interpolating water surface elevation using the boundary elevation, then subtracting the ground elevation 
from the interpolated surface elevation. The interpolation method used in this version was the Thin Plate Spline, 
which provided a smoother surface and overcome some of the known caveats of linear interpolation used in the 
previous version of FwDET16. Input data borders and the boundaries of areas without data (fully cloud covered 
through the two-month period) were not included as points in the interpolation.

FwDET and the associated workflow were written in Python and made suitable for parallel computing for a 
large spatial domain at a high spatial resolution.

Data archiving and visualization. The results were archived in CSIRO’s Data Access Portal and are avail-
able directly from the archive, through web services or via an online visualisation tool. The CSIRO’s Data Access 
Portal has been certified as a trusted data repository by CoreTrustSeal.

The dataset was then prepared for online access, visualisation and presentation. First the dataset was repro-
jected into a 25 m grid in Web Mercator Projection and housed on Amazon Web Services S3 storage. Then the 
dataset was indexed using the Open Data Cube libraries33 on the Earth Analytics Science and Innovation (EASI) 
platform34. The Python datacube-ows package (https://github.com/opendatacube/datacube-ows) was used to 
provide an Open Geospatial Corporation Web Map Service35 to the indexed dataset36. Finally, water depth layers 
were prepared for the Terria map library and are available online for visualisation.

Data records
The water depths are hosted on the CSIRO Data Access Portal at: https://data.csiro.au/collection/csiro:5024337. 
There are a total of 213 files summing to around 23.19 GB of data. Inside the MDB_Water_Depth_v3.6_4326 
folder are files for each spatial map of maximum water extent and depth for the Murray-Darling Basin for a 
two-month period starting in January 1988 and finishing in December 2022. The January-February image for 
1988 has the date label ‘1988-01’, the March-April image for 1988 has the date label ‘1988-03’, and so on. The 
files are stored in Cloud Optimised GeoTiff (COG) format in WGS84 – (EPSG:4326) projection. The COG 
files represent depth in millimetres as a 16-bit unsigned integer (uint16). The maximum depth value is lim-
ited to 65534 mm. The minimum water depth is 1 mm. The value 0 represents dry land and the value 65535 
is reserved for no-data. No-data values occur when there were no cloud-free days observed in the input flood 
extent product.

Inside the Auxiliary folder are supporting files: 1) MDB_Sub_Div_23zone_1sec.tif and 2) MDB_perma-
nent_water_correction.tif. The first geotiff file is the 23 sub-divisions of the MDB used during processing with 
each sub-division numbered and encoded as an 8-bit integer. The second geotiff file is the bathymetric correc-
tion values (in meters) that were applied to the DEM encoded as 32-bit floating point values. We have provided 
these to complete the provenance trail.

Technical Validation
Validation of the dataset in the MDB was established by benchmarking the FwDET-derived depth outputs to 
hydrodynamic models and reviewing the dataset with experts to identify errors.
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Selection of hydrodynamic models for benchmarking. After we had conducted a thorough review 
of 13 hydrodynamic models for the MDB16, we carefully selected three representative hydrodynamic models38–40 
that covered different parts of the MDB, as illustrated in Fig. 3. The first model was chosen to represent the flood-
plains of the Lower Balonne System (LBS) in Queensland and New South Wales, while the second model repre-
sented the floodplains of the Gunbower-Koondrook-Perricoota Forest (GKPF) in New South Wales and Victoria. 
The third model encompassed the floodplains downstream of Lock 6 and upstream of Lock 3 on the River Murray 
in South Australia (SA).

The selection process was guided by several factors, including input data quality, validation against gauge 
height measurements, peer review of the model setup, and availability to the project team. These models were 
also specifically chosen to be representative of different environments across the Murray Darling Basin. To 
ensure robust and reliable data sources, the assessment of input data quality involved evaluating the accu-
racy, resolution, and coverage of the data utilised by each hydrodynamic model. The selected models utilised 
high-resolution Digital Elevation Models (DEMs) based on LiDAR with high-quality bathymetry obtained from 
sonar, LiDAR, or manual cross sections.

Furthermore, the validation process involved comparing the model outputs to observed data from gauges 
to assess their performance in replicating real-world hydrological conditions. For instance, the Balonne River 
median model exhibited an R2 ranging from 0.6 to 0.8 when compared to time series observations of water level 
in four streamflow gauges within the floodplain during the occurrence of four floods.

The peer review of model setup played a crucial role in establishing confidence in the technical soundness 
and appropriateness of each model’s configuration. This was evident in the South Australian model develop-
ment process. The South Australian model was revised several times to support its use in designing physical 
constraints for improved delivery of environmental water.

While the selected models offer valuable insights, the inclusion of additional models would enhance the 
overall reliability and provide further understanding of the complex hydrodynamics within the basin. Future 
studies might consider incorporating a broader ensemble of models to advance our understanding of the MDB’s 
hydrodynamics and to account for the inherent uncertainties in modelling.

Description of flood events used for validation. Floods of the Lower Balonne region have been caused 
by large rainfall events across the upstream catchments. The region has been susceptible to flooding during 
Australia’s seasonal wet monsoon, which has typically lasted from December to March. This monsoonal flooding 

Fig. 3 Location of validation sites. These include three reaches of the River Murray in South Australia (A), one 
reach of River Murray in Victoria (B), and three reaches of the Balonne River (C), where the water depth data 
were compared to benchmarking hydrodynamic modelling results.
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has been amplified by the effect of La Niña climate drivers. The LBS model represented the floods that began in 
January 1996, January 2011 and January 2012. The January 1996 flood event was influenced by tropical Cyclone 
Barry which developed in the Gulf of Carpentaria in early January and spread from the Gulf to the south-east 
corner of Queensland producing widespread rainfall and flooding (17 major rivers recorded flooding)41. During 
the 2010–2011 La Niña event, one of the strongest on record, the region experienced heightened rainfall in this 
catchment and across most of Queensland with an average 200 mm falling across the entire state in December42. 
Similarly, the January 2012 flood resulted from a persistent trough and the development of a monsoon low, which 
caused prolonged and intense rainfall (event totals of 300 to 400 mm)43. This resulted in flood dynamics in the 
Lower Balonne floodplain that were intricate because multiple upstream river systems contributed to the over-
bank flooding. The peak heights of the three events at St George gauge (422201) were 10.6 m on 1996-01-20, 
12.8 m on 2011-01-08 and 13.5 m on 2012-02-07 with estimated discharges of 1872 m3s−1, 2964 m3s−1, and 3963 
m3s−1. The floodwaters remained at major flood levels (overbank) for a number of weeks.

The SA and GKPF models simulated flooding during the November 2016 period. Earlier, in September, the 
Murray-Darling Basin experienced its wettest September on record with average aerial rainfall of 119 mm, which 
was 249% above the long-term average44. This continued through to November and marked a shift from drought 
to flood. The heavy rainfall was widespread and affected both the upper catchments along the eastern mountain 
range of the MDB (i.e. Great Dividing Range) and the broader Basin area. It was attributed to strong cold fronts 
in the south and trough systems connected to tropical moisture from above-average sea-surface temperatures 
in the Indian Ocean and northern/eastern Australia45. The calculated discharge at the South Australian border 
(A4261001) was 1095 m3s−1 on 2016-11-30. The discharge from upstream rainfall events resulted in a continued 
period of high flows - flows over 1000 m3s−1 were recorded for about 3 weeks.

Comparison to hydrodynamic model outputs. From the three hydrodynamic models, we extracted 
surface water elevation outputs from calibration scenarios for seven regions (see Fig. 3). The benchmark results 
for the comparison were calibration runs of dynamic (unsteady) hydrodynamic model scenarios. While the 
hydrodynamic model outputs were not observations, we expected the vertical accuracy of the hydrodynamic 
model outputs would be superior to the vertical accuracy of FwDET. Following the same technique as Teng et al.16,  
the two-monthly maximum depth outputs were translated into surface water elevation (by adding the DEM) and 
compared at 5 m spatial resolution for each flood event. With the combination of flood events (up to three events 
per model) and regions, there were 13 model outputs that were part of the comparison. Finally, the estimated 
water depth was evaluated against the hydrodynamic model output using the RMSE, mean absolute error (MAE) 
and bias (benchmark minus predicted). These evaluation methods were consistent with previous work16 and 
methods for evaluating elevation errors in DEMs46.

Figure 4 shows the bias (benchmark minus predicted) of the 13 model outputs. In general, FwDET under-
predicted the depth of flooding with an average underprediction of 0.32 m and an inter-quartile range (IQR) of 
0.23 m–0.39 m. The IQR demonstrated that 75% of values were within 0.09 m of the mean, that is, the underpre-
diction was consistent statistically. In other words, if the mean error were subtracted from the outputs, 75% of 
values were within 0.09 m of the benchmark model.

As shown in Table 1, the benchmark versus predicted RMSE ranged from 0.48 m to 1.29 m and MAE ranged 
from 0.36 m to 0.87 m across the flood events. The median MAE was 0.49 m with an IQR of 0.39 m to 0.54 m 
(established through statistical bootstrapping). The MAE demonstrated reasonable accuracy and reliability for a 
dataset of this spatial and temporal coverage. A greater level of accuracy would be required for emergency man-
agement or the engineering of flood protection levees (e.g. +/− 0.15 m). However, the level of accuracy demon-
strated is sufficient for understanding ecosystem processes, regional planning and decision-making, especially 
when used to compare scenarios, infer correlations or develop causative hypotheses.

The best distributions to fit the errors were Laplace distribution (with parameters µ = 0.34, b = 0.42) or 
Cauchy distribution (with parameters x0 = 0.34, γ = 0.22). The methods and results were consistent with recent 
model intercomparison16. The greatest RMSE and MAE were for South Australian Weir Pool 3 and Weir Pool 4. 
The impact on model performance was due to the steeply incised river channel and limited cloud-free satellite 
scenes. The steeply incised river channel meant that FwDET had few accurate points along the perimeter of 
flooded areas to estimate the height of flood waters.

When considering accuracy outside the boundaries of the validation sites, MAE, which provides a measure 
of the average difference between predicted and observed values, is expected to be similar. However, RMSE 
which additionally considers the impact of outliers, may vary depending on the number of samples available 
for evaluation. The bias is likely to be similar, so to improve the accuracy of depth estimates, it is recommended 
to apply a bias correction by adding 0.32 m to the predictions. This adjustment aims to address any systematic 
deviations and align the estimates more closely with the true values. Moreover, to assess the level of uncertainty 
associated with the predictions, it is possible to estimate uncertainty ranges using Laplace or Cauchy probability 
distributions. These distributions provide a means to quantify the likelihood of different outcomes and can help 
in understanding the potential variability in the estimated depths.

review of outputs. The outputs were reviewed by the project team and external stakeholders to identify lim-
itations and issues. Four issues were identified: accuracy around permanently inundated lakes, water classification 
in dense forest, persistent cloud cover and misclassified water pixels. In areas with estimated bathymetry, espe-
cially around permanently inundated lakes (e.g. Lake Victoria in South Australia), the water depth can be under 
or overestimated. In the worst case, the depth layer might have depth values at the edge of the lake that are greater 
than at the centre of the lake (i.e. the error in depth is as large as the depth of the lake). The adjustment values 
applied to the bathymetry are provided as a separate raster with the outputs (MDB_permanent_water_correction.
tif). The adjustment values can be used as a quality mask to identify those regions where these depth estimation 
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errors are likely to occur. Where the adjustment values are greater than zero, we recommend future research to 
improve the estimation of bathymetry. Future research could involve collecting sonar bathymetry for perma-
nently inundated regions and collecting LiDAR for ephemerally inundated regions when dry. It may also be pos-
sible to infer bathymetry with remote sensing using approaches modified from those applied to coastal regions47.

In the areas of Koondrook-Perricoota Forest, and some areas around Barmah Forest, the forest den-
sity appears to affect the water classification algorithms. Areas with a closed canopy may be classified as dry 
by optical remote sensing when they are actually inundated. This has the consequence that the depth prod-
uct underpredicts inundation. The area south of Koondrook-Perricoota Forest – Gunbower Forest does not 
appear to have the same issue, so it appears the effect is localised to very densely forested areas of the Murray.  
Future research could investigate if there are alternate algorithms, remotely sensed indices or thresholds that 
perform better for water classification, or whether higher resolution optical sensors can improve classification 
accuracy.

Since the product uses optical remote sensing inputs, persistent cloud cover affects the flood extents used 
to calculate flood depth. The percentage of cloud cover in a two-monthly image of the MDB ranges from 0.1% 
up to 38% (which was in the 1990’s when only one Landsat sensor was operating), with an average value of 3%.  
A two-month period almost always has a cloud-free satellite overpass and major floods in the MDB take months 
to travel downstream. However, the flood peak is unlikely to be captured perfectly. And, on some occasions, 
floods may be missed altogether (e.g. the July 1998 flood on the Namoi was not observed). Newer satellites 
using active sensors in the microwave spectrum (i.e. synthetic aperture radar) can penetrate cloud to provide 
high resolution imagery of flood waters. In the future, the flood history archive could be augmented with flood 
extents from these sources.

Misclassified pixels from optical remote sensing inputs propagate with FwDET into erroneous depths. While 
there has been manual correction of optical classification errors, some misclassifications have remained. When 
clouds or cloud shadow are classified as water in mountainous and sloped areas, FwDET has generated some 
abnormally high water depths. Similar artefacts and results have occurred on the edge of satellite swathes and 
the edge of data impacted by the Landsat 7 EMT + scan line corrector failure.

Sources of uncertainties and opportunities to extend the methodology. Potential sources of 
uncertainty in the flood depth products can be attributed to three main factors. First, inaccuracies in the input 
data, including the DEM and flood extent, led to incorrect depth estimations by the FwDET model. Enhancing 
the quality and consistency of the DEM, particularly the bathymetry, would significantly improve the accuracy 
of the results. Prior work compared the performance of LiDAR DEMs to low resolution DEMs across a suite 
of benchmark models16. In that work, the comparative performance across the benchmark suite had a MAE 
of 0.57 m for LiDAR, MAE of 0.65 m for FABDEM, MAE of 0.71 m for SRTM and MAE of 0.72 m for MERIT.  

Fig. 4 Floodwater depth accuracy for each flood scene. The accuracy is expressed as benchmark minus 
prediction. The positive values represent underestimation of depth and negative values overestimation. 
Acronyms on axis labels are Lower Balonne System (LBS), Floodplain (FP), Gunbower Koondrook Perricoota 
Forest (GKPF) and South Australia (SA).
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It follows that the product accuracy could be improved by acquiring additional LiDAR and using FABDEM for 
areas where LiDAR is not available.

Second, the structure of the FwDET model itself introduced uncertainty. While the model was designed to 
handle the large spatial and temporal domain of the study area, it may struggle to accurately represent areas 
distant from flood perimeters or capture surface water elevation in areas with steep banks. Incorporating addi-
tional hydraulic processes into the model, alongside more precise inputs, could enhance the level of detail and 
accuracy in the results.

Third, the accuracy of the flood water depth has been assessed using hydrodynamic models, which are cali-
brated based on observed flood extents and depths. Although these models provide detailed estimates for spe-
cific events, alternative validation methods such as comparing with streamflow gauge levels or field data could 
provide additional avenues for validating the models and enhancing confidence in the results.

Addressing these sources of uncertainty would strengthen the reliability and usefulness of the flood depth 
products. Further improvements in input data quality, model structure, and validation techniques are recom-
mended to refine and enhance the accuracy of the FwDET model, thereby increasing its utility for understand-
ing the role of flooding in the floodplain ecosystem in the MDB.

The methodology shows promise in estimating flooding in regions with limited or no hydrological data. It 
can be readily applied to ephemeral rivers in semi-arid areas with minimal adjustments. However, in regions 
characterised by thick cloud cover, such as monsoonal systems, alternative methods are needed to acquire flood 
extents. Similarly, in regions with permanent water bodies, obtaining accurate bathymetry data becomes essen-
tial for precise water depth estimation.

Usage Notes
The two-monthly flood depth product provides a visualisation of specific events and a longitudinal perspective 
on flooding across the MDB. For users interested in specific events at a location, use the geospatial visualis-
ation platform to confirm with local experts that the product has captured flooding in the areas expected to be 
inundated. The geospatial visualisation platform can be accessed through a web browser at https://map.csiro.
easi-eo.solutions/. In the web browser, load the product by clicking ‘+Explore map data’, search the catalogue 
for ‘Flood Depth’ and click the ‘+’ next to the latest version of the flood depth product. The product will become 
visible once zoomed into a location of interest (inside the MDB). When satisfied, the maximum flood depth 
product for specific dates can be downloaded from CSIRO’s Data Access Portal (DAP) for ingestion into a GIS 
application. If confirming with local experts is not practicable, alternatives include searching archives such as 
Geoscience Australia’s Australian Flood Risk Information Portal, aerial photography archives – e.g. New South 
Wales Historical Satellite Imagery, media reports or social media.

For researchers interested in the longitudinal perspective on flooding across the MDB, it is necessary to 
access the whole dataset from CSIRO’s DAP. A Python Jupyter Notebook (example_water_depth.ipynb) pro-
vided as part of the code gives an example of selecting time periods (2021–2022), spatially sub-setting the data 
(e.g. near Macquarie Marshes Nature Reserve), visualising recent events and undertaking rudimentary statistical 
analysis. The notebook provides an example of calculating a short timeseries of water volumes and incorporating 
bias-correction.

The study’s findings have substantial broader impacts, benefiting communities, flood managers, decision-
makers, environmental conservation, and stakeholders in the MDB. The dataset supports evidence-based 
decision-making and ongoing research. For example, establishing the connections between climate change and 
floodplain inundation, where understanding climate change is an identified need of the 2026 Murray Darling 
Basin Plan Review.

Model, region, and flood event Mean Absolute Error (m) Root Mean Squared Error (m)

Lower Balonne System - Culgoa Floodplain North - 1996-01 0.43 0.53

Lower Balonne System - Culgoa Floodplain North - 2011-01 0.39 0.53

Lower Balonne System - Culgoa Floodplain North - 2012-01 0.36 0.48

Lower Balonne System - Culgoa Floodplain South - 1996-01 0.46 0.55

Lower Balonne System - Culgoa Floodplain South - 2011-01 0.39 0.46

Lower Balonne System - Culgoa Floodplain South - 2012-01 0.49 0.60

Lower Balonne System - Narran River - 1996-01 0.54 0.78

Lower Balonne System - Narran River - 2011-01 0.60 0.82

Lower Balonne System - Narran River - 2012-01 0.57 0.86

Murray – Gunbower Koondrook Perricoota Forest - 2016-11 0.51 0.64

South Australia - Weir Pool 3 - 2016-11 0.87 1.29

South Australia - Weir Pool 4 - 2016-11 0.78 1.22

South Australia - Weir Pool 5 - 2016-11 0.52 0.83

Table 1. Error statistics for the Murray Darling Basinwater depth vs hydrodynamic model benchmark.
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Code availability
Version 1.0 of the water-depth-estimation code used for calculating FwDET is available under GPLv3 licensing 
at https://github.com/csiro-hydroinformatics/water-depth-estimation. The repository also contains a Jupyter 
notebook (notebooks/example_water_depth.ipynb), which is useful for exploring the water depth outputs.
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