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a comprehensive genomic catalog 
from global cold seeps
Yingchun Han  1, Chuwen Zhang  1, Zhuoming Zhao1, Yongyi Peng  1,2, Jing Liao1, 
Qiuyun Jiang1, Qing Liu2, Zongze Shao1,3 & Xiyang Dong  1,3 ✉

Cold seeps harbor abundant and diverse microbes with tremendous potential for biological applications 
and that have a significant influence on biogeochemical cycles. Although recent metagenomic studies 
have expanded our understanding of the community and function of seep microorganisms, knowledge of 
the diversity and genetic repertoire of global seep microbes is lacking. Here, we collected a compilation 
of 165 metagenomic datasets from 16 cold seep sites across the globe to construct a comprehensive gene 
and genome catalog. The non-redundant gene catalog comprised 147 million genes, and 36% of them 
could not be assigned to a function with the currently available databases. A total of 3,164 species-level 
representative metagenome-assembled genomes (MAGs) were obtained, most of which (94%) belonged 
to novel species. Of them, 81 ANME species were identified that cover all subclades except ANME-2d, 
and 23 syntrophic SRB species spanned the Seep-SRB1a, Seep-SRB1g, and Seep-SRB2 clades. The non-
redundant gene and MAG catalog is a valuable resource that will aid in deepening our understanding of 
the functions of cold seep microbiomes.

Background & Summary
Cold seeps occur on continental margins worldwide. At these sites, methane-rich fluids migrate from the deep 
subsurface to the sediment-water interface1. Methane is a climate-active greenhouse gas that is approximately 
30 times more potent than carbon dioxide2. In seep sediments, methane can be consumed through the process 
of anaerobic oxidation of methane (AOM). This process removes approximately 90% of the methane produced 
globally in marine sediments, acting as an efficient methane filter3,4. As a consequence, these seeps are critical in 
regulating the amount of methane released into the overlying waters and atmosphere, and they play a vital role 
in mitigating global warming. AOM is performed by anaerobic methanotrophic archaea (ANME). Normally, 
ANME rely on a syntrophic partner to couple CH4 oxidation to the reduction of terminal electron acceptors, 
such as sulfate, iron, nitrate, and manganese5,6. AOM coupled to sulfate reduction is the primary biological 
process in seep sediments since sulfate is the dominant anion present at the marine sediment-water interface. 
High rates of AOM fueled by near-saturated methane concentrations would rapidly consume sediment pools of 
any individual electron acceptor, creating unique geobiological engines that contribute significantly to local and 
global biogeochemical cycles1.

Cold seeps are deep-sea oases that support immense biodiversity and where specialization and adaptation 
create extraordinary lifestyles1. However, the majority of microorganisms found in seeps have not yet been 
characterized7. Culture-independent metagenomic techniques are the key to unraveling the genetic diversity 
and metabolic potential of uncharacterized microbes and have been applied to identify thousands of micro-
organisms and their metabolic versatility. Recently, the microbial community and function of cold seep sedi-
ments have been increasingly studied with metagenomes obtained from different sea areas7–10. However, there 
are no large-scale gene and genome catalogs available for the microbiome of global cold seeps. A comprehen-
sive gene and genome catalog of cold seeps could serve as a reference for mining novel genetic resources in 
the deep sea, including various natural products with diverse bioactivities (e.g., antibiotic dixiamycins and 
immune-enhancing exopolysaccharides)11,12.

ANME and their syntrophic sulfate-reducing bacteria (SRB) partners play a crucial role in the regulation of 
both the carbon and sulfur cycles of seeps. Through their mutualistic interactions, they perform AOM, lead-
ing to a reduction in methane release and the generation of inorganic carbon and sulfide. These processes are 
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of significant importance for both local and global biogeochemical cycles, underscoring the essential role of 
these microorganisms in deep-sea ecosystems. Although previous findings have revealed various lineages of 
ANME and SRB in seep sediments13–15, there is currently no a comprehensive genome catalog of these line-
ages in cold seep sediments globally. Extensive, high-quality reference genomes of the global seep microbiome 
could improve the resolution and accuracy of taxonomic and functional analyses and provide the opportu-
nity for large-scale comparative genomics16–19, especially for elucidating the physiological basis of ANME-SRB 
interactions.

Here, we collected metagenomic sequence data from 165 sediment samples at 16 cold seeps across the Pacific, 
Atlantic, and Arctic Oceans (Fig. 1), encompassing gas hydrates (n = 4), methane seeps (n = 14), oil and gas 
seeps (n = 4), mud volcanoes (n = 2) and asphalt volcanoes (n = 1). The sediment samples span different depths 
and redox conditions, from the oxic sediment-water interface to anoxic layers down to 68.55 m below the sea 
floor (mbsf) (Supplementary Table 1). The non-redundant gene catalog was constructed from these metagen-
omes, comprising a total of 147,289,169 protein clusters (Fig. 2). The mapping ratios of the non-redundant gene 
catalog to clean reads of the 165 metagenomes averaged 62%. This is the most comprehensive gene catalog gen-
erated from the cold seep sediment microbiome to date, corresponding to half the size of the global microbial 
gene catalog (GMGC v1; 303 million)16, the size of the global topsoil microbiome gene catalog (~160 million)20, 
three times the size of the ocean microbial reference gene catalog (OM-RGC v2; ~47 million)21, and six times the 
size of the Tibetan Glacier gene catalog (TG2G; ~25 million)17.

A total of 3,164 species-level MAGs were recovered in this study. The total mapping ratios of all these 
MAGs to clean reads of the 165 metagenomes averaged 27%. These MAGs covered various prokaryotic line-
ages spanning 113 phyla (97 bacterial and 16 archaeal). The phyla with the largest diversity of recovered spe-
cies included Chloroflexota (n = 371), Proteobacteria (n = 335), Desulfobacterota (n = 306), Planctomycetota 
(n = 190), Patescibacteria (n = 152) and Bacteroidota (n = 151) and the archaeal phyla Halobacteriota (n = 129), 
Thermoplasmatota (n = 108), Thermoproteota (n = 98), Asgardarchaeota (n = 95) and Nanoarchaeota (n = 47) 
(Fig. 3b). Overall, ~94% of the recovered species are not represented in current databases (Fig. 3c), suggesting 
that cold seep sediments harbor a rich diversity of previously undescribed microbes. The non-redundant MAG 
catalog considerably expands the phylogenetic diversity and is an unparalleled genome resource of the cold seep 
microbiome. The compendium of ANME (Fig. 4) and syntrophic SRB MAGs (Fig. 5) expands the currently 
known diversity of these groups in cold seeps and will aid in expanding our understanding of the physiological 
basis of their interactions and their evolutionary histories.

Methods
collection of metagenomes. Metagenomic datasets comprised 165 sediment samples (0 to 68.55 mbsf) 
collected from 16 globally distributed cold seep sites (Fig. 1a; Supplementary Table 1). These sites are as fol-
lows: Eastern North Pacific (ENP), Santa Monica Mounds (SMM), Western Gulf of Mexico (WGM), Eastern 
Gulf of Mexico (EGM), Northwestern Gulf of Mexico (NGM), Scotian Basin (SB), Haakon Mosby mud volcano 
(HM), Mediterranean Sea (MS), Laptev Sea (LS), Jiaolong cold seep (JL), Shenhu area (SH), Haiyang4 (HY4), 
Qiongdongnan Basin (QDN), Xisha Trough (XST), Haima seep (HM1, HM3, HM5, HM_SQ, S11, SY5, and SY6) 
and site F cold seep (RS, SF, FR, and SF_SQ). Paired-end sequencing data from ENP, SMM, WGM, NGM, HM, 
MS, LS and part of site F (RS and FR) were downloaded from the National Center for Biotechnology Information-
Sequence Read Archive (NCBI-SRA) and European Bioinformatics Institute-European Nucleotide Archive  
(EBI-ENA) according to the accession numbers published in each study8–10,22–26. The remaining 106 metagenomic 
datasets used in this study were obtained from our previous publications7,14,27–34. Detailed sequencing informa-
tion is available in Supplementary Table 1. These metagenomic samples were collected from a range of cold seeps, 
including oil and gas seeps, methane seeps, gas hydrates, asphalt volcanoes, and mud volcanoes. The samples were 
taken at various depths and under different redox conditions, from the oxic sediment-water interface to anoxic 
layers as deep as 68.55 meters below the sea floor.

contig assembly, gene prediction and gene catalog construction. Metagenomic sequence 
data were quality controlled using the Read_QC module (parameters: --skip-bmtagger) within the metaW-
RAP (v1.3.2) pipeline35 and fastp (v0.23.2; default parameters)36. After quality control, 9.5 Tb of clean reads 
remained for subsequent analyses. Clean reads from each cold seep sediment metagenome were assembled using 
MEGAHIT (v1.1.3 and v1.2.9, default parameters)37. In addition, co-assemblies were performed by combin-
ing metagenomes from all depths of each cold seep sediment using MEGAHIT (v1.1.3; parameters: --k-min 
27 --kmin-1pass --presets meta-large)37. The assembly parameters are summarized in Supplementary Table 1. 
Contigs (length > 500 bp, n = 225,026,054) from individual assemblies and co-assemblies were used to predict 
protein-coding sequences (CDSs) with Prodigal (v2.6.3; parameter: -meta)38, which generated 373,051,862 pro-
tein sequences. These sequences were then clustered at 95% amino acid identity using CD-HIT (v4.8.1; param-
eters: -c 0.95 -aS 0.9 -g 1 -d 0)39. The cutoff of 95% amino acid identity was adopted to be consistent with the 
fact that members of the same microbial species generally share more than 95% average amino acid identity40.  
It should also be noted that the mixed-assembly approach used here, which combines data from single assemblies 
and co-assemblies, may enrich artificially long proteins to a certain extent41. This resulted in a non-redundant 
gene catalog comprising 147,289,169 representative clusters. The mapping-based mode of Salmon (v1.10.2)42 with 
a “meta-flag” was used to calculate the mapping rate of the non-redundant gene catalog in each metagenome.

Functional annotation and taxonomic classification of the non-redundant gene catalog. The 
representative amino acid sequences from each cluster were functionally annotated using eggNOG-mapper 
(v2.1.9; default parameters)43,44. The functional annotations, including those for eggNOG 5.0, Pfam 33.1, KEGG, 
EC, GO, and CAZy, were derived from the eggNOG-mapper results. We found that 64% of the non-redundant 
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genes had a hit in at least one of the following databases: eggNOG (n = 88,929,242; ~60%), Pfam (n = 85,404,569; 
~58%), KEGG (n = 48,756,524; ~33%), EC (n = 27,619,712; ~19%), GO (n = 5,966,227; ~4%) and CAZy 
(n = 1,514,988; ~1%) (Fig. 2a,b). After analyzing the annotated genes based on the eggNOG database (Fig. 2c), 
the predominant category was “Function unknown” (n = 17,018,774). This category includes proteins that have 
not yet been characterized or for which there is insufficient information to assign a specific function. A total of 
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~40% of genes (n = 58,359,927; Fig. 2b) could not be assigned to an eggNOG orthologous group, similar to the 
percentage observed in the OM-RGC v2 (~39%)21 and higher than that in the GMGC v1 (~27%)16. According 
to the eggNOG database annotation, half of the genes (~51%), including 58,359,927 unannotated genes and 
17,018,774 genes labeled as “Function unknown”, were functionally unidentified, suggesting that cold seeps har-
bor numerous unknown functional genes.
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MMseqs2 taxonomy (v13.45111; parameter: --tax-lineage 1)45 was used to assign taxonomic labels to each 
representative amino acid sequence, using the GTDB R207 as a reference database46. The MMseqs2 taxonomy 
uses an approximate 2bLCA (lowest common ancestor, LCA) approach (--lca-mode: 2bLCA). A notable per-
centage of the non-redundant sequences (n = 44,441,531; ~30%) could not be classified as belonging to any 
prokaryotes in the GTDB, suggesting that these sequences may be attributed to novel prokaryotes (Fig. 2d). 
Approximately 9% (n = 13,154,825) of the non-redundant sequences could be identified only as either bacteria 
or archaea and could not be further classified at the phylum level (Fig. 2d). The results of taxonomic classifica-
tion further confirm that this gene catalog contains many untapped genetic resources.

Metagenomic binning and non-redundant MAG catalog construction. Assembled contigs were 
filtered by length (>1000 bp) for subsequent binning. BWA software (v0.7.17; BWA-MEM algorithm)47 was 
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used to align short reads back to filtered contigs, with the alignment being sorted by SAMtools (v1.9)48. The 
contig depth profiles were produced using jgi_summarize_bam_contig_depths for running metabat2, maxbin2, 
SemiBin, Rosella and VAMB, while for running concoct, concoct_coverage_table.py was used. The binning pro-
cess was performed using the metaWRAP binning module (v1.3.2; parameters: -metabat2, -maxbin2, -concoct, 
-universal)35, SemiBin with single_easy_bin mode (v1.4.0; default parameters)49, and Rosella (v0.4.1; default 
parameters; https://github.com/rhysnewell/rosella). The number of metagenomic samples collected from S11 
(n = 13) and RS (n = 19) was larger than that obtained from other sites, making it computationally challeng-
ing to bin the co-assemblies of the samples from these sites. Thus, individual assemblies from the S11 and RS 
sites were concatenated and binned separately using the VAMB tool in “bin-split” mode (v3.0.2; parameters: 
--minfasta 200000 -o C)50. Afterward, the bins obtained with each binning tool were integrated and refined using 
the Bin_refinement module of the metaWRAP pipeline (v1.3.2; parameters: -c 50 -x 10)35. The completeness 
and contamination of refined bins were evaluated with CheckM (v1.2.1)51. Then, the resulting 8,654 MAGs were 
checked by GUNC (v1.0.5; default parameters)52 to remove genomes potentially containing chimerism based on 
“pass.GUNC”. All MAGs were dereplicated at the species level using dRep (v3.4.0; parameters: -comp 50 -con 
10)53 with an average nucleotide identity (ANI) cutoff value of 95%. Representative genomes were selected based 
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Fig. 4 Phylogenetic tree of ANME genomes and related archaea. The phylogenetic tree was constructed from 
41 previously published ANME genomes and 135 MAGs belonging to Halobacteriota from this study. The tree 
was constructed by the maximum likelihood method using a concatenated alignment of 53 conserved archaeal 
single-copy marker genes.
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on the dRep scores derived from genome completeness, contamination and N50. A total of 3,164 MAGs with the 
highest dRep score from each species cluster were selected as the species representatives. MAGpurify software  
(v2.1.1; default parameters)54 was used to identify and remove putative contaminant contigs from each MAG 
based on the clade-markers, tetra-freq, gc-content, and clean-bin modules. Importantly, the resulting represent-
ative genomes should be considered population genomes within species55.

MAGs were taxonomically classified using the GTDB-Tk toolkit (v2.1.1)56,57 with default parameters 
against the R207 database. According to the taxonomic classification, four species clusters, with medium- or 
high-quality representatives (CSMAG_1499, CSMAG_2247, CSMAG_2329, and CSMAG_3128), were not 
assigned to any existing phylum. They did not cluster together and were included in different clades, exhibiting 
low relative evolutionary divergence values ranging from 0.32 to 0.43. These results suggest that these species 
belong to undescribed phyla. Additionally, 44 classes, 184 orders, 412 families, 1,043 genera and 2,984 species 
lacked classification assignments based on the GTDB R207 (Fig. 3c), representing potential novel lineages.

The coverage of each MAG was calculated using CoverM in genome mode (v0.6.1; https://github.com/
wwood/CoverM; parameters: -min-read-percent-identity 0.95 -min-read-aligned-percent 0.75 -trim-min 0.10 
-trim-max 0.90 -m relative_abundance) by mapping clean reads from the 165 metagenomes to all MAGs.

Genomes for ANME and their syntrophic SRB. To explore the diversity of ANME lineages in global cold 
seep sediments, a phylogenetic tree was constructed that included 41 previously published ANME genomes58–66 
and 135 MAGs belonging to Halobacteriota from this study. These published ANME genomes cover all of the 
currently described subclades: ANME-1, ANME-2a, ANME-2b, ANME-2c, ANME-2d, and ANME-3. To iden-
tify their syntrophic SRB, we constructed a phylogenetic tree of concatenated marker genes from 60 reference SRB 
genomes6,23,67,68 (including syntrophic SRB, namely, HotSeep-1, Seep-SRB2, Seep-SRB1a and Seep-SRB1g, and 
non-syntrophic SRB) and 327 MAGs assigned to Desulfobacterota from this study. The concatenated multiple 
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Fig. 5 Phylogenetic tree of syntrophic SRB genomes. The tree was constructed by using 60 reference SRB 
genomes collected from previous studies and 327 MAGs assigned to Desulfobacterota from this study. The tree 
was constructed by the maximum likelihood method using a concatenated alignment of 120 conserved bacterial 
single-copy marker genes.
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sequence alignment of genomes based on 53 archaeal and 120 bacterial single-copy marker genes was produced 
via the identify and align workflow of GTDB-Tk (v2.1.0)56. The maximum likelihood tree was constructed using 
IQ-TREE (v2.2.0.3; parameters: -m MFP -B 1000)69. All produced trees were visualized using iTOL (v6)70.

A total of 81 ANME genomes were identified, namely, ANME-1 (n = 38), ANME-2a (n = 16), ANME-2b 
(n = 1), ANME-2c (n = 24), and ANME-3 (n = 2) (Fig. 4). In comparison, Chen et al.15 assessed the phyloge-
netic diversity of ANME MAGs from global methane seeps, which resulted in 47 species clustered into three 
subclades, including ANME-1a/b (n = 21), ANME-2a/b (n = 11), and ANME-2c (n = 15). The higher diversity 
of ANME captured here reflects the incorporation of all seep environments, not only those characterized by 
methane seepage. We also identified 23 syntrophic SRB MAGs (Fig. 5) spanning three clades (Seep-SRB2, n = 8; 
Seep-SRB1a, n = 14, and Seep-SRB1g, n = 1).

Data Records
Details for the non-redundant gene catalog, the functional annotation and taxonomic classification for gene clus-
ters, non-redundant MAGs, and phylogenetic trees are available in the Figshare repository71. All non-redundant 
MAGs are deposited in the NCBI database under BioProject PRJNA950938 (ref. 72) with the accession numbers 
detailed in Supplementary Table 2.

technical Validation
To maximize the number of genes and ensure the quality of the genes, we selected assembled contigs with a length 
greater than 500 bp to predict CDSs, as suggested in previous studies17,73,74. Then, we selected assembled contigs 
by length (>1000 bp) for metagenomic binning. The quality of MAGs was strictly controlled according to the 
following standards: (1) completeness >50% and contamination <10%; (2) genome sequences without potential 
chimerism (details in Supplementary Table 2); and (3) genome sequences without potential misassigned contigs.

Usage Notes
The dataset compiled and analyzed in this study is the largest of its kind from cold seep sediment environments. 
Researchers could use the gene catalog of seeps to compare genes of interest to those in other habitats, such as 
glaciers, polar regions and hydrothermal vents, to study the habitat specificity of genes. The compendium of 
ANME could be used to investigate the distributional pattern of ANME archaeal communities in global cold 
seeps and ecological niche partitioning. Furthermore, the evolutionary and physiological basis of ANME-SRB 
interactions could also be explored.

Code availability
The present study did not use custom scripts to generate the dataset. The parameters and versions of all the 
bioinformatics tools used for the analysis are described in the Methods section. The code used to run each of the 
tools is available in the Figshare repository71.
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