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ELMaS: a one-year dataset of 
hourly electrical load profiles from 
424 French industrial and tertiary 
sectors
Kevin Bellinguer  1 ✉, Robin Girard  1 ✉, alexis Bocquet1 & antoine Chevalier2

The combination of ongoing urban expansion and electrification of uses challenges the power grid. In 
such a context, information regarding customers’ consumption is vital to assess the expected load at 
strategic nodes over time, and to guide power system planning strategies. Comprehensive household 
consumption databases are widely available today thanks to the roll-out of smart meters, while the 
consumption of tertiary premises is seldom shared mainly due to privacy concerns. To fill this gap, the 
French main distribution system operator, Enedis, commissioned Mines Paris to derive load profiles 
of industrial and tertiary sectors for its prospective tools. The ELMAS dataset is an open dataset of 18 
electricity load profiles derived from hourly consumption time series collected continuously over one 
year from a total of 55,730 customers. These customers are divided into 424 fields of activity, and three 
levels of capacity subscription. A clustering approach is employed to gather activities sharing similar 
temporal patterns, before averaging the associated time series to ensure anonymity.

Background & Summary
Today, the power network is confronted with rapid changes in the way we produce and consume electricity. 
The variability induced by increased consumption due to the roll-out of electric vehicles coupled with industry 
electrification is likely to put pressure on grid assets and generate expensive reinforcement strategies at critical 
locations on the grid. To cope with these issues, it is crucial to precisely assess the electricity demand from the 
consumer side with a fine temporal resolution.

For this purpose, and to comply with EU energy market legislation, Member States have deployed smart 
metering solutions at the residential level1 that precisely monitor household consumption. This promotes the 
growth of open source datasets dedicated to whole-house and domestic-appliance-level electricity demand. 
Interested readers may refer to former works2,3, which in addition to the introduction of their own datasets, pro-
vide summaries of available datasets at the time of writing. More recently, within the framework of the WPuQ4 
research project, measurements were conducted from 2018 to 2020 in 38 German households. Usage-specific 
datasets are also found in the literature (e.g. electric vehicles5, heat pumps4).

While the scientific community tends to focus on residential demand, very little attention is paid to the 
tertiary sector. Typically, customers fall within several main categories of activity, including residential, com-
mercial, industrial, and agricultural. In this work, the term “industrial and tertiary” should be understood as 
the complement to the residential sector that gathers not only tertiary activities (e.g. offices, administration, and 
education), but also primary and secondary businesses (e.g. farming, construction, heavy industry). Industrial 
and tertiary activities constitute a high electricity consumer that represented 64% of the French total consump-
tion in 20196. Despite the prevalence of this sector, a limited number of consumption datasets is available. This 
lack may be explained by the association of demand patterns with crucial and strategic production processes. 
Table 1 highlights that the literature dedicated to this field differs from that associated with the residential sector. 
Typically the former is built from a large number of facilities but at the cost of a coarse temporal granularity. 
Collection methods are also different; the industrial and tertiary sectors rely heavily on surveys and energy 
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bills. A lack of French datasets is also noted. To fill these gaps, we introduce the Electrical Load Measurements 
Aggregated by business Sectors in France (ELMAS) dataset, a set of hourly load profiles dedicated to the indus-
trial and tertiary sectors and derived from more than 55,000 companies. 

Figure 1 provides an overview of the methodology used to derive the ELMAS datasets from hourly load 
measurements classified according to each customer’s subscribed capacity and business group. The custom-
er’s field of activity follows the Statistical Classification of Economic Activities in the European Community 
(NACE)7 framework, which is a four-digit industry standard classification composed of 21 sections, 88 divisions, 
272 groups, and 615 classes. This classification is an appealing approach to generate average load profiles w.r.t. 
fields of activity. Nevertheless, discrepancies between the temporal patterns of customers that belong to the same 
NACE section highlight the need to resort to another clustering approach. Thus, a K-means clustering algorithm 
is used to gather 424 business groups sharing similar temporal patterns into 18 clusters. An analysis of the main 
activities present in the clusters leads to their identification. Then, load profiles with an hourly resolution are 
generated. In addition to the consumption time series of these 424 business groups, we also have at our dis-
posal the annual energy consumption of millions of customers. Such information makes it possible to develop 
weighted averaged load profiles that reflect the distribution of the various fields of activity at the national level.

This study contributes to the scientific literature by proposing numerical load profiles of a wide range of 
industrial and tertiary actors ranging from wholesale to agriculture. These profiles provide a better understand-
ing of consumer behaviours at various temporal aggregation levels (that range from daily to weekly) thanks to 
their hourly resolution. In addition, the ELMAS dataset significantly stands out from other open access load 
datasets in the way data is recorded. Typically, scientific studies access a very limited panel of engaged customers, 
while in this paper, the French Distribution System Operator (DSO) provides us a set of nationally-distributed 
measurements thanks to the deployment of smart metering devices. To the authors’ knowledge, this is the first 
dataset that originates from a DSO database, which makes it unique and valuable. This collaboration makes it 
possible to supply load profiles related to very specific fields of activities seldom found in the literature (e.g. food 
industries, property management companies). As these load profiles may be associated with strategic industrial 
processes, and their disclosure may negatively impact the stakeholders, it is necessary to preserve the anonymity 

Name Sector Location Duration
Collection 
methods Temporal resolution No. units

RECS15 Residential US 1978 -
Collected from 
energy suppliers 
(energy bills)

Yearly consumption 18,496 (last survey)

REFIT2 Residential UK 2-year long Smart metering 8-s load time series 20

4 Residential DE
May 2018 to 
the end of 
2020

Smart metering 10-s to 1-h load time 
series 38

16 Residential UR
Some weeks 
long to some 
years long

Smart metering 1- to 15-min load time 
series 110,953 (Agg. load)

UK-DALE17 Residential UK 655 days 
(2012-2015) Smart metering

16 kHz (whole-house), 
1/6 Hz (individual 
appliances)

5

CBECS 13,14 Commercial US 1979 -
Collected from 
energy suppliers 
(energy bills)

Yearly consumption 6,436 (last survey)

CEUS30 Commercial CA 2018 - 2022 Survey performed 
by professionals

Yearly consumption and 
hourly load profiles 27,000 (expected)

31 Commercial US One year
Simulated from 16 
reference buildings 
models18

Hourly, daily, and 
weekly load profiles for 
16 climate zones

16 × 935

CoSSMic 32 Residential and 
small businesses DE 2014-12-11 - 

2019-05-01 Smart metering
Detailed household load 
per minute to hourly 
resolution

11

BPD33,34 Residential and 
commercial US 2013 - Online survey Yearly consumption >1,000,000

EULP 35 Residential and 
commercial US One year

Models calibrated 
from CBECS and 
RECS

15-min load time series NA

36 Industrial and 
tertiary DE

Two years 
(2016 or 
2017)

15-min load time series 50

JERICHO-E-usage37

Residential, 
industrial, 
commercial, 
and mobility

DE One year 
(2019)

Simulated from 
various sources 
(e.g. measured 
load profiles)

Hourly time series for 
38 spatial regions NA

ELMAS20 Industrial and 
tertiary FR One year 

(2018) Smart metering 18 hourly load profiles 55,730

Table 1. Open access electrical load datasets. Agg. = Aggregate, US = United States, UK = United Kingdom, 
DK = Denmark, FR = France, DE = Germany, UR = Uruguay, CA = California. BPD, CBECS, RECS are 
periodic studies that accumulate collected information. The number of units for BPD represents the sum of all 
collected information, while for CBECS, and RECS, it represents the number of answers from the last survey.
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of customers. To this end, inputs data are not shared, all the more as they follow the General Data Protection 
Regulation (GDPR) framework, and outputs data, namely load profiles, are provided at a level of aggregation 
that prevents any identification. This is the first dataset that represents the demand of both industrial and tertiary 
sectors in France, and with a finer temporal resolution than the monthly energy bills typically used in other 
countries.

The proposed profiles are of great interest to guide medium- to long-term power system planning (e.g. to 
identify actionable demand drivers8), and to evaluate the consumption trajectory of a sector (e.g. to assess the 
impacts of energy efficiency measures9, technological developments, or to evaluate the demand-side flexibility 
potential10). There is no doubt that stakeholders such as urban planners and electricity retailers will find interest 
in this source of information in the frame of energy modelling strategies. The ELMAS dataset can populate the 
bottom-up energy model of an urban area to determine the expected load profile at any point in the network. 
In that sense, it contributes to guiding investment road maps. The proposed dataset can also be used to calibrate 
parameters of bottom-up models such as MOSAIC11 or FORECAST12.

Methods
In the scientific literature, it is challenging to access the electricity consumption records of industrial and tertiary 
companies due to confidentiality issues. Here, we propose generic electricity consumption profiles associated 
with 18 relevant business sectors (e.g. trade, education) derived from 55, 730 consumption time series initially 
split into 424 business sectors and three levels of subscribed capacity. To preserve anonymity, a two-level cluster-
ing approach is employed. First, the time series of the various companies are aggregated w.r.t. to their business 
sectors and their subscribed level of power. Then, a clustering approach is performed on standardised time series 
to group business sectors that share similar temporal patterns, before aggregating them.

Data measurements. Electricity consumption. Energy consumption data for buildings originates from 
different sources. Databases can be collected from surveys of energy suppliers, respondents, and even from util-
ity bills. In such cases, data typically have a monthly resolution13–15. The retrieval of data can also be automated 
through the use of smart meters2,4,16,17, which provide information at a lower time resolution. Databases can also 
be generated from simulation models that mimic the building occupiers’ behaviour. In this regard, the US depart-
ment of energy has created commercial reference building models18 which are composed of 16 building types.

In this study, load data is initially collected through Linky19 digital meters at the building level by Enedis, the 
main French DSO. This building-level dataset does not provide information regarding the energy use of appli-
ances and equipment. In total, the hourly time series from 55, 730 industrial and tertiary companies are gathered 
over the year 2018. This year is divided into 52 weeks starting from January. Special attention has been paid by 
Enedis to selecting companies with at least one year of consumption measurements and with a high degree of 
data integrity (i.e. observations that do not mimic an effective consumption behaviour are rejected).

Consumption time series are gathered into three levels of subscribed power: (1) the LV-a segment gathers 
customers connected to the low-voltage network that have subscribed to power between 12 and 36 kVA, (2) the 
LV-b class corresponds to customers connected to the low-voltage network with a subscribed capacity ranging 
from 36 to 250 kVA, and (3) the MV class represents customers connected to the high-voltage network with a 
power subscription greater than 250 kVA. Concurrently, industrial and tertiary consumers are also grouped 
according to their NACE coding, which is a statistical classification of economic activities used at the European 

Fig. 1 Overview of the load profile generation methodology. Inputs are composed of hourly load time series 
from 55,730 customers grouped into 424 business sectors, and three levels of subscribed power. A k-means 
clustering model based on temporal features is then used to derive groups of business sectors sharing similar 
consumption patterns. From these groups, generic load profiles are generated and validated.
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level and more specifically in France. In this study, we focus on two levels of heading of the NACE structure; 
namely the 21 sections identified by alphabetical letters A to U, and 424 out of the 615 available classes identified 
by four-digit numerical codes (01.11 to 99.00). For the reader’s convenience, Table 2 provides a brief description 
of some of the classes associated with the 21 sections, while a complete description is given in the file NACE_
classification.csv20. For confidentiality reasons, sensitive information regarding customers (e.g. name, 
location) are not disclosed by Enedis. To the same end, consumption time series are aggregated according to the 
NACE classification (Fig. 2).

In the next steps, load consumption time series from the three customer segmentation levels are considered 
simultaneously to fill gaps in terms of missing NACE classes, and are denoted as the LV-MV group. Indeed, 
the LV-a and LV-b groups contain respectively 286 and 264 classes, while the MV set comprises 412 classes. In 
total, we have at our disposal 424 classes, some of which contain several load time series associated with distinct 
groups of subscribed capacity. This new group is characterised by predominant NACE sections in terms of 
annual energy consumption (Fig. 3): examples include the (C) Manufacturing, (G) Wholesale and retail trade, 
(O) Public administration and defence, and (P) Education sections.

Annual energy consumption and surface area. The energy consumption time series dataset represents a limited 
panel composed of 55, 730 customers, which may bias the output load profiles in comparison with the whole 
French panel of industrial and tertiary customers. To fill this gap, Enedis provides the annual energy consump-
tion of a wider range of customers for the year 2019. Thus, we have at our disposal the annual energy con-
sumption of 4, 030, 708 customers for the LV-a segment, 408, 183 clients for the LV-b class, and around 96, 000 
customers for the MV group. The aggregated energy consumption of each NACE class (Fig. 3) is employed in 
the weighting strategy of the clustering approach to reflect national tendencies. In addition, the DSO also pro-
vides the surface area of buildings that belong to the LV-a / LV-b customer segmentation. This database, which 
associates surface area and annual energy consumption, is composed of 994, 790 customers gathered into 426 
NACE classes.

Weather data. External factors such as the weather may have a significant impact on the load consumption. For 
instance, temperature highly influences the load consumption of buildings equipped with electric heaters and 
air conditioners. This dependency may be characterised by the thermosensitivity parameter, which measures 
the variation of the electric consumption w.r.t. the variation of the outdoor temperature. This criterion is used 
during the validation stage to measure the homogeneity of the derived load profiles. In this study, we consider 
measurements from Meteo-France, the French national meteorological service, at 32 main cities spatially dis-
tributed in France. Then, a weighted average aggregates these observations at the national level. The weights are 
proportional to the energy consumption dedicated to thermal uses (i.e. electric heating, air conditioning). Thus, 
regions associated with higher thermosensitivity are more represented in the computation of the temperature. 
The resulting time series are provided in the file Temperature.csv20.

Electricity load curve profiling. Load profiling consists in generating consumption patterns for a given 
customer over a defined period of time. Wang et al. provide fairly a complete review regarding load profiling21. 
This process can be divided into five stages: (1) load data preparation, (2) load curve clustering, (3) clustering 
evaluation, (4) customer segmentation, and (5) result application. Therefore, clustering is the core technique of 
load profiling: it segregates consumption time series sharing similar patterns in the same cluster, while different 
clusters gather diversified information. From these clusters typical load curves are then derived.

Data pre-processing. The dataset under study is composed of variables of comparable units but with various 
magnitude and variances. The purpose of this paper is to gather data exhibiting similar temporal patterns rather 
than similar levels of magnitude. It is good practice to normalise or standardise input data in the frame of 
data clustering so that large-scale or high-variance features do not dominate the results. Thus, all of the time 
series are standardised following Equation (1), which implies that the resulting time series have zero-mean and 
unit-variance.
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Feature space. At this point, data clustering based on the NACE sections can be viewed as an easy and straight-
forward option to generate load profiles. Nevertheless, we observe through Fig. 4 that some sections, such as 
section (A) Agriculture, forestry and fishing, exhibit a wide intra-cluster variability for the three temporal resolu-
tions considered. In addition, this variability may evolve over time. For instance, companies associated with sec-
tion (C) Manufacturing display similar consumption behaviour during nighttime, while significant differences 
are observed during daytime. On the contrary, other economic activities, such as those related to section (K) 
Financial and insurance activities, behave similarly.
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As a result, clustering according to NACE section is not relevant regarding consumption patterns. This moti-
vates us to opt for an alternative clustering approach based on temporal patterns. Consumption time series are 
then processed to build the features space in which the clustering algorithm is run. This space is composed of the 
hourly, daily, and weekly averaged consumption for each NACE class (Fig. 5). Hourly and daily data are repeated 
respectively 2 and 7 times to avoid an over-representation of weekly measurements. The newly created features 
are designated by the variable Z . Such a space enables us to identify NACE classes that share similar consump-
tion patterns on an hourly, daily, and weekly basis.

Clustering approach. ModelThe literature proposes several definitions of clusters that lead to the development 
of specific algorithms (e.g. distance- or density-based algorithms). Thus, a plethora of clustering techniques are 
developed22, and applied in a wide range of fields that range from renewable energy production forecasting23 
to disease diagnosis24. In this study we consider the K-means algorithm25, which is probably one of the most 
frequently used algorithms for clustering data due to its simplicity and ability to reach near-optimal solutions 
quickly. In short, the K-means algorithm is a partitional algorithm that minimises the distance between points 
in a cluster with the point designated as the centre of that cluster. That centre of the mass, or centroid, may not 
necessarily belong to the dataset. As an unsupervised learning machine algorithm, it does not require any prior 
knowledge about the dataset, except an a priori number of clusters, c, defined by the user.

Sections Classes

(A) Agriculture, forestry and fishing
(01.11) Growing of cereals (except rice), leguminous crops and oil seeds 
/ (01.12) Growing of rice / (01.13) Growing of vegetables and melons, 
roots and tubers, etc.

(B) Mining and quarrying (5) Mining of coal and lignite / (6) Extraction of crude petroleum and 
natural gas / (7) Mining of metal ores, etc.

(C) Manufacturing
(10.1) Processing and preserving of meat and production of meat 
products / (10.20) Processing and preserving of fish, crustaceans and 
molluscs / (10.3) Processing and preserving of fruit and vegetables, etc.

(D) Electricity, gas, steam and air conditioning supply (35) Electricity, gas, steam and air conditioning supply.

(E) Water supply, sewerage, waste management and remediation 
activities

(36.00) Water collection, treatment and supply / (38) Waste collection, 
treatment and disposal activities; materials recovery.

(F) Construction
(41.10) Development of building projects / (41.20) Construction of 
residential and non-residential buildings / (42.11) Construction of roads 
and motorways, etc.

(G) Wholesale and retail trade; repair of motor vehicles and 
motorcycles

(45.11) Sale of cars and light motor vehicles / (45.19) Sale of other motor 
vehicles / (45.20) Maintenance and repair of motor vehicles, etc.

(H) Transportation and storage (49.10) Passenger rail transport, interurban / (49.20) Freight rail 
transport / (49.31) Urban and suburban passenger land transport, etc.

(I) Accommodation and food service activities
(55.10) Hotels and similar accommodation / (55.20) Holiday and other 
short-stay accommodation / (55.30) Camping grounds, recreational 
vehicle parks and trailer parks, etc.

(J) Information and communication (58.11) Book publishing / (58.12) Publishing of directories and mailing 
lists / (58.13) Publishing of newspapers, etc.

(K) Financial and insurance activities (64.11) Central banking / (64.19) Other monetary intermediation / 
(64.20) Activities of holding companies, etc.

(L) Real estate activities (68.10) Buying and selling of own real estate / (68.20) Rental and 
operating of own or leased real estate / (68.31) Real estate agencies, etc.

(M) Professional, scientific and technical activities (69.10) Legal activities / (69.20) Accounting, bookkeeping and auditing 
activities; tax consultancy / (70.10) Activities of head offices, etc.

(N) Administrative and support service activities (77.11) Rental and leasing of cars and light motor vehicles / (77.12) 
Rental and leasing of trucks / (77.22) Rental of video tapes and disks, etc.

(O) Public administration and defence; compulsory social 
security

(84.11) General public administration activities / (84.12) Regulation of 
the activities of providing health care, education, cultural services and 
other social services, excluding social security / (84.13) Regulation of 
and contribution to more efficient operation of businesses, etc.

(P) Education (85.10) Pre-primary education / (85.20) Primary education / (85.31) 
General secondary education, etc.

(Q) Human health and social work activities (86.10) Hospital activities / (86.21) General medical practice activities / 
(86.22) Specialist medical practice activities, etc.

(R) Arts, entertainment and recreation (90.01) Performing arts / (90.02) Support activities to performing arts / 
(90.03) Artistic creation, etc.

(S) Other service activities
(94.11) Activities of business and employers membership organisations 
/ (94.12) Activities of professional membership organisations / (94.20) 
Activities of trade unions, etc.

(T) Activities of households as employers; undifferentiated goods- 
and services-producing activities of households for own use

(97.00) Activities of households as employers of domestic personnel 
/ (98.20) Undifferentiated service-producing activities of private 
households for own use, etc.

(U) Activities of extraterritorial organisations and bodies (99.00) Activities of extraterritorial organisations and bodies.

Table 2. Brief description of some of the 424 classes used in this study. A detailed list of all the NACE classes 
used in work is proposed in the document NACE_classification.csv20. For the complete NACE 
classification, interested readers may refer to38. 
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The creation and definition of clusters is performed as follows. First during the initialisation step, the algo-
rithm randomly chooses c features from the set Z Z Z{ , , }1 424�= , which gathers the temporal characteristics 
of the 424 NACE classes. These c NACE classes are used as initial centroids, and constitute the set 

�=A A A{ , , }c1 . Then, a sequence of two steps is repeated until a stopping criterion is met (e.g. the maxi-
mum iteration threshold is reached or no change in cluster assignment is observed).

First, during the assignment step, each NACE class, j, is assigned to the nearest cluster by minimising an 
objective function (Equation (2)) based on the Euclidian distance metric26. A weighting strategy that consid-
ers the annual electricity consumption of the NACE class is adopted to account for discrepancies in energy 
consumption between the different classes. Therefore, more importance is given to classes associated with 
higher levels of energy consumption. The annual energy consumption of each NACE class is provided in the file 
Annual_energy_weights.csv20.
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After all the points are assigned, the second step consists in updating the centroids’ positions following 
Equation (3). During this updating step, the centroids are recalculated as the weighted average of all data points 
assigned to a specific cluster.
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K-means results are sensitive to the initial cluster centres (i.e. generated during the initialisation step), which 
is why the algorithm is usually run several times. Here the clustering model is run 5 times, then the final clusters 
are generated with the averaged of the previously determined clusters centre as starting points.

Quality of the clusters. The K-means algorithm requires the user to define the number of clusters c to perform 
data clustering. However, this value is usually unknown for real applications. Several approaches are developed 

Fig. 2 Overview of the generation process of aggregated data used as inputs in the clustering-based approach. 
The consumption measurements at the company level are aggregated according to the NACE classes for privacy 
reasons. The LV-a, LV-b, and MV levels respectively possess 286, 264, and 412 NACE classes. The combination 
of these three levels allows us to fill mutual gaps in terms of NACE classes, reaching a total of 424 NACE classes. 
In this study, only aggregated data from the LV-MV group are investigated.
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Fig. 3 Distributions of the annual energy consumption according to the NACE sections and the subscribed 
level of power. Special attention should be paid to the different order of magnitude between the three capacity 
levels. The percentages represent the proportion of energy consumption for the considered customers 
segment. The files Annual_energy_time_series.csv and Annual_energy_weights.csv20 
respectively gather the numeric values used to generate these graphs. (a) This data is derived from the set  
of 55,730 customers that provides hourly consumption time series. This set constitutes the main input to 
generate the load profiles of the ELMAS dataset. (b) This data is derived from a larger panel of around 4,534,891 
customers that provides annual energy consumption. This source of information is used to correct sampling 
bias of the former set.

Fig. 4 Distributions of the averaged hourly standardised consumption of three NACE sections according to 
the hour of the day, the day of the week, and the week of the year for the LV-a level. The A, C, and K sections 
respectively contain 18, 40, and 9 classes.

Fig. 5 Structure of the features space used for the clustering step.
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in the literature to address this issue. Typically, a posteriori approaches are employed: the quality of the clustering 
structure is assessed for several numbers of clusters after the algorithm is run. A good clustering can be defined 
as a structure characterised by compact and well-separated clusters. Compactness refers to the closeness of the 
samples to the centroids, in other words it means than samples are similar, while separation denotes that differ-
ent clusters carry distinct information (visually the clusters do not overlap in the feature space). In this work, 
three intrinsic methods are considered to assess the quality of the clustering, namely, distortion, inertia, and 
silhouette scores: 

 1. The distortion score computes the average of the squared distances from the cluster centres of the respec-
tive clusters. Therefore, the closer the data points are to the centroid of the cluster, the lower the distortion. 
In other words, tight clusters are associated with a low distortion score.

 2. Inertia is derived from the within cluster sum of squares: for each cluster, we compute the weighted 
squared distance between all the points of this cluster and the centroid, and then sum up the distances. 
Therefore, a small inertia value indicates a coherent set of clusters.

 3. The silhouette index27 assesses the cohesion and separation of clusters, which means that a good score is 
reached when clusters are tight and far from each other. This measure, which is performed for every sample 
and ranges from − 1 to + 1, indicates how well the point lies within its cluster, and poorly matches neigh-
bouring clusters. A silhouette coefficient close to 1 / 0 / − 1 respectively means that the data point is far 
from the neighbouring clusters / close to the decision boundary / or may be assigned to the wrong cluster. 
The graphical display associated with the silhouette coefficients offers a synthetic view of the quality of the 
clusters for the entire sample. In order to obtain an overview, we compute the mean silhouette coefficient 
of all samples for different numbers of clusters. Therefore, we are seeking the clustering configuration that 
leads to the highest mean silhouette value.

As the complexity (i.e. the number of clusters) increases, so does the coherence of the clustering; a trade-off 
has to be found between maximising the quality of the clustering, and minimising the complexity of the model. 
To find the optimal number of clusters, the elbow method is usually chosen. Such a tool is based on the graphical 
representation of the quality scores. This consists in finding the number of clusters after which the decrease in 
distortion/inertia begins to slow down. In other words, the “elbow” point represents the number of clusters from 
which the increase in the number of clusters has little effect on the scores. The main drawbacks of this approach 
are that it relies on a subjective identification of the elbow, and requires running the clustering model for a large 
range of clusters. In Fig. 6 one can identify the elbow of the distortion and inertia curves at the 16th cluster. At 
this identified point, the mean silhouette value remains acceptable.

Misclassification. A thorough analysis of the clusters derived reveals that they are typically dominated by some 
NACE sections; for instance Fig. 7 shows that the greatest share of the annual energy consumption of cluster 1 
is due to the NACE section (C) Manufacturing. However, numerous NACE sections are scattered over various 
clusters, which increases the global heterogeneity of the clustering while spoiling the interpretation of the clus-
tered data. The proportion of these dispersed NACE classes in terms of annual energy consumption remains 
low, which suggests that a manual reorganisation has little impact on the global consistency of the clusters. This 
manual reclassification is conducted in such a way that scattered NACE classes are gathered in the cluster that 
possesses the highest share of the considered NACE section, while taking into account the specificity of the 
section. For instance, we note that the NACE section (C) Manufacturing is spread over 14 clusters. The main 
shares of this section are gathered in order of importance in clusters 1, 14, 10, and 4. Activities present in cluster 
1 are mainly related to manufacturing processes, just like those classified in cluster 4, while activities in clusters 
14 and 10 are respectively devoted to bakery and the wine industry. Therefore, NACE classes of clusters 1 and 4 
are gathered within cluster 1. This process is repeated for all NACE sections. This reclassification step is partly 
automated through a search for specific wording. Thus, NACE classes that contain the word “office” are gathered 
in cluster 5. In addition, two new clusters are generated at the end of this manual reclassification; namely clusters 
17 and 18, which gather respectively activities related to the arts, human health, and construction. The creation 
of these additional clusters originated from the need to provide clusters dedicated to specific fields of activity.

Interested readers can find a description of the clustering before (Cluster_before_manual_reclas-
sificatio.csv20) and after this manual reclassification (Cluster_after_manual_reclassifica-
tion.csv20). Hereafter, only the second version of the clustering is considered.

Generation of load profiles. The next step consists in deriving load profiles for the set of clusters obtained pre-
viously. To do so, data associated with the various NACE classes are averaged w.r.t. the cluster they belong to. A 
weighted average (Equation (4)) based on the annual energy consumption of the NACE classes is employed to 
account for the prevalence of high energy consumers. The weighted average of the 18 clusters is provided in the 
file Time_series_18_clusters.csv20.
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The identification process of the generated clusters as well as a detail analysis of their properties is provided 
in the supplementary material ELMAS_data_analysis.pdf20.

Finally, Table 3 provides the averaged annual energy consumption per unit area associated with the 18 iden-
tified clusters. This table is derived following Equation (5), and the annual energy consumption and surface of 
the 426 NACE sectors given in the file Energy_consumption_per_unit_surface_area.csv20. It 
is worth mentioning that the surface and annual energy consumption of 10 NACE classes are missing, namely 
the classes: 01.29, 84.22, 84.24, 97.00, 01.12, 01.15, 02.30, 17.11, 84.21, and 98.20. No imputation strategies have 
been investigated to fill these gaps.
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Data Records
The raw data used in this project is collected and supplied by Enedis as part of a collaboration between the 
authors of this work. This source of information follows the General Data Protection Regulation28, as such it 
cannot be shared due to confidentiality restrictions. The first level to make the dataset anonymous consists in 
aggregating the consumption of industrial and tertiary companies that belong to the same NACE class. The 
resulting data constitutes the inputs of our approach. However, even at this level, some fields of activity can be 
identified because they exhibit specific load patterns. Under these circumstances, this dataset can not be shared 
publicly due to privacy concerns. Others wishing to repeat this work or perform similar studies should contact 
Enedis directly, and integrate them within a research project. Except this dataset, all data used in this work 
are available on the public repository, figshare20. The structure of the provided data is illustrated in Fig. 8: the 
ELMAS_dataset sub-folder gathers the datasets mentioned in the previous sections, while the ELMAS_package 
sub-folder collects the R script used to generate the data and the plots.

The ELMAS_dataset sub-folder contains two type of files, namely portable document format (.pdf) files 
that describe and analyse the numeric data provided as comma-separated value (.csv) files. The first row of .csv 
files indicates the name of the columns, while time data follows the French standard, namely: “DD/MM/YYYY 
hh:mm”. The first file of this sub-folder is a a description of the dataset structure (Description.pdf). Then, 
two batches of data can be distinguished: (1) information regarding the inputs used to derived the ELMAS data-
base, and (2) data related to the outputs of the clustering approach. Hereinbelow, we detail the different csv files, 

Fig. 6 Distortion, inertia, and silhouette curves against the number of clusters used with the K-means 
algorithm. The red dashed line represents the identified elbow point (here c = 16).
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while Table 4 describes the meaning of their columns. The first batch is composed of the description of NACE 
sections/classes and the associated coding (NACE_classification.csv). The files Nb_customer.csv 
and Annual_energy_time_series.csv gather respectively the number of customers and the annual 
energy consumption w.r.t. the NACE class and the level of subscribed power. The average consumption and 
the standard deviation associated with each NACE class is given in Mean_Sd_Nace_classes.csv. The 
file Temperature.csv contains the temperature time series of France. The weights (i.e. the annual energy 
consumption of the larger panel of customers) used to cluster the inputs, and to generate the weighted average 
time series of the clusters are given in Annual_energy_weights.csv, while the file Energy_con-
sumption_ per_unit_surface_area.csv associates the annual energy consumption with the sur-
face area of the building. The second batch of files is related to the data generated after the clustering. The files 

Fig. 7 Distribution of the NACE sections in the clusters before and after the manual reclassification. The 
colours stand for the annual energy consumption of the cluster.

Cluster ID Cluster name Consumption (kWh/m2)

1 Manufacturing process 40.86

2 Trades (non food) 56.09

3 Trades (food) 64.13

4 Education 40.01

5 Office 69.88

6 Crop farming and transportation 41.47

7 Livestock farming 5.01

8 Water supply and telecommunications 33.85

9 Restaurants 126.44

10 Food industry 90.27

11 Wine industry 73.37

12 Energy supply and rental activities 46.23

13 Hotels 63.27

14 Bakery 350.27

15 Property management companies 42.47

16 Hospital activities 91.70

17 Recreational and social activities 40.86

18 Construction 47.58

Table 3. Annual electricity consumption per unit area of the 18 clusters. These values are derived from the 
consumption and surface area of customers that belong to the LV-a and LV-b segments. 
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Cluster_before_manual_reclassification.csv and Cluster_after_manual_reclas-
sification.csv assign a cluster to each NACE class before and after the manual reclassification. Finally, the 
file Profils_by_clusters.csv gathers the weighted average time series of the 18 clusters. A throughout 
description of the clusters and an analysis of their properties is given in the document ELMAS_data_anal-
ysis.pdf.

technical Validation
The quality of clustered data can be evaluated using either cluster- or load-specific criteria. The first kind of score 
was employed in the methods section to determine the optimal number of clusters to consider. In this section, 
the focus is on the analysis of criteria that characterise the load consumption.

Consistency of the clustering. First, scores typically used in the energy modelling field are considered to eval-
uate the closeness of the 424 NACE classes time series with the 18 derived weighted average load profiles. To do so, 
the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) (Equation (6)) scores are used to measure the 
error in terms of consumed energy. The terms Yj and Xi respectively represent the load profiles of the cluster j and the 
NACE class i, while Nobs is the number of temporal observations. Both scores are computed for each cluster and each 
NACE class, then, for convenience scores are aggregated w.r.t. to the cluster the NACE classes belong to. As a result, 
this approach provides for all NACE classes that belong to the same cluster, a measure in terms of MAE and RMSE of 
the errors within the cluster and with the other clusters. Results are gathered in Fig. 9. On the whole, the scores are the 
lowest when the time series of NACE classes are compared with the load profile of the cluster they belong to. This tends 
to validate the proposed clustering approach. However, some time series associated with the NACE classes are closer 
to other clusters. This is the case for time series from clusters 10 and 11 that exhibit lower scores when compared with 
cluster 6. For that matter, cluster 6 demonstrates a high degree of similarity with most of the NACE classes compared to 
other clusters such as clusters 13 and 7, which appear to be more specific.
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Variability within clusters. Then, we compare the variability within the clusters according to two axes: (1) 
the clustering strategy, and (2) the temporal resolution of the load profiles.

For the first dimension, we consider either a NACE section-based classification strategy (i.e. the clusters are 
classified w.r.t. to the NACE sections) or the clustering structure provided by the K-means algorithm which led 
to 18 clusters. For each approach we define two sets that gather the NACE classes associated with each cluster: 
the set Ck

NACE stores the NACE classes that belong to the NACE section k, while the set −Ck
K means groups the 

NACE classes that are affiliated to the cluster k obtained from the K-means algorithm. The second axis of this 

Fig. 8 Directory structure of the ELMAS sub-folder. The ELMAS_dataset folder contains the data used to 
produce the plots of this paper, and the derived clusters. In addition, the documents Description.pdf and 
ELMAS_data_analysis.pdf respectively provide a description of the dataset and a detailed analysis of the 
derived clusters and load profiles. The ELMAS_package sub-folder gathers the R scripts used to generate the 
plots and some of the .csv files.
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analysis is related to the temporal resolution of the load profiles. Three types of curve are considered: hourly, 
daily, and weekly load profiles. Set THourly gathers the =N 24T

Hour  observations associated with the hour of the 
day, set TDaily groups the consumption of the =N 7T

Week  days of the week, while set TWeekly represents the 
=N 52T

Week  weeks of the year. These profiles are computed for all NACE classes, and for all centroids in the two 
clustering strategies. For the former category, the standardised consumption of the NACE class is averaged 
according to the temporal resolution of the considered load profiles, while the load profiles of the centroids  
are derived taking into account the importance of the NACE classes in terms of annual consumed energy 
(Equation (7)).
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File Col. name Format Units Description

NACE_classification

Section / Class character Coding of the NACE 
sections / classes

Section_
description / 
Class_description

string Description of the NACE 
sections / classes

Nb_customers_time_series
Section / Class / 
Power_level character

Coding of the NACE 
sections and classes / Level 
of subscribed power

Nb_customer float Number of customers

Annual_energy_time_series

Power_level / 
Section / Class character

Level of subscribed power 
/ Coding of the NACE 
sections and classes

Energy float kWh
Annual energy 
consumption of the 
groups associated with the 
considered time series

Mean_sd_nace_classes_time_series

Power_level / 
Section / Class character

Level of subscribed power 
/ Coding of the NACE 
sections and classes

Mean / Sd float kWh Average and standard 
deviation of the time series

Temperature
Time character Temporal sequence

Temperature float °C Hourly temperature at the 
national level

Annual_energy_weights

Power_level / 
Section / Class character

Level of subscribed power 
/ Coding of the NACE 
sections and classes

Energy float kWh
Annual energy 
consumption of the wide 
panel of customers

Energy_consumption_per_unit_surface_area

Class / 
Description character

NACE class coding / 
Description of the NACE 
class

Energy float kWh Annual energy 
consumption

Surface float m2
Surface area of buildings 
that belong to the NACE 
class

Energy_m2 float kWh/m2 Annual energy 
consumption per unit area

Clusters_before_manual_reclassification

Power_level / 
Class character Level of subscribed power 

/ NACE classes coding

Cluster int Code of the assigned 
cluster

Clusters_after_manual_reclassification

Power_level / 
Class character Level of subscribed power 

/ NACE classes coding

Cluster int Code of the assigned 
cluster

Time_series_18_clusters

Time character Temporal sequence

1 → 18 float kWh
Weighted average of 
the consumption of the 
clusters

Table 4. Summary of columns in the available files.
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The next step consists in computing an estimation of the dispersion -of the sample within a cluster following 
Equation (8) for each clustering strategy and temporal aggregation resolution. Then, results are averaged for all 
clusters of the weighting strategy S (Equation (9)), and according to the temporal dimension via Equation (10).
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Fig. 9 Averaged MAE and RMSE scores of the NACE classes w.r.t. the cluster they belong to (i.e. intra-cluster) 
and other clusters (i.e. extra-cluster). The scores are derived from the consumption time series of the NACE 
classes and the load profiles of the 18 clusters. For readers’ convenience, the heat-maps represent the ranking 
of the scores according to the extra-cluster feature: low values (i.e. blue colour) indicate the best performances, 
while high values correspond to low scores (i.e. red colour). For instance, the average RMSE score achieved by 
the NACE classes that belong to cluster 15 is the lowest when computed with the average load profiles of cluster 
15. We expect scores to be the lowest for time series of NACE classes computed with the profile of the cluster 
they belong to; this ideal state is marked by the first diagonal. Standardised load profiles and yearly time series 
are considered to build these figures.
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The variability within clusters is shown in Table 5. We observe that for the three temporal resolutions ana-
lysed, the K-means-derived clustering leads to the best average standard deviation within clusters. This demon-
strates that the proposed approach provides more compact clusters than those that would have been obtained 
from the NACE-based classification.

Usage Notes
This section discusses the applicability and the limitations of the dataset.

First, as the initial dataset of electricity consumption was collected during 2018, the latter is free from any 
impacts associated with the COVID outbreak (e.g. reduction of professional activities). This suggests that new 
practices such as teleworking are not present in the proposed load profiles. Therefore, some profiles related to 
office work may be outdated.

Potential users should be aware that the proposed profiles are climate-zone-dependent due to the 
temperature-sensitivity of some business sectors (e.g. through the use of electric heating or air conditioning 
devices). Thus, their use should be restricted to climates similar to that of France, or appropriate care should be 
taken. For this purpose, observations of the temperature at the national level are given.

The generated load profiles are provided in the form of standardised values. Relevant information, such as 
the mean, standard deviation, and annual energy consumption associated with each NACE class, is provided to 
allow the user to perform de-standardisation. The areas associated with some NACE classes are also supplied 
for scaling purposes.

Code availability
The code used to cluster the time series is not publicly available because, in the absence of input data, it can not 
be executed. However, special attention has been paid to provide a detailed description of the clustering approach 
for transparency in this article. In addition, the source code used in R29 to perform the data analysis is provided 
with the ELMAS dataset. All scripts have been tested working as of 19/03/2023 on a machine running Windows 
10, and using R version 4.1.0 (2021-05-18). The required packages to run the scripts are detailed in the code, and 
the purpose of each script is defined in its header.
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