
1Scientific Data |          (2023) 10:638  | https://doi.org/10.1038/s41597-023-02552-x

www.nature.com/scientificdata

Single-nucleus transcriptomic 
mapping of blast-induced traumatic 
brain injury in mice hippocampus
Lingxuan Zhang1,7, Qiuyun Yang2,3,7, Ruixuan Yuan1,7, Manrui Li2, Meili Lv4, Lin Zhang1, 
Xiaoqi Xie5,8 ✉, Weibo Liang   2,8 ✉ & Xiameng Chen6,8 ✉

As a significant type of traumatic brain injury (TBI), blast-induced traumatic brain injury (bTBI) 
frequently results in severe neurological and psychological impairments. Due to its unique mechanistic 
and clinical features, bTBI presents diagnostic and therapeutic challenges compared to other TBI 
forms. The hippocampus, an important site for secondary injury of bTBI, serves as a key niche for neural 
regeneration and repair post-injury, and is closely associated with the neurological outcomes of bTBI 
patients. Nonetheless, the pathophysiological alterations of hippocampus underpinning bTBI remain 
enigmatic, and a corresponding transcriptomic dataset for research reference is yet to be established. 
In this investigation, the single-nucleus RNA sequencing (snRNA-seq) technique was employed to 
sequence individual hippocampal nuclei of mice from bTBI and sham group. Upon stringent quality 
control, gene expression data from 17,278 nuclei were obtained, with the dataset’s reliability 
substantiated through various analytical methods. This dataset holds considerable potential for 
exploring secondary hippocampal injury and neurogenesis mechanisms following bTBI, with important 
reference value for the identification of specific diagnostic and therapeutic targets for bTBI.

Background & Summary
Blast-induced traumatic brain injury (bTBI) is a type of traumatic brain injury (TBI) caused by blast shock 
wave1. Militarily, bTBI is the leading cause of casualties and disabilities among active servicemen in conflict 
area2. In daily life, bTBI can also occur as a result of explosions caused by chemical or industrial accidents. 
Increasing amounts of data show that bTBI is becoming more common as a type of TBI3–6. Compared to other 
types of TBI, bTBI has unique mechanisms of onset, pathological changes, and clinical manifestations. bTBI is 
primarily caused by the rapid release of shock waves generated by an explosion7. In contrast, traditional TBIs 
result from direct physical impact or deceleration forces without the explosive component. Increased activation 
and proliferation of astrocytes, as well as periventricular axonal damage detected through immunohistochemis-
try for amyloid precursor protein, are prominent neuro-pathological findings in bTBI8,9. Studies on the mecha-
nism of injury have shown that the neural impact of bTBI is characterized by diffuse, widespread, and spatially 
variable patterns, which differ from other forms of brain injury10. In that case, the prognosis of bTBI is notably 
more intricate compared to other types of TBIs, including cognitive impairments, memory loss, headaches, and 
sleep disturbances11. Currently, it is challenging to study the diagnosis and treatment of bTBI, and there is no 
specific target for diagnosis or treatment.

Understanding the mechanisms of secondary injury and neural repair after bTBI is critical to addressing the 
aforementioned issues. However, the mechanisms are not entirely clear at present. Previous studies have demon-
strated that neural stem cells (NSCs) in neurogenic regions play a key role in neural repair after brain injury12. 
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Meanwhile, the secondary injury of the hippocampus has been shown to be closely associated with significant 
aftermath problems, including cognitive impairment, epilepsy, post-traumatic stress disorder, and affective dis-
order, after bTBI13. Consequently, the hippocampus has assumed a pivotal role in bTBI research, yielding signif-
icant advancements encompassing injury mechanisms, bTBI-related consequences and diagnosis. For instance, 
in the realm of secondary injury mechanisms following bTBI, Ratliff et al., observed a reduction in dendritic 
structure complexity among hippocampal neurons in mice14, elucidating potential underpinnings for cognitive 
and memory impairments following bTBI. However, a comprehensive comprehension of the molecular mech-
anisms underpinning this occurrence necessitates further inquiry. In the arena of post-sequelae research after 
bTBI, Chen et al. identified heightened tau protein phosphorylation triggered by bTBI, mirroring pathological 
features observed in the brains of individuals with Alzheimer’s disease (AD)15. Nevertheless, the intricate molec-
ular pathways governing tau protein signaling subsequent to bTBI remain to be further investigated, as unrave-
ling this intricacy stands to significantly inform future AD preventive strategies. Furthermore, propelled by the 
relentless progress of neuroimaging techniques, novel methods for brain imaging have surfaced in the domain 
of bTBI diagnostic research. Davenport et al.‘s investigation leveraged diffusion tensor imaging (DTI) to discern 
neuropathological shifts within the brain post bTBI, serving diagnostic aims10. However, this approach still 
lacks distinctly specific markers tailored for bTBI-induced injuries. In summary, the pursuit of resolutions to the 
aforementioned quandaries demands a deeper delve into the intricate mechanisms governing hippocampal neu-
ron cell detriment, nuanced fluctuations in bTBI responses, and the quest for injury-specific biological markers.

To address the aforementioned issues, we used a breakthrough research technology in recent years- single 
nuclei RNA sequencing (snRNA-seq)16, to study specific transcriptome alterations in the hippocampus after 
bTBI in greater depth, so as to provide a powerful reference map. This approach allows for the independent 
RNA expression profiling of each nucleus by sequencing the RNA at the individual cell level. As a result, we 
can gain a deeper understanding of the state, gene expression changes, and interaction mechanisms of different 
types/ sub-type of cells in the hippocampus after bTBI17. Based on a well-established animal model of bTBI, 
snRNA-seq was performed on murine hippocampus, and a high-quality dataset of bTBI was obtained for the 
first time. Here, we demonstrated that the dataset has the sequencing depth required for in-depth analysis, and 
used strict standards to control its quality. Additionally, the dataset’s high quality and reliability were confirmed 
through cell clustering, cell type annotation, differentially expressed gene analysis, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) signal pathway enrichment analysis, pseudotime analysis, combined with previous liter-
ature reports. This dataset can be used to identify the cell types/sub-types of hippocampus, discover new marker 
genes, examine transcriptomic changes in distinct cell types, and characterize the differentiation routes of NSCs 
after bTBI. Therefore, this data is suitable for those interested in exploring hippocampal cell types, the mecha-
nisms and pathogenesis of secondary injury after bTBI, as well as related NSC differentiation, with significant 
reference value for mining specific targets for the diagnosis or treatment of bTBI.

Methods
Animals.  All animal experimental procedures were carried out in accordance with local laws and institu-
tional guidelines, with approval granted by the Experimental Animal Ethics Committee of West China Hospital, 
Sichuan University (Approval Number: 2020386 A). Furthermore, these procedures were executed following the 
principles delineated in the guide for the Care and Use of Laboratory Animals of the National Institutes of Health 
(NIH publication #85-23, revised in 1985). C57BL/6 J mice aged between 7–10 weeks (n = 3/group) were selected 
for the study. Mice were kept under standard conditions of 12-hour light-dark cycle, temperature 22–25 °C, and 
relative humidity 40–60%, with ad libitum access to food and water. The experimental animals were sourced from 
ENSIWEIER Bio-Technology Co., Ltd. in Chengdu.

Blast-traumatic brain injury.  In this experiment, C57BL/6 J mice aged 7–10 weeks were randomly assigned 
to either a bTBI or a sham-operated group, with 3 mice in each group. They were housed in a room with a 12-hour 
light-dark cycle and controlled temperature. Prior to surgery, the mice were anesthetized with intraperitoneal 
injection of pentobarbital (5 mg/100 g ip) and immobilized to prevent movement. In the bTBI group, a BST-I bio-
logical shock tube driven by compressed gas was used to expose the mice to a 5.0 MPa blast shock wave, created 
by rupturing an aluminum sheet with high-pressure compressed gas, to simulate open-field conditions and con-
struct the bTBI injury model18. In contrast, the sham-operated group was anesthetized and placed near the blast 
chamber, but was not exposed to the blast shock wave. After the blast shock, all mice were returned to a 12-hour 
light-dark cycle, temperature-controlled room for housing after they regained consciousness. After 48 hours of 
injury, 4% isoflurane was used for anesthesia, followed by 1–2% isoflurane for maintenance anesthesia. The mouse 
brain tissue from the hippocampal region was micro-dissected (n = 3/group) after cardiac perfusion of 20–25 ml 
of PSB treated with hypothermia until the mouse liver turned pale. The brain tissues were washed in pre-chilled 
PBS to remove any residual blood and placed in liquid nitrogen for rapid freezing before being transferred to 
−80 °C for subsequent experiments.

Neurobehavioral assessment.  At 6 hours after bTBI, we conducted the Modified Neurological Severity 
Score (mNSS) test on the mice to evaluate the degree of neurological impairment and behavioral functional defi-
cits. This test involved motor, sensory, reflex, and balance assessments, with scores ranging from 0 to 18. A higher 
score indicates more severe neurological impairment, while a score of 0 indicates normal neurological function 
with no deficits. A maximum score of 18 indicates loss of consciousness or death19.

Nuclei isolation.  The frozen hippocampus was treated with NLB buffer (0.2 U/μL RNase Inhibitor (Takara, 
Kyoto, Japan), 250 mM sucrose, 10 mM Tris-HCl, 3 mM MgAc2, 0.1% Triton X-100 (Sigma-Aldrich, St Louis, 
MO, USA), 0.1 mM EDTA) for purification of nuclei using density gradient centrifugation with sucrose solutions 
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of varying concentrations. The resulting nuclei were visually inspected for appearance and cell lysis using trypan 
blue, and the concentration was adjusted to 1,000 nuclei/μL for snRNA-seq.

Single nucleus RNA sequencing.  cDNA synthesis, library construction, and single-nucleus RNA sequenc-
ing were carried out by NovelBio Co., Ltd. located in Shanghai, China. The experiment utilized the Chromium 
Single Cell 3′ Reagents Kits v3.1 (10x Genomics, Pleasanton, USA). Sequencing was performed on a 10x 
Genomics Chrome Controller instrument in strict accordance with the Chrome Single Cell 3′ Reagent Kit v3.1 
user guide. Briefly, after washing twice with 1 × PBS + 0.04% BSA, nuclei at a concentration of 1,000 nuclei/μL  
were added to the 10 × Genomics Chromium Controller machine to generate Gel Beads. A controller machine 
was used to produce Gel Beads-in-Emulsion (GEM) for the experiment. The mRNA was prepared using the 10x 
Genomics Chromium Single Cell 3′ reagent kit featuring V3.1 chemistry. During this step, nuclei were combined 
with oligonucleotide-coated Gel Beads in the GEM. The oligonucleotides included poly-dT sequences and spe-
cific barcodes for each cell and transcript, which enabled the mRNA to be released after nucleolysis within the 
droplet. after reverse transcription, the barcoded-cDNA is released from the GME and purified. Once the library 
preparation was deemed sufficient, the Qubit High Sensitivity DNA assay (Thermo Fisher Scientific, Waltham, 
MA, USA) was applied to quantify the final libraries. Additionally, the quality and concentration of the final 
library were evaluated using Bioanalyzer 2200 (Agilent Technologies, Santa Clara, CA, USA). Finally, all libraries 
were subjected to a 150 bp paired-end run using the Novaseq. 6000 (Illumina, San Diego, CA, USA).

The raw data was converted into FASTQ files and analyzed using CellRanger v3.1.0. We compared the short 
reads with the mouse reference genome (GRCm38 Ensembl: version 92) and generated feature-barcode matrices 
containing the barcode and unique molecular identifier (UMI) counts.

Normalization, clustering and data visualization.  We used the Seurat R package to conduct the follow-
ing analysis20. First, we normalized the UMI counts for each gene via dividing the UMI counts by the total number 
of UMIs for the cell, multiplying by 10,000, and then log-transforming. We subsequently subjected the nuclei to a 
cell-level quality control procedure. For the percentage of mitochondrial transcripts detected in each cell (percent.mt),  
the number of genes detected in each nucleus (nFeature_RNA), and the total number of detected mRNA mole-
cules detected in the nucleus (nCount_RNA), we established stringent thresholds (nFeature_RNA per cell must be 
higher than 200 and be less than 10,000; percent.mt must be less than 10%; nCount_RNA be less than 100,000.). 
Next, we identified the 2,000 highly variable genes using the FindVariableFeatures function in the Seurat R pack-
age. We performed principal component analysis (PCA) to reduce the dimensionality of the dataset using the 
RunPCA function in the Seurat R package. We plotted the cumulative standard deviation of each PC using the 
PCElbowPlot function in the Seurat R package to identify the inflection point, which indicated the number of PCs 
that explained the majority of the variance. We used the ScoreJackStraw function in the Seurat R package to iden-
tify the significance of each gene in association with each PC and obtained the optimal number of principal com-
ponents (PCs) for cluster analysis and visualization. We used the FindNeighbors function with the top10 PCs and 
the FindClusters function with a resolution of 0.8 in the Seurat R package for unsupervised clustering of the data-
set. The other parameters were set as the default parameters. The clusters were then visualized using the Uniform 
Manifold Approximation and Projection for Dimension Reduction (UMAP) method. Finally, marker genes were 
automatically calculated by Wilcoxon rank sum test using the FindAllMarkers function in the Seurat R package.

Pseudotime analysis.  Reprogramming trajectory analysis of neural stem cells (NSCs) was conducted using 
Monocle2. This visualizes the pseudotime trajectory as a tree structure in reduced dimensional space. In this 
paper, we used the differentialGeneTest function (with a q-value threshold of < 0.05) in the Monocle2 R package 
to identify significantly changed genes. Heatmaps were used to show gene sequences with certain expression 
patterns along the trajectory direction. Based on Pseudotime analysis, we analyzed and showed some of the 
fate-specific genes that affect the fate of cell developmental processes at branching points on single-cell trajecto-
ries using the branching expression analysis model (BEAM).

Functional annotation and pathway analysis.  We conducted Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analyses using the clusterProfiler R package21. Fisher’s 
exact test was employed to determine the GO categories and pathways, and the p-values were corrected using the 
false discovery rate (FDR). Enrichment items with a p-value < 0.05 were considered to be significantly enriched.

Data Records
The sequencing raw data has been uploaded to Gene Expression Omnibus (GEO) (project number: 
GSE23025322; GSM7210822 for Sham; GSM7210821 for bTBI). We also uploaded the data to figshare as 
matrix.mtx.gz, features.tsv.gz and barcodes.tsv.gz in a matrix format, respectively (https://doi.org/10.6084/
m9.figshare.22659415 for Sham23; https://doi.org/10.6084/m9.figshare.22659406 for bTBI24). Through the raw 
data we provide, the FASTQ files can be processed using Cell Ranger to generate BAM files.

Technical Validation
In this investigation, we utilized the single-nucleus RNA sequencing (snRNA-seq) technique to sequence indi-
vidual hippocampal nuclei from both the bTBI and sham groups of mice (Fig. 1a). The analysis of modified 
Neurological Severity Score (mNSS) at 6 hours post bTBI revealed a significant disparity between the bTBI 
group and the sham group, indicating the impact of bTBI (Fig. 1b). The 10x Genomics Chromium platform was 
used to construct a snRNA-seq library from the hippocampus of bTBI mice and the sham control. Subsequently, 
sequencing and bioinformatic analysis were performed. In the bTBI and sham operation groups, 9823 and 7834 
nuclei were involved, respectively. Per group, the median UMI counts detected in each nucleus were 6568 and 
5801, and the average gene readings in each nucleus were 45667 and 36326, and the average gene counts were 
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2658 and 2480, respectively. The saturation curves for the 2 groups shows that there is a similar distribution and 
very small technical differences in data quality metrics between the bTBI and sham operation groups (Fig. 1c). 
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Fig. 1  Workflow and quality control. (a) Summary of experimental design. (b) Neurobehavioral assessment 
by mNSS test results. (c) Raw data of the Single nucleus RNA sequencing. Left: Sequencing Saturation, Mid: 
Median gene per cell, Right: Barcode Rank Plot. (d) Single nucleus RNA sequencing quality control. (e) The 
nFeature RNA for single or double cell. (f) The correlation coefficient between Percentage of mt(left), Feature 
RNA(mid),Percentage pf and nCount RNA. (g) The correlation coefficient between Standard Deviation and PC 
values. (h) UMAP plots of the hippocampal cells. (i) UMAP plots of Sham and bTBI.
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These sequence saturation curves are based on the notion of sequencing saturation. The detailed calculation 
method for sequencing saturation can be accessed on the 10x Genomics official website (https://kb.10xgenom-
ics.com/hc/en-us/articles/115003646912).

To eliminate the potential low-quality results that may be caused by cell disruption, apoptosis, or other tech-
nical factors, dead cells need to be removed from subsequent analysis. After cell death, RNA leaks out of the 
cytoplasm due to increased cell permeability and membranolysis, while mitochondrial transcripts are retained, 
resulting in an increase in the percentage of mitochondrial transcripts. Therefore, cells with a high percentage 
of mitochondrial transcripts (percent.mt) were interpreted as dead cells. Additionally, nuclei from dead cells 
often have a much lower number of genes detected than normal cells. Therefore, we set strict thresholds for 
percent.mt and the number of genes (nFeature_RNA) detected in each nucleus (Fig. 1d), to ensure high data 
quality. Specifically, we required that nFeature_RNA per nucleus be higher than 200 and percent.mt be less 
than 10%. We also required that nFeature_RNA be less than 10,000 and nCount_RNA be less than 100,000, 
as excessive gene numbers are often indicative of double nuclei. Furthermore, we used the DoubletFinder  
R package to screen for double nuclei and remove them (Fig. 1e). Following these screening steps, we retained 
17,278 high-quality nuclei, with 9,639 and 7,639 nuclei in the bTBI and sham operation groups, respectively. 
The correlation coefficient between percent.mt and nCount_RNA was −0.12, and the correlation coefficient 
between percent.hb and nCount_RNA was −0.01 in the bTBI and the sham control, indicating that mitochon-
drial transcripts and erythrocyte genes did not change with increasing sequencing depth. At the same time, the 
correlation coefficient between nFeature_RNA and nCount_RNA was 0.93, suggesting that the number of genes 
detected increased with deepening sequencing depth (Fig. 1f). These above results further demonstrate that our 
data correspond to living cells. In conclusion, by performing the above screening steps, we obtained high-quality 
single-nucleus transcriptomic datasets from the hippocampus of bTBI mice and sham control.

To further analyze the cell population and assess the utility value of our dataset, we employed the principal 
component analysis (PCA) (Fig. 1g). Using unsupervised calculation, the FindClusters function in the Seurat 
R package divided the nuclei into 23 clusters, and UMAP projected all sequenced nuclei into a 2-dimensional 
space (Fig. 1h). Our results showed that the data from bTBI and sham operation groups had similar distribution 
on the 2-dimensional map, indicating that we successfully removed the influence of batch effects after our previ-
ous quality control steps (Fig. 1i). Based on known specific markers, the hippocampal nuclei were classified into 
9 major cell types: neurons, mural cells, choroid plexus cells, endothelial cells, ependymal cells, oligodendro-
cyte precursor cells (OPCs), microglia, NSC & astrocytes, and oligodendrocytes25–30 (Fig. 2a). The marker gene 
Rbfox3, which is specifically expressed by neurons, was used to annotate fifteen clusters as neurons. Additionally, 
Syt1, Meg3, and Snap25, which are highly expressed in neurons, were also found to be highly enriched in these 
clusters, further supporting our annotation results. The marker gene Vtn, which is commonly found in mural 
and endothelial cells, was highly enriched in cluster 14 and 18. Notably, mural marker genes such as Acta2 and 
Tagln were highly expressed in cluster 14, while the classical endothelial marker gene Flt1 was highly enriched 
in cluster 18, leading us to annotate cluster 14 as mural cells and cluster 18 as endothelial cells. Cluster 16 was 
annotated as choroid plexus cells by a specific marker gene Clic6. The presence of the Tmem212 in cluster 15 
indicated that this cluster was ependymal cells. Cluster 11 was highly enriched with Pdgfra, which is often con-
sidered a specific marker gene for OPCs in previous literature, so it was annotated as OPCs. The presence of the 
specific marker gene Csf1r in cluster 9 led us to define it as microglia cells. Cluster 0 was highly enriched with the 
oligodendrocyte cell-specific marker gene Mog. At the same time, we also noticed that the genes Mbp, Opalin, 
and Plp1, which were previously used to annotate oligodendrocyte cells, were also highly enriched in this cluster, 
so we annotated cluster 0 as oligodendrocyte cells. There were many similar molecular characteristics NSCs and 
astrocytes. At present, a large number of studies held the viewpoint that hippocampal NSCs and astrocytes share 
some molecular characteristics and astrocytes exhibit stem cell properties under certain injury conditions, so we 
preliminarily grouped them into a large category31,32. We found that the marker gene Slc1a3 was highly enriched 
in cluster 5, and the marker genes Aqp4 and Egfr, which were previously used to annotate NSCs and astrocytes, 
were also enriched in the cluster, so cluster 5 was annotated as NSC & Astrocytes (Fig. 2b).

To further validate the data have certain value in studying the transcriptomic changes after bTBI, we used the 
FindMarkers function and Wilcox rank sum test to screen for the 10,568 differentially expressed genes (DEGs) 
across the 9 cell types, using predefined criteria (min.pct = 0.01, logfc.threshold = 0.01). We defined DEGs with 
p_val < 0.05 and |log2FC| > 0.25 as significant. Among them, significantly up-regulated genes were defined as 
those with log2FC > 0.25, while significantly down-regulated genes were defined as those with log2FC < −0.25. 
We utilized these criteria to identify significant DEGs across the 9 cell types, presenting the subset of genes for 
each type, and performed KEGG analyses on the DEGs within each cell type (Fig. 2c,d). The functional analysis 
of those DEGs further supports the high quality of our dataset. For instance, after bTBI, the expression of Apoe 
was up-regulated in NSC & Astrocyte, which is consistent with the reported mechanism of Apoe mediating 
hippocampal neurogenesis induced by TBI33. Moreover, blood-brain barrier (BBB) injury is a common fea-
ture of secondary brain injury after TBI. In our dataset, we observed that Tjp1 (Z0-1), a gene related to tight 
junction protein (TJP) expression and essential for BBB function, was significantly down-regulated, which is 
consistent with the findings reported in previous studies, thus further supporting the reliability of our dataset34. 
Additionally, microglia, as the cellular component of the innate immune system in brain, showed significant 
up-regulation of Cx3cr1 after injury, suggesting an activation of the inflammatory response, which aligns with 
the reported mechanism of microglia participating in neuroinflammatory responses after TBI35–37. Overall, our 
results demonstrate the reliability of our data and analysis, providing references for future bTBI researches.

Subsequently, we conducted a more detailed analysis focusing on neurons. We used the FindAllMarkers func-
tion in the Seurat R package (min.pct = 0.25, logfc.threshold = 0.25) and identified 3,989 marker genes specific 
to neuronal cells. Based on published literature on known markers, the neuronal clusters fell into 8 sub-types: 
granule cells in dentate gyrus (DG GC), pyramidal neurons in cornu ammonis 1 (CA1 Pyr), pyramidal neurons 
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in cornu ammonis 3 (CA3 Pyr), two types of GABAergic neurons (GABAergic 1 and GABAergic 2), Subiculum, 
Cajal-Retzius cell (CR), and DG mossy cell (DG MC)38–43 (Fig. 3a). Marker genes of different neuronal sub-types 
were displayed using the heatmap (Fig. 3b). To further validate the reliability of our annotation, we visualized 
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the distribution of the marker genes for each sub-type on UMAP (Fig. 3c). Our analysis revealed specific dis-
tribution of Ppfia2 in DG GC cells, enrichment of Pex5l and Mpped1 in CA1 Pyr cells, specific expression of 
Spock1 in CA3 Pyr cells, and high expression of Fn1, Reln, and Calb2 in Subiculum cells, CR, and DG MC 
cells, respectively, which support the reliability of our data and annotation results. Furthermore, we found that 
Atp2b1 was a specific marker for glutamine excitatory neurons, as it was widely distributed in DG GC cells, CA1 
Pyr cells, and CA3 Pyr cells. The specific marker gene for inhibitory GABAergic neurons- Gad2, was widely 
distributed in GABAergic 1 cells and GABAergic 2 cells, while with higher expression in GABAergic 2 cells.  
In addition, the specific marker genes Sst and Cnr1 were highly expressed in GABAergic 1 cells and GABAergic 2 
cells, respectively, further supporting our annotation results. Notably, we observed a significant reduction in the 
percentage of DG GC cells among all the hippocampal neuronal sub-types after bTBI. This finding is consistent 
with previous reports of secondary damage to hippocampal DG neurons after bTBI44,45 (Fig. 3d). Additionally, 
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we also identified novel markers for various sub-types of hippocampal neurons, such as Pex5l for CA1, Syn3 for 
DG, Robo1 and Sulf2 for CA3, and Ntng1 for Subiculum. To verify the reliability of these novel marker genes, 
we examined their locations in the hippocampus using the Allen Brain Map database46 (Fig. 3e). We found that 
the expression of these markers locationally matched the corresponding neuronal sub-types, providing further 
support for the quality and reliability of our data and analysis.

To visualize the reprogramming route of the NSC & Astrocyte in the hippocampus following bTBI, 
we grouped and annotated the detailed types of those nuclei at the first step. Using the Seurat R package’s 
FindCluster, the “NSC & Astrocyte” were divided into 11 clusters unsupervisedly. Based on known markers, 
we grouped those clusters into 5 classes- astrocytes, quiescent NSCs (qNSCs), early active NSCs (aNSCs), late 
aNSCs, and neuroblasts, and projected them into a 2-dimensional space using the UMAP28,29,47,48 (Fig. 4a). 
Pseudotime trajectories (Fig. 4c) were established for all NSC & Astrocyte using the Monocle2 R package. We 
identified 4 different branches and 9 different states on this route. At the 4 branch points, cells underwent spe-
cific gene expression patterns that determined their cell fate during differentiation (Fig. 4d). We observed that 
at branch point 4, state 5 (mainly composed of qNSCs and early aNSCs) and state 6 (mainly composed of astro-
cytes and early aNSC cells) converged to develop into state 4 (mainly composed of early aNSCs), which was then 
differentiated into state 3 (mainly composed of late aNSCs), and finally into state 1 (mainly composed of late 
aNSCs and neuroblasts) (Fig. 4b–e). This is consistent with the processes of post-injury neurogenesis reported 
in previous literature49–51. Collectively, these results further demonstrate the reliability of our dataset.

To display the detailed information on the gene expression per branch, we selected the characteristic genes 
in each type of NSC & Astrocyte (gene expression greater than 0.1, expressed in at least 10 cells). Based on this, 
the NSC & Astrocyte was clustered and dimensionally reduced. Subsequently, differentialGeneTest function was 
introduced to obtain 1,265 fate-specific genes under different states via unsupervised clustering. Additionally, 
we presented genes at branch point 4 (Fig. 4f) which may have critical roles in the cell fate determination in the 
differentiation from the qNSC cells (state 5) and astrocytes (state 6) into early aNSCs (state 4). The heatmap 
of fate-specific genes determining this process was divided into 3 clusters, and GO enrichment analysis was 
conducted on the genes within each cluster. Results showed that these genes mainly aggregate in glial cell devel-
opment, glial cell differentiation, dendrite development, and neuron projection guidance, which is consistent 
with published literature on the mechanism of neurogenesis after TBI52. Finally, we ranked fate-specific genes 
by p-value and q-value and displayed the top 8 fate-specific genes (Fig. 4g) at branch point 4. Overall, the above 
analysis indicates that our dataset is of high quality and utility, providing valuable insights into the mechanisms 
of hippocampal neurogenesis following bTBI and potential targets for promoting neurogenesis.

Usage Notes
Our raw data bits, based on UMI’s 10x Genomics sample, were uploaded to the database in.fastq format. Various 
tools, including cellranger (v3.1.0), UMI-tools (v1.0.0), and zUMIs (v2.4.5), can be used to process the raw data. 
Read10X function in the Seurat R package can be used to generate gene-barcode matrices.

The R packages mentioned in this manuscript, such as Seurat, Monocle2, clusterProfiler, org.Mm.eg.db and 
others, can be used to perform basic analyses such as quality control, differential expression analysis, pseu-
dotime analysis and GO analysis on the gene-barcode matrices. Matrices could also be processed using other 
common analysis methods such as Single Cell Regulatory Network Inference and Clustering (SCENIC) and 
CellChat, which were not discussed in this manuscript. The corresponding code scripts of the analysis men-
tioned in this study can be accessed in the code availability.

Based on the above-mentioned analysis methods or other analysis methods, this dataset can be used to: (1) 
explore the heterogeneity of mouse hippocampal cells and identify novel cell types/ sub-types; (2) discover new 
specific markers for different hippocampal cell types; (3) study the gene expression of hippocampal cells to pro-
vide a reference map for subsequent functional researches; (4) investigate the specific gene expression alterations 
of various types of hippocampal cells after bTBI; (5) reveal the changes in crosstalk between different cell types 
of mouse hippocampus following bTBI; (6) analyze the dynamic changes of the NSC reprogramming process 
after bTBI, and its regulatory mechanisms; (7) provide a reference map for the study of the secondary injury and 
repair mechanisms of bTBI, and identify the diagnostic and therapeutic targets of bTBI.

It is worth noting that snRNA-seq has certain limitations. Compared to single-cell RNA sequencing, 
snRNA-seq loses transcriptional information in the cytoplasm. At the same time, compared to bulk RNA 
sequencing, snRNA-seq has a larger and more complex background noise. This issue may require the develop-
ment of new algorithms to ensure data reproducibility.

Code availability
All of the programs we use in this study for analysis are based on open data sets.

The version information of the open program and its official website:
1. FastQC (v0.11.9) https://github.com/s-andrews/FastQC.
2. CellRanger (v3.1,0) https://github.com/10XGenomics/cellranger.
3. Seurat (v3.1.4) https://satijalab.org/seurat.
4. ClusterProfiler (v4.6.2) https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
5. Monocle2 (v2.4.0) http://cole-trapnell-lab.github.io/monocle-release.
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