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a comprehensive dataset of 
animal-associated sarbecoviruses
Bo Liu  1,2, Peng Zhao1,2, Panpan Xu1,2, Yelin Han1, Yuyang Wang  1, Lihong Chen1 ✉, 
Zhiqiang Wu1 ✉ & Jian Yang  1 ✉

Zoonotic spillover of sarbecoviruses (SarbeCoVs) from non-human animals to humans under 
natural conditions has led to two large-scale pandemics, the severe acute respiratory syndrome 
(SARS) pandemic in 2003 and the ongoing COVID-19 pandemic. Knowledge of the genetic diversity, 
geographical distribution, and host specificity of SarbeCoVs is therefore of interest for pandemic 
surveillance and origin tracing of SARS-CoV and SARS-CoV-2. This study presents a comprehensive 
repository of publicly available animal-associated SarbeCoVs, covering 1,535 viruses identified from 
63 animal species distributed in 43 countries worldwide (as of February 14,2023). Relevant meta-
information, such as host species, sampling time and location, was manually curated and included 
in the dataset to facilitate further research on the potential patterns of viral diversity and ecological 
characteristics. In addition, the dataset also provides well-annotated sequence sets of receptor-binding 
domains (RBDs) and receptor-binding motifs (RBMs) for the scientific community to highlight the 
potential determinants of successful cross-species transmission that could be aid in risk estimation and 
strategic design for future emerging infectious disease control and prevention.

Background & Summary
Coronaviruses (CoVs) are a group of enveloped viruses belonging to Coronaviridae and currently contain four 
known genera, Alpha-, Beta-, Gamma-, and Delta-CoVs, that vary in their distribution, host species, and patho-
genicity to humans. Sarbecovirus (SarbeCoV), a subgenus within Beta-CoV, has resulted in the emergence of the 
highly pathogenic human viruses SARS-CoV and SARS-CoV-2. SARS-CoV caused more than 8000 confirmed 
cases in 2002–20031, whereas SARS-CoV-2, a causative agent of COVID-19, has rapidly infected the global 
population with over 762 million confirmed cases (https://covid19.who.int/), and remains a significant threat 
to global health and the economy. Furthermore, evidence suggests that SarbeCoVs have high recombination 
and mutation rates, allowing them to infect and survive in different hosts worldwide2. Thus, recent research has 
intensely focused on surveys of SarbeCoVs carried by susceptible animals to enhance our knowledge of viral 
diversity, host specificity, and geographical distribution.

The origins of SARS-CoV and SARS-CoV-2 remain controversial due to the remaining genomic differences3. 
It is generally been thought that both SARS-CoV and SARS-CoV-2 originated in bats, and zoonotic spillover to 
humans has likely occurred through one or more intermediate hosts. Recently, several studies have shown that 
potential intermediate hosts may include Malayan pangolins, rabbits, ferrets, foxes, raccoons and dogs because 
the spike (S) protein of SARS-CoV and SARS-CoV-2 is capable of binding to their angiotensin-converting 
enzyme (ACE2), which facilitates virus entry1,4. In addition, molecular and serological evidence has revealed 
the reverse zoonotic potential of SARS-CoV-2 infection in several pets and domestic animals from different 
countries. Zoo tigers, lions, snow leopards, and pumas and domestic cats, dogs and minks have been confirmed 
to naturally acquire SARS-CoV-2 infection5. Despite no conclusive evidence that domestic animals can actively 
spill back SARS-CoV-2 to humans, the potential human-animal-human transmission cycle needs to be rec-
ognized and further investigated6. Thus, a better understanding of existing viral populations along with their 
ecological characteristics would be of importance for detecting potential interspecies spillover7.

Given that molecular techniques are widely applied in the identification and functional analyses of viruses, 
comprehensive retrieval of the virus sequences along with related meta-information facilitates in-depth research 
on the origin and evolution of SARS-CoV and SARS-CoV-2 among different animal hosts. However, relevant 
information such as virus sequence, host species, sampling time, and location has not been uniformly recorded 
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and is only sporadically available in GenBank records or related literature. Furthermore, the considerable 
number of human-derived SarbeCoVs undoubtedly complicates the screening process of animal-associated 
SarbeCoVs from the public domain. Therefore, we established a sequence-centric dataset for the curation of 
related meta-information of animal-associated SarbeCoVs. Thus far, this dataset contains 1,535 SarbeCoVs 
identified from 63 different animal species globally.

Methods
Data collection. The data collection and inclusion procedures are outlined in Fig. 1a. To retrieve all known 
sequences from the public domain, an initial search within GenBank8 was performed using the keywords 
(“Sarbecovirus” OR “SARS” OR “Severe acute respiratory syndrome”) AND (“viruses” OR “virus”). A total of 
6,740,876 GenBank records that matched the above keywords were retrieved and stored in a local system (as of 
February 14,2023). Despite conducting an exhaustive search, there is no guarantee that all records were collected. 
The possibility of missed SarbeCoVs may be inevitable in certain cases due to misclassification of sarbecoviruses 
by the submitters or historical changes in taxonomy. For instance, the term sarbecovirus was proposed as a novel 
subgenus within the genus Beta-CoV according to the ICTV demarcation criteria in 2017. Before that, some of 
the identified SARS-related coronaviruses (SARSr-CoVs) may have been categorized into the unclassified Beta-
CoV in the NCBI taxonomy database. To ensure the integrity of data collection, a complementary search using 
the additional keywords (“Betacoronavirus” NOT “Homo sapiens” NOT “Embecovirus” NOT “Hibecovirus” 
NOT “Merbecovirus” NOT “Nobecovirus”) AND (“viruses” OR “virus”) was conducted with specific attention 
given to collect unclassified Beta-CoVs that might belong to SarbeCoVs. After removing the duplicates from the 
two search results, there were 6,742,282 records possibly associated with SarbeCoVs that needed further review.

Then, relevant information on each virus, such as its sequence, classification in the virus taxonomy, host spe-
cies, sampling time, sampling location, detection method (e.g., PCR, metagenomics), specimen type (e.g., tissue, 
cell line), etc., was extracted from GenBank records using in-house BioPerl scripts. Since this study focuses on 
naturally transmitted animal-associated SarbeCoVs that are particularly relevant to the emergence of zoonotic 
infectious diseases9, unrelated records were carefully excluded by considering the following three criteria: (i.) all 
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Fig. 1 Schematic diagram of data curation. (a) Flow diagram of the data search, screening and validation 
process. (b) Bubble chart of the annual and geographical distributions of presently identified animal-
associated SarbeCoVs. The area of each bubble correlates with the number of SarbeCoVs. (c) Overview of 
the classification, from host genus to order, of animal-associated SarbeCoVs included in this study. The label 
“possible role of animals” refers to the potential role that animals are currently known to play as natural 
reservoirs, intermediate, incidental hosts in the circulation of SarbeCoV. The presence of potential natural 
reservoirs, intermediate hosts and incidental hosts is marked by a colored blocks, triangles, and pentagrams 
respectively. The outer blue ring represents viral counts that are normalized by sequence number on a log scale.
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viruses derived from humans and environmental samples were removed; (ii.) all viruses that were not classified 
as a sarbecovirus or betacoronavirus were excluded; and (iii.) all viruses isolated from non-animal samples but 
laboratory-cultivated in the animal host model or cell line were filtered out. Herein, 1,563 virus records were 
pre-collected in the dataset after initial curation. To ensure the accuracy of meta-information, we further con-
ducted an intensive double-check for published viruses based on data reported in the related literature and the 
taxonomy database of the NCBI, with an emphasis on supplementing missing data and clarifying ambiguous 
data.

Data curation. As the dataset integrates information spanning 20 years (Fig. 1b), refining data entries with 
a consistent and controlled vocabulary was essential to ensure that the same scientific notation, which may have 
been noted differently by the submitter, was assigned the same unique terms. In this study, three general types of 
meta-information collected from different sources needed to be uniform before being entered into the dataset. 
First, all host information reported in this study underwent intensive review to avoid possible errors in taxonomic 
classifications (Fig. 1c). The names of animal hosts were standardized using the taxonomy database of the NCBI10, 
and species names that could not be confirmed were excluded. In some instances, the common names of host 
species were uniformly converted into scientific names using binomial nomenclature. Second, all available loca-
tion information for the records was categorized into four geographical and administrative levels (i.e., continent, 
country, subregion and Global Positioning System coordinates). Related latitude and longitude were transformed 
into decimal format using the website (https://www.gps-coordinates.net). Third, certain studies have conducted 
long-term surveillance on susceptible animals and reported a batch of viruses. However, these studies provided 
only a period of time without specifying the sampling time for each individual sample. To address this issue, we 
defined two fields, “date from” and “date to”, which served as the starting and ending dates, respectively, for all 
viruses identified in the same surveillance program.

RBD & RBM extraction. The receptor-binding domain (RBD) is located in the S protein and plays a crucial 
role in facilitating virus entry into host cells, as well as in regulating viral infectivity, pathogenesis, and host range. 
Evidence has shown that the RBD contains a critical receptor-binding motif (RBM), which binds to the outer 
surface of the claw-like structure of host ACE211. Certain amino acids at specific positions can increase the affinity 
with host ACE212. To extract sequences of the RBD and RBM, we first performed multiple sequence alignment to 
align all sequences of the SarbeCoV S gene (if present). Subsequently, we used SARS-CoV-2 (GenBank accession: 
NC_045512) as the reference genome to annotate the existing RBD and RBM regions. Following the exclusion 
of all RBD and RBM sequences with ambiguous bases (Ns), we collated a total of 726 RBD and 750 RBM amino 
acid sequences.

Data Records
The dataset is publicly accessible online via Figshare13 and consists of three sequence sets, the available sequence 
of each virus and sequences of RBD and RBM (if present). In addition, the meta-information available on 
animal-associated SarbeCoVs was curated into 25 fields that were categorized into six groups as follows:

•	 Virus: Description of basic sequence information of the respective SarbeCoVs that includes six fields, namely, 
virus name, strain, accession, sequence description, sequence length, and completeness. The field “complete-
ness” was assigned a label of “true” if a complete genome was available.

•	 Host: Description of the animal host from which the virus was derived, including three fields: host, taxonomy 
ID, and possible role of animals. The field “possible role of animals” refers to the potential role that animals 
are currently known to play as natural reservoirs, intermediate hosts or incidental hosts in the circulation of 
the SarbeCoV5,6.

•	 Sampling location: Description of the detailed location of the sample that includes four fields, namely, conti-
nent, country, subregion, and GPS coordinates.

•	 Sampling time: Description of the specific time at which the sample was collected, including three fields: 
namely, sampling date, date from, and date to. If the submitter did not provide any temporal information, 
then we assigned a label of “NA”.

•	 Preparation method: Description of the methods of sample preparation used to identify the SarbeCoV that 
includes three fields, namely, specimen type (e.g., oral swab, faeces, or tissues), cell line, and detection method 
(e.g., PCR or high-throughput sequencing).

•	 Reference: Description of the available literature that includes five fields: title, author, affiliation, publication 
(if available), and PubMed ID.

technical Validation
After initial curation, the dataset consisted of 1,563 SarbeCoV sequences, including 1,143 published sequences 
and 420 unpublished sequences (without related literature). In an attempt to ensure the accuracy and valid-
ity of sequences, two additional examination steps were implemented. The first step involved literature-based 
examination to identify any inconsistencies in virus taxonomy between GenBank records and related literature. 
Herein, a total of 1,128/1,143 virus sequences were verified to be associated with SarbeCoVs based on taxo-
nomic information described in related literature, whereas 15 virus sequences (15/1,143) were associated with 
Alpha-CoVs rather than SarbeCoVs according to phylogenetic analysis in the literature. We excluded these 15 
confirmed Alpha-CoVs and independently cross-checked them by two different team curators to ensure accu-
racy. The data source used to compile these published sequences is also cited in the manuscript14–122.
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Nevertheless, the absence of peer-reviewed literature may pose an obstacle to further data validation. 
Therefore, we implemented a homology-based examination for unpublished sequences. All 420 unpublished 
sequences were aligned to the nonredundant nucleotide database (NT) using the BLAST suite of the NCBI. The 
taxonomic report generated from the BLAST result revealed that the majority of the unpublished sequences 
(404/420) shared an overall nucleotide similarity of >91% with currently confirmed SarbeCoVs. Additionally, 
a set of unpublished sequences (7/420) deposited by the same submitter shared only 83–89% similarity with 
SarbeCoVs, but further phylogenetic analysis demonstrated that they were closely related to bat coronavi-
rus BM48-31/BGR/2008 (GenBank accession: NC014470). In contrast to the aforementioned sequences that 
showed the best matches with known SarbeCoVs, the last remaining unpublished sequences (9/420) were found 
to be highly homologous to Alpha-CoVs (>95% nucleotide similarity) rather than SarbeCoVs. As a result, we 
removed these 9 probably misclassified Alpha-CoVs from our dataset.

Despite the potential of the homology-based examination to verify the correlation of these unpublished 
sequences with SarbeCoVs, it remains challenging to discern whether they originated from infected or contam-
inated samples. For instance, it is known that amphibians are not naturally susceptible to SARS-CoV-2 infection 
based on our current knowledge. Without contextual clues, our curator lacked sufficient evidence to determine 
the transmission route of four SARS-CoV-2-related sequences (SC2r-CoVs) identified from Scincomorpha liz-
ards in Nigeria (GenBank accession: ON564647-ON564650). However, these four sequences shared a nucleotide 
similarity of >99% with SARS-CoV-2, suggesting that they were probably derived from contaminated samples. 
Consequently, we empirically excluded four SC2r-CoVs obtained from lizards. Finally, we will continue trying 
to verify whether any relevant literature is available to solve possible inconsistencies in the follow-up study.

Usage Notes
Users can summarize the current research efforts on animal-associated SarbeCoVs for individual investigation 
purposes and methodologies. However, it is worth noting that several large-scale surveillance programs on the 
screening of SARS-CoV-2 have used only serological detection methods. Related findings without available 
sequences will be excluded from this study. Consequently, the current data cannot exactly represent the total 
count of positive cases of SarbeCoVs carried by all animal hosts. In addition, despite our efforts to eliminate 
misclassified SarbeCoVs, it is still possible that some may remain in the dataset. Users should use caution in the 
biological interpretation of the statistical results generated in this study.

Additionally, the dataset integrates the existing sequences of presently identified SarbeCoVs, along with 
related RBD and RBM sequences. The dataset offers a platform for users to generate an individual reference 
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Fig. 2 Characterization of complete S protein and RBM sequences in natural reservoirs/intermediate hosts of 
SarbeCoVs. (a) Phylogenetic tree based on the complete S sequences, accompanied by two homology-based 
heatmaps that represent the sequence similarity with SARS-CoV (middle ring) and SARS-CoV-2 (outer ring) 
at the whole-genome level. The SarbeCoVs carrying identical amino acid sequences of the RBM are labelled 
with the same serial number (inner ring). (b) Comparative sequence alignment of the representative RBMs 
with identical amino acids. The serial number of representatives is correlated with the sequence number shown 
on the phylogenetic tree (a). The five critical residues are highlighted with red pentagrams. Other contacting 
residues in the SARS-CoV and SARS-CoV-2 RBM that interact with hACE281,124 are marked by blue and red 
circles, respectively.
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library for the identification and characterization of novel SarbeCoVs or associated variants. For instance, con-
sidering that the spike protein can bind host receptors and is instrumental in the entry of SarbeCoVs into host 
cells, researchers might exploit the RBD/RBM region to examine potential interspecies spillover events. Utilizing 
all known natural reservoirs and intermediate hosts associated with complete SarbeCoV sequences as an exam-
ple, the homology-based heatmap created by whole genome sequences can provide a straightforward clue as 
to which virus identified from a specific reservoir/intermediate and location is closely related to SARS-CoV 
and SARS-CoV-2 (Fig. 2a). Furthermore, phylogenetic analysis based on the S protein sequences provided an 
overview of the viral population within four clades of SARSr-CoVs (clade 1), SC2r-CoVs (clade 2) and two 
other SarbeCoVs (clade 3 and 4). For the SC2r-CoVs in clade 2, multiple sequence alignment of representa-
tive RBMs (Fig. 2b) revealed that the majority, despite sharing higher sequence identity at the genome level, 
may not bind to human ACE2 (hACE2) due to intrinsic deletions in the key region123. However, three newly 
identified SC2r-CoVs (BANAL-20-52, BANAL-20-103, and BANAL-20-236) from Rhinolophus malayanus and 
Rhinolophus pusillus in Laos were found to have an intact RBM similar to that of SARS-CoV-2. In particular, 
several critical ACE2-interacting residues were almost identical to those found in the RBM of SARS-CoV-2, 
indicating that they can bind more efficiently to the hACE2, consistent with the findings of previous studies11,102. 
This can also be applied in homology modelling to evaluate RBM binding affinity with ACE2 from different 
animals12. We recommend that users approach such biological interpretations with caution, as in silico results 
always require further experimental verification.

Finally, this dataset represents a time-bounded survey of research efforts on animal-associated SarbeCoVs. 
As more related viruses are identified and published, the dataset will continue to be updated regularly to provide 
the latest and most accurate information. The curation protocol outlined in this study can also be utilized in 
future mapping efforts for other zoonotic viruses. Given that coronaviruses have high frequencies of recombina-
tion throughout the genome2, we will gradually extend our study subject to the entire range of animal-associated 
coronaviruses. Furthermore, we also intend to develop an online platform and integrate a set of online visu-
alization tools for easy browsing, text querying, BLAST searching, phylogenetic reconstruction, and various 
customized comparative analyses of viral diversity between/within different host species.

Code availability
There is no custom code produced during the collection and validation of this dataset.
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