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Multi-omic atlas of the 
parahippocampal gyrus in 
Alzheimer’s disease
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Zhiping Shao1,2,3,4,5, James M. Vicari1,2,3,4,5, Yuxin Li7,8,9, Kaiwen Yu7,8,9, Dongming Cai   5,10,11,12, 
Junmin Peng   7,8,9, Vahram Haroutunian   2,11,13, John F. Fullard   1,2,3,4,5,15,  
Jaroslav Bendl   1,2,3,4,5,15, Bin Zhang1,6,15 ✉ & Panos Roussos   1,2,3,4,5,10,11,15 ✉

Alzheimer’s disease (AD) is the most common form of dementia worldwide, with a projection of 151 
million cases by 2050. Previous genetic studies have identified three main genes associated with early-
onset familial Alzheimer’s disease, however this subtype accounts for less than 5% of total cases. Next-
generation sequencing has been well established and holds great promise to assist in the development 
of novel therapeutics as well as biomarkers to prevent or slow the progression of this devastating 
disease. Here we present a public resource of functional genomic data from the parahippocampal 
gyrus of 201 postmortem control, mild cognitively impaired (MCI) and AD individuals from the Mount 
Sinai brain bank, of which whole-genome sequencing (WGS), and bulk RNA sequencing (RNA-seq) 
were previously published. The genomic data include bulk proteomics and DNA methylation, as well 
as cell-type-specific RNA-seq and assay for transposase-accessible chromatin with high-throughput 
sequencing (ATAC-seq) data. We have performed extensive preprocessing and quality control, allowing 
the research community to access and utilize this public resource available on the Synapse platform at 
https://doi.org/10.7303/syn51180043.2.

Background & Summary
Alzheimer’s disease (AD) is the most common form of dementia worldwide, with a projection of 151 million 
cases by 2050, owing in part to our aging global population1. Since Dr. Alois Alzheimers’ seminal discovery over 
a century ago, when he described “A peculiar severe disease process of the cerebral cortex”, there have been a 
plethora of theories. However, clinical trials of disease-modifying treatments have been largely unsuccessful2. 
While forgetfulness and the loss of memory were always considered the first disease symptoms, spatial naviga-
tion and orientation deficits have been increasingly shown in preclinical AD as emerging cognitive biomarkers3. 
The parahippocampal gyrus (PHG) was reported as critical in spatial memory4 and demonstrates various effects 
in Alzheimer’s disease, including delay-dependent inaccuracy of memory-guided eye movements and poor 
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long-term spatial memory5,6. A number of studies have suggested a link between the PHG and AD, with the 
potential for MRI-measured atrophy of the PHG functioning as a biomarker for preclinical AD7–9, while others 
propose that such cognitive impairments may not yet be present in cases of preclinical AD10.

Next-generation sequencing (NGS) is an example of non-clinical research that has enhanced our understand-
ing of AD. Since the development of NGS, multiple genes implicated in AD risk and pathogenesis have been 
identified. Early NGS studies focused on performing deep resequencing of established early-onset AD genes, 
namely amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2), all extremely rare 
and accounting for less than 5% of cases11. More recent whole genome sequencing (WGS) studies focused on 
both rare and common risk variants for the more complex, and also more common, late-onset type of AD12–15.  
Due to the inherent difficulty in obtaining fresh specimens, most molecular studies of the human brain are 
restricted to frozen post-mortem samples. Working with frozen material is not without its challenges, including 
the loss of cytoplasm (and, with it, many cell-specific antigens) as a consequence of freeze-thawing. Nevertheless, 
an increasing number of human brain studies have employed cell-type specific nuclear markers to isolate nuclei 
of interest via Fluorescence-Activated Nuclear Sorting (FANS)16–18. In our recent study, FANS was utilized to 
isolate neuronal and non-neuronal samples (using an Anti-NeuN antibody) from AD cases and controls to 
identify cell-specific epigenetic changes associated with AD progression19. Here, we enlarged the panel of anti-
bodies used by including SOX10, to further sort non-neuronal samples into oligodendrocytes (NeuN-/Sox10 + ) 
and microglia/astrocytes (NeuN-/Sox10-). In total, we have generated 124 cell-specific transcriptome samples 
(FANS-sorted RNA-seq), 110 cell-specific epigenome samples (FANS-sorted ATAC-seq) as well as 196 bulk 
DNA methylome samples and 185 bulk proteome samples. The newly generated data sets expand the panel of 
genomic assays in the Mount Sinai Brain Bank AD cohort (MSBB-AD)20 and increase cell-specific resolution 
(Fig. 1).

Methods
Cohort data collection.  In this study, we generated a multi-omics data set from the frozen brain tissue of 
201 subjects of predominantly European ancestry (Fig. 2a) obtained from the Mount Sinai NIH Neurobiobank20. 
All neuropsychological, diagnostic and autopsy protocols were approved by the Mount Sinai and JJ Peters VA 
Medical Center Institutional Review Boards20. Extensive cognitive and neuropathological assessment as well as 
demographic data were already available for all donors21. For bulk proteome and DNA methylome data, we gen-
erated the samples for all 201 donors. For RNA-seq transcriptome and ATAC-seq epigenome data, we selected 
only 42 donors (21 AD cases and 21 controls with either no discernable neuropathology or cognitive complaints) 
and performed FANS to generate 3 cell type specific samples per donor. The donors were selected to represent 
the full spectrum of clinical and pathological severity based on the following phenotypes: (1) case–control status 
defined using the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) criteria22, i.e. 1 = normal, 
2 = definite AD, 3 = probable AD, and 4 = possible AD; (2) Braak AD-staging score for the progression of neu-
rofibrillary neuropathology (Braak and Braak score23,24); (3) mean density of neuritic plaques (PlaqueMean); and 
(4) assessment of dementia based on the Clinical Dementia Rating scale (CDR)25.

Bulk proteomics data.  Tandem mass tag assays.  The post-mortem brain samples were lysed in the fresh 
lysis buffer (50 mM HEPES, pH 8.5, 8 M urea, and 0.5% sodium deoxycholate) with the established protocol26. 
Protein concentrations of the lysates were measured by the BCA assay (Thermo Fisher Scientific) and further 
validated by short SDS Coomassie-stained gels27. Approximately 0.1 mg of quantified proteins in the lysis buffer 
with 8 M urea were digested in two steps: first with Lys-C (Wako, 1:100 w/w) at 21 °C for 2 h, and then with 
4-fold dilution to reduce urea to 2 M followed by trypsin digestion (Promega, 1:50 w/w) at 21 °C overnight.  
The resulting peptide samples were acidified, desalted with Sep-Pak C18 cartridge (Waters), and then dried. 
These samples were re-dissolved in 50 mM HEPES (pH 8.5) for TMT reaction for 30 mins, and equally pooled. 
The pooled samples were desalted and fractionated by offline basic pH reverse phase LC (an XBridge C18 column 
of 3.5 μm particle size, 4.6 mm × 25 cm, Waters), and each collected fraction was then analyzed by the acidic 
pH reverse phase LC coupled with MS/MS analysis28. The fractions were analyzed sequentially on a C18 col-
umn (75 µm × 15–30 cm, 1.9 μm resin from Dr. Maisch GmbH, 65 °C to reduce backpressure) coupled with a Q 
Exactive HF Orbitrap mass spectrometer (Thermo Fisher Scientific). In mass spectrometer (MS) settings, positive 
ion mode and data-dependent acquisition were applied with one full MS scan followed by 20 MS/MS scans. MS1 
scans were acquired at a resolution of 60,000, 1E6 AGC and 50 ms maximal ion time. After ion fragmentation 
with higher energy collision-induced dissociation (HCD, ~35% normalized collision energy and ~1.0 m/z isola-
tion window with 0.3 m/z offset), MS2 spectra were acquired at a resolution of 60,000, fixed first mass of 120 m/z, 
410–1600 m/z, 1E5 AGC, 100–150 ms maximal ion time, and ~15 sec of dynamic exclusion.

Computational processing.  Tandem Mass Tag (TMT)-based proteomics analysis was utilized to profile protein 
expression abundance. Proteomics data analysis was performed as previously described29: the JUMP search 
engine30 was used to search MS/MS raw data against a composite target/decoy database31 to evaluate FDR. 
The protein database was generated by combining downloaded SwissProt, TrEMBL, and UCSC databases and 
removing redundancy (83,955 entries for human proteins), followed by concatenation with a decoy database. 
Major parameters included 15 ppm mass tolerance for precursor ions and 10 ppm for product ions, full tryptic-
ity, static modification of the TMT tags (+229.162932 Da) on Lys residues and peptide N termini and carbami-
domethyl modification on cysteine (+57.02146 Da), dynamic modification for Met oxidation (+15.99492 Da), 
maximal miscleavage sites (n = 2), and maximal modification sites (n = 3). The resulting PSMs were filtered 
by precursor ion mass accuracy and minimal search score, and then grouped by peptide length, tryptic ends, 
modifications, miscleavage sites, and precursor ion charge state followed by the cutoffs of JUMP-based matching 
scores (Jscore and ΔJn) to reduce FDR below 1% for proteins. If one peptide could be generated from multiple 
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homologous proteins, based on the rule of parsimony, the peptide was assigned to the canonical protein form 
in the manually curated SwissProt database. If no canonical form was defined, the peptide was assigned to the 
protein with the highest PSM number.

Proteins were quantified in the following steps, similar to previous reports28,29,32: (i) TMT reporter ion 
intensities of each PSM were extracted; (ii) the raw intensities were corrected according to isotopic distribu-
tion of each labeling reagent; (iii) PSMs with very low reporter ion intensities were excluded (e.g. minimum 
intensity < 1,000 and median intensity < 5,000); (iv) sample loading bias was corrected by normalization with 
the trimmed median intensity of all PSMs; (v) the mean-centered intensities across samples were calculated;  
(vi) protein relative intensities were summarized by averaging related PSMs; (vii) protein absolute intensities 
were derived by multiplying the relative intensities by the grand-mean intensity of the top three most highly 
abundant PSMs. In addition, we performed y1-ion based correction of TMT data28. Data QC based on protein 
quantification identified one batch (“batch 20”) as an outlier batch and was thus discarded. To generate a com-
bined quantification table for multiple batches, a common sample (mixture of multiple samples) was included 
in each batch as an internal standard. MS intensities from different batches were normalized according to this 
internal standard.
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Fig. 1  Study design and examples of transcriptome and epigenome landscape around three selected cell type 
markers. (a) Study design: Dissections from PHG brain region of AD case and control subjects were obtained 
from frozen human postmortem tissue. Nuclei were subjected to fluorescence-activated nuclear sorting to yield 
three cell populations, followed by RNA-seq and ATAC-seq profiling and subsequent downstream analyses to 
perform quality control and identify cell type-specific open chromatin regions. (b–d) Examples of cell-specific 
chromatin accessibility and gene expression for three cell type markers, i.e. (b) NEUROD6 (neurons), (c) ZIC5 
(microglia & astrocytes) and (d) S1PR5 (oligodendrocytes).
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Bulk DNA methylation.  Methylation array assays.  Total genomic DNA was isolated from 10 mg of post-
mortem brain tissue dissected from the PHG region, using the Qiagen All Prep DNA/RNA Mini Kit, accord-
ing to the manufacturer’s instructions (Qiagen, catalog# 80204). Tissues were first homogenized using Qiagen’s 
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Fig. 2  Analysis of cohort ancestry, genetic similarity and assay variance. (a) Top two principal components 
of per-sample genetic ancestry estimation. (b–e) Distribution of genetic similarities estimated between WGS 
samples and proteomics samples (b), DNA methylation samples (c), RNA-seq samples (d), ATAC-seq samples 
(e). Colors denote whether the sample pairs are originating from the same or different brain donors. (f–i) 
Variance explained by biological and technical covariates for DNA methylation sites (f), proteins (g), ATAC-seq 
genes (h) and RNA-seq peaks (i).
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TissueLyzer LT (Qiagen, catalog# 69980) combined with 5 mm stainless steel beads (Qiagen, catalog# 69989). 
Next, the lysed tissues were loaded onto QIAmp spin columns to wash off any impurities. Purified DNA was 
eluted off from the columns using a low salt buffer. 200–500 ng DNA per sample were used for bisulfite conversion 
using the EZ-96 DNA Methylation-Lightning Kit (Zymo, catalog# D5033). Next, DNA samples were fragmented 
and hybridized to Infinium MethylEPIC BeadChips33 (Illumina, catalog# WG-317-1001). Lastly, hybridization 
signals were obtained through the Illumina iScan microarray scanner (Illumina, catalog# SY-202-1001).

Methylation data preprocessing.  We streamlined a workflow to preprocess, normalize, and quality check (QC) 
Illumina 850 K methylation array data. We essentially followed the pipeline as described by Maksimovic et al.34. 
In brief, the R package “minfi” was utilized to preprocess and normalize the raw array data in IDAT format. We 
utilized the functions “read.metharray.sheet” and “read.metharray.exp” to import the sample metadata and the 
raw methylomic data into R, respectively, and the function “preprocessQuantile” for data normalization, and 
the functions “getBeta” and “getM” to calculate and output both β and M values of the 866,029 probes on the 
platform, respectively. For further quality control, we discarded CpG probes that were either internal control, or 
with low quality (detection p-value < 0.05)34, or known to overlap with common SNPs at the same CpG sites34. 
The genic annotation of the CpG sites was obtained from the annotation package for Illumina’s EPIC methyla-
tion arrays, i.e., IlluminaHumanMethylationEPICanno.ilm10b2.hg19. After removing 5 potentially mismatched 
samples, as described in the Technical Validation section, the β and M values of the QCed CpG probes were 
corrected for co-variables including batch.

Cell-type-specific RNA sequencing.  Fluorescence-activated nuclei sorting.  From each dissection, 250 mg 
of frozen brain tissue was homogenized in a cold lysis buffer (0.32 M Sucrose, 5 mM CaCl2, 3 mM Magnesium 
acetate, 0.1 mM, EDTA, 10 mM Tris-HCl, pH8, 1 mM DTT, 0.1% Triton X-100) and filtered through a 40 µm cell 
strainer. The flow-through was underlaid with sucrose solution (1.8 M Sucrose, 3 mM Magnesium acetate, 1 mM 
DTT, 10 mM Tris-HCl, pH 8) and subjected to ultracentrifugation at 24,000 rpm for 1 hour at 4 °C. Pellets were 
resuspended in 500 µl DPBS and incubated in BSA (final concentration 0.1%) and anti-NeuN antibody (1:600, 
Alexa 647 conjugated, abcam Cat #ab190565) and anti-SOX10 (1:300, Alexa488 conjugated, R&D Systems Cat 
#IC28642G). Prior to FANS sorting, DAPI (Thermoscientific) was added to a final concentration of 1 µg/ml. 
Neuronal (DAPI + NeuN + SOX10-), oligodendrocytes (DAPI + NeuN- SOX10 + ) and microglia/astrocytes 
(DAPI + NeuN- SOX10-) nuclei were sorted into individual tubes (pre-coated with 5% BSA) using a FACSAria 
flow cytometer (BD Biosciences).

Library preparation and sequencing.  For RNA-seq, nuclei were sorted into 1.5 ml low-bind microfuge tubes 
containing Extraction buffer, a component of the PicoPure RNA Extraction kit (Arcturus, Ca t# KIT0204). RNA 
was isolated in accordance with the PicoPure RNA Isolation kit’s manufacturer’s instructions. This included an 
RNase-free DNase treatment step (Qiagen, Cat # 79254). Samples were eluted in RNase-free water and stored 
at −80 °C until preparation of RNA-Sequencing libraries using the SMARTer Stranded Total RNA-Seq Pico Kit 
v1 or v2 (Takara Clontech Laboratories, Cat # 635005 or 634414, respectively), according to the manufactur-
er’s instructions. Following the construction of the RNA-seq libraries, libraries were analyzed on a TapeStation 
using a High Sensitivity D1000 ScreenTape (Agilent, Cat # 5067-5584) and quantification of the libraries was 
performed using the KAPA Library Quantification Kit. Libraries that passed QC were sequenced on Hi-Seq2500 
(Illumina) obtaining 2 × 50 paired-end reads.

Computational processing.  The raw reads were trimmed with Trimmomatic (v0.36)35 and then mapped to 
human reference genome hg38 using STAR (v2.5.3a)36. Following read alignment, expression quantification was 
performed at the transcript isoform level using RSEM (v1.3.0)37 and then summarized at the gene level. Gene 
quantifications correspond to GENCODE (v30)38. Gene count matrix was normalized by the trimmed mean of 
M-values (TMM)39 and filtered to keep only genes with over 1 count per million in at least 30% of the samples. 
RNA-SeqQC (v1.1.7)40 and Picard (v2.2.4) were used to generate quality control metrics. Quality control pro-
cesses (described in Technical validation) removed 2 samples, resulting in a final count matrix of 124 samples by 
21,383 genes. To correct for unwanted technical variance, we applied the step-wise covariate analysis based on 
the Bayesian information criterion (BIC)41. As a starting point for this analysis, a base model was chosen with 
the variables “cell_type by diagnosis_status” and “sex”. Then, it was tested, for each additional covariate, how 
many genes showed an improved BIC score minus how many showed a worse BIC score when the covariate was 
included in the linear regression model compared to when it wasn’t. A covariate was then required to improve 
the mean BIC per gene by at least 5 for it to be included in the final model. This model selected 3 covariates: 
“reads_mapped_to_too_many_loci” (i.e. fraction of discarded reads by STAR aligner; this serves as a proxy to 
the technical quality of the sample) and two deconvolution metrics, i.e. predicted proportion of microglia and 
astrocytes in each sample, thus compensating for limitations of our experimental design that sorted cells from 
microglia and astrocytes together. The effect of those three technical covariates was regressed out to generate the 
normalized count matrices.

Cell-type-specific ATAC sequencing.  Generation of ATAC-seq libraries and sequencing.  ATAC-seq 
libraries were generated from cell-sorted brain tissue dissection (see the section “Fluorescence Activated Nuclei 
Sorting” for RNA-seq) using an established protocol42 with minor modifications. In brief, 100,000 sorted nuclei 
were centrifuged at 500 g for 10 min at 4 °C. Pellets were resuspended in transposase reaction mix (25 μL 2x TD 
Buffer (Illumina Cat # FC-121-1030) 2.5 μL Tn5 Transposase (Illumina Cat # FC-121-1030) and 22.5 μL Nuclease 
Free H2O) on ice. Reactions were incubated at 37 °C for 30 min and then purified using the MinElute Reaction 
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Cleanup kit (Qiagen Cat # 28204), eluting in 10 µL of buffer EB. Following purification, library fragments were 
amplified using the Nextera index kit (Illumina Cat # FC-121-1011) under the following cycling conditions: 72 °C 
for 5 minutes, 98 °C for 30 seconds, followed by thermocycling at 98 °C for 10 seconds, 63 °C for 30 seconds, and 
72 °C for 1 minute for a total of 5 cycles. To prevent saturation due to over-amplification, a 5 µl aliquot was then 
removed and subjected to qPCR for 20 cycles to calculate the optimal number of cycles needed for the remaining 
45 μL reaction. The additional number of cycles was determined by first plotting linear Rn vs. Cycle and secondly 
calculating the cycle number corresponding to 1⁄4 of maximum fluorescence intensity. In general, adding 4-6 
cycles to this estimate was found to yield optimal libraries, as determined by analysis on Tapestation D5000 
ScreenTapes (Agilent technologies Cat # 5067-5588). Libraries were then resolved on 2% agarose gels and frag-
ments ranging in size from 100-1000 bp were excised and purified (Qiagen Minelute Gel Extraction Kit – Qiagen 
Cat # 28604). Prior to sequencing, libraries were quantified with the Qubit dsDNA HS assay kit (Invitrogen 
Cat # Q32851) and by quantitative PCR (KAPA Biosystems Ca # KK4873), and fragment sizes estimated using 
Tapestation D5000 ScreenTapes (Agilent technologies Cat # 5067-5588). Libraries that passed QC were normal-
ized for concentration and sequenced on Hi-Seq2500 (Illumina), obtaining 2 × 50 paired-end reads.

Computational processing.  Similar to RNA-seq processing, trimming of low-quality base pairs and adapter 
sequences was performed by Trimmomatic (v0.36)35. Then, reads were mapped to hg38 by STAR (v2.7.0)36. 
Reads mapped to multiple loci, mitochondrial genome or duplicate reads were removed by samtools (v0.1.19)43. 
To increase the sequencing depth for peak calling, all samples were downsampled to the same size and, then, 
merged into three separate BAM files by their cell type identity. Cell-specific peaks were called by MACS244 
and merged into a final consensus of 263,265 peaks. Peaks overlapping ENCODE blacklisted regions45 were 
removed. The peak count matrix was normalized by the trimmed mean of M-values (TMM)39 and filtered to 
keep only peaks with over 1 count per million in at least 20% of the samples. Picard (v2.2.4) and phantom-
peakqualtools (v2.0) were used to generate quality control metrics. Quality control processes (described in 
Technical validation) removed 16 samples, resulting in a final count matrix of 110 samples by 257,336 peaks. 
Then, we applied the same covariate selection model utilizing repeated BIC model as for RNA-seq, This model 
selected two covariates: “GC_coverage_20-39” (i.e., normalized read coverage over each quintile of GC content 
ranging from 20 – 39%) and “AT_dropout” that improved a net of 68.5% and 21.5% of peaks. The effect of those 
two technical covariates was regressed out to generate the normalized count matrices.

Data Records
All data described herein are available for use by the research community and have been deposited in the 
AMP-AD Knowledge Portal in study-specific folder46. These include sample metadata21, as well as raw and pro-
cessed sequencing data for ATAC-seq, RNA-seq, proteome and DNA methylation46.

Technical Validation
Bulk proteomics data quality control.  We performed sample alignment between proteomics data and 
matched WGS47 data from the same cohort using two different strategies. In the first strategy, we utilized a prote-
ogenomics approach to first identify sample-specific peptides with mutations, followed by proteogenomics-based 
genotype inference and sample alignment using the SMAP software48. Briefly, by constructing a customized pro-
tein database using SNVs detected from WGS data, peptides with sample-specific mutations were identified using 
the JUMPg software49. The resulting peptides were quantified and processed by SMAP for sample alignment with 
two steps: (i) inference of sample-specific genotype based on TMT-based quantification while taking the genotype 
dosage information in the WGS data as prior knowledge; and (ii) sample verification and correction by compar-
ing the inferred genotypes versus the mutation profiles of the matched WGS sample. Five proteomics samples 
were identified to be potentially mislabeled. In the second strategy, we utilized the software MODMatcher50. 
Briefly, the normalized proteomics data were corrected for TMT batch using a random effect regression model 
by R package variancePartition51, and subsequently corrected for covariates including PMI, age, race, and sex 
using linear regression (Fig. 2g). Then protein quantitative trait loci (pQTLs) were computed with R package 
MatrixEQTL52 by integrating covariates-corrected proteomics data with the WGS data. Genotypes at the most 
significant cis-pQTL of each cis-pQTL bearing protein were imputed from the protein expression data using 
an algorithm developed in the software MODMatcher50. Genotype consistency was computed for all possible 
sample pairs between the imputed genotype data from proteomics and the observed genotype data from WGS 
(Fig. 2b). Following MODMatcher50, a proteomics sample was considered self-aligned with the corresponding 
WGS sample if its same-donor WGS sample was among the top 3 matches ranked by the genotype consistency 
score. Meanwhile, best-matched proteomics samples for each WGS sample were also identified based on the gen-
otype consistency score. As a result, 183 proteomics samples were self-aligned. Among the 7 proteomics samples 
that were not self-aligned with WGS, 4 were considered potentially mislabeled as each showed a reciprocal best 
match with a WGS sample from a different donor. Notably, all these 4 proteomics samples were among the mis-
labeled samples detected by JUMPg. Therefore, we corrected the donor identifiers for the 4 mislabeled samples 
and discarded the remaining problematic samples (total 4) detected by either JUMPg or MODMatcher. One mis-
labeled sample became a duplication after label correction and hence was discarded as well. Lastly, the retained 
normalized proteomics data (n = 185) with properly matched WGS data were corrected for covariates including 
TMT batch, PMI, age, race, and sex.

Bulk DNA methylation data quality control.  To assure the high quality of the DNA methylation data, 
we first evaluated if the DNA methylation samples can be properly aligned to their corresponding WGS samples. 
For this purpose, we carried out the genotype inference on 59 control probes querying high-frequency SNPs by 
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Fig. 3  Analysis of RNA-seq dataset. Diagnosis groups are defined by CERAD metrics, i.e. AD: CERAD = (2-4), 
CTRL: CERAD = 1. (a) t-SNE clustering. (b) Sex check based on quantification of the expression of male- 
(RPS4Y1) and female-specific genes (XIST). (c) RNA-seq quality control metrics stratified by disease status and 
cell subtype: RNA integrity number (RIN), intergenic rate, intronic rate, median insert size, counts of mapped 
read pairs, percentage of uniquely mapped reads, mean GC content and percentage of ribosomal bases. t-test 
comparison on the distributions of values of AD cases and controls for all QC metrics in three cell types revealed 
that only 2 metrics in 2 cell types are different before correction for multiple testing but not after FDR correction, 
i.e. the percentage of ribosomal bases in neurons (p-value = 0.030, FDR-corrected q-value = 0.090) and the 
number of mapped reads in oligodendrocytes (p-value = 0.048, FDR-corrected q-value = 0.144). Box plots are 
centered on median, bounds defined between the 25th and 75th percentile with minimum and maximum defined 
as median ± 1.5 × interquartile range, and whiskers extending to the lowest/highest value within this range.
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Illumina’s EPIC chip. Following a prior practice53, a mixed model assuming distinct hybridization signal distri-
bution for different genotypes was trained to predict sample genotypes for each of these probes. Subsequently, a 
genotype concordance score was computed by comparing the inferred genotypes with the WGS-based genotypes. 
While the majority of the DNA methylation samples showed a high genetic concordance with their corresponding 
WGS samples (genotype similarity score close to 1), 5 methylation samples exhibited a low genotype concordance 
with their respective WGS counterparts (genotype concordance score < 0.9) and were hence labeled as mismatched 
samples and discarded from the analysis (Fig. 2c).

RNA-seq quality control.  A total of 126 RNA-seq samples were integrated into a single analysis across all 
cell types and AD case/control status in order to perform joint quality control. Dimensionality reduction tech-
niques calculated on gene count matrix were used to confirm the successful clustering of samples by cell types, 
with the exception of two outlying samples that were excluded (laboratory notes indicated that those two samples 
yielded very low concentrations of RNA, indicative of low tissue quality) (Fig. 3a; removed samples not shown). 
The remaining 124 samples had acceptable values for the following RNA-seq quality control metrics: RNA integ-
rity number (RIN) (mean 3.1, sd ± 0.84), intergenic rate (mean 10.3%, sd ± 1.6%), intronic rate (mean 61.4%, 
sd ± 2.2%), ribosomal RNA rate (mean 0.07%, sd ± 0.03%), mapped read pairs (mean 75 × 106, sd ± 1.7 × 106), 
percentage of uniquely mapped reads (mean 86.1%, sd ± 4.5%), median insert size (mean 182 bp, sd ± 10 bp) and 
mean GC content (mean 54.6%, sd ± 2.3%) (Fig. 3c). In order to confirm that the expression of genes on sex chro-
mosomes is consistent with the reported sex, RPS4Y1 and XIST were selected as representatives of sex-specific 
genes, and all samples showed distinct clustering by reported sex (Fig. 3b). To verify donor identity of all samples, 
we used kinship coefficient from KING v1.91354 to compare the per-sample variants called from raw sequencing 
reads to the variants from existing WGS reference47. All detected swaps between samples were corrected by sam-
ple re-labeling, however, two potentially contaminated samples with low similarity to all genotypes, including 
the expected genotype, were excluded. After performing all steps of genotype concordance analysis, we observed 
clear and unambiguous separation of n = 124 samples from 21 donors (Fig. 2d).

ATAC-seq quality control.  Similar to RNA-seq quality control, we performed a joint analysis of all 122 
sequenced ATAC-seq samples to detect outlying and low-quality samples. All samples passed our QC metrics 
criteria for minimum mappability (more than 50% required), minimum fraction of reads in peaks (more than 4% 
required) and maximum fraction of reads mapped to the mitochondrial genome (less than 3% required). However, 
6 samples were removed due to the low signal-to-noise ratio as we required more than 3,000 narrow peaks per 
sample. An additional 6 samples were removed due to low cell type specific signal detected by clustering analysis 
and visually confirmed in IGV by looking at open chromatin accessibility signal within promoters of cell-specific 
genes. After completion of QC steps, the remaining samples showed clear cell type separation (Fig. 4a).  
The remaining 110 samples had acceptable values for the following ATAC-seq quality control metrics: num-
ber of narrow peaks called per sample (mean 32,906, sd ± 18,170), the fraction of reads in peaks (mean 13%, 
sd ± 2.9%), the fraction of reads mapping to the mitochondrial genome (mean 0.98%, sd ± 0.4%), median insert 
size (mean 116 bp, sd ± 24 bp), the fraction of reads that were uniquely mapped (mean 0.865, sd ± 0.029), mean 
GC content (mean 46.4%, sd ± 1.2%), the number of uniquely mapped reads (mean 59 × 106, sd ± 9.3 × 106) and 
the fraction of duplicated reads (mean 0.117, sd ± 0.029%) (Fig. 4c). We also carried out sex check by comparing 
per-sample numbers of all mapped reads versus chromosome Y reads, confirming distinct clustering by reported 
sex (Fig. 4b). Lastly, we checked the identity of a final set of n = 110 samples from 21 donors using the same 
approach as explained for RNA-seq data and corrected all swaps and mislabelings (Fig. 2e).

Usage Notes
As a usage example, here we summarize the analytic flow and the key findings from our recent publication55 in 
which we integrated the multi-omics data in the MSBB-AD cohort which was developed through a previous 
study55 and this current study (termed as the discovery cohort) and the Religious Orders Study and Memory and 
Rush Aging Project56,57 (ROSMAP) cohort with multiomics data from the dorsolateral prefrontal cortex (the val-
idation cohort). The discovery cohort includes matched epigenomic (ATAC-seq), methylomic, transcriptomic 
(RNA-seq) and proteomic data from the PHG, as described in the previous sections in this paper, while the 
validation cohort includes methylomic, transcriptomic (RNA-seq) and proteomic data, along with ATAC-seq 
data and H3K9ac domain atlas in the prefrontal cortex (PFC) region58 (Fig. 5a).

As shown in Fig. 5b, we first identified AD-associated methylomic changes by computing differentially meth-
ylated probes and differentially methylated regions (DMRs). In the MSBB AD, 270 DMRs were found to be not 
only associated with AD clinical and pathological traits cohort and the expression levels of many genes and 
proteins differentially expressed between AD and controls but also enriched for known AD GWAS risk genes 
and the Aβ pathways. To model and quantify the overall effect of DNA methylation on individual genes and 
proteins, we developed a novel statistic, termed overall methylation score (OMS)55, and revealed that in the gene 
or protein co-expression network modules which were most strongly associated with AD, their member genes or 
proteins generally had a high amplitude of OMS that was also correlated with the respective gene/protein expres-
sion changes between AD and controls. We also found that, in the Bayesian causal networks, the top-ranked key 
drivers tended to be regulated by methylation. Finally, to investigate the causal relationship between DMRs and 
ATAC peaks on gene expression, the causal inference test (CIT)59 was performed on DMRs, ATAC peaks, and 
associated genes or proteins. Our analysis identified thousands of significant causal chains with a relationship 
of DMR → ATAC → gene/protein, but none of the relationship of ATAC → DMR → gene/protein, suggesting 
that DMRs likely influenced gene/protein expression via ATAC peak domains in AD, rather than ATAC peak 
domains influenced gene/protein expression via DNA methylation. In summary, our integrative analysis of the 
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Fig. 4  Analysis of ATAC-seq dataset. Diagnosis groups are defined by CERAD metrics, i.e. AD: CERAD =  
(2-4), CTRL: CERAD = 1. (a) t-SNE clustering. (b) Sex check based on quantification of the number of reads  
on chromosome Y (outside the pseudoautosomal region). (c) ATAC-seq quality control metrics stratified by cell 
subtype and AD disease status: counts of uniquely mapped reads, fraction of uniquely mapped reads, fraction of 
duplicated reads, fraction of reads mapping to the mitochondrial genome, median insert size, mean GC content, 
number of per-sample peaks and FRiP (fraction of reads in peaks). t-test comparison on the distributions of 
values of AD cases and controls for all QC metrics in three cell types revealed that only 1 metrics in 1 cell type 
is different before correction for multiple testing (the fraction of reads mapped on chrM: p-value = 0.041, 
FDR-corrected q-value = 0.123) and 1 metrics in 1 cell type is statistically significantly different after correction 
for multiple testing. (the number of uniquely mapped reads in neurons: p-value 0.008, FDR-corrected 
q-value = 0.234). Box plots are centered on median, bounds defined between the 25th and 75th percentile with 
minimum and maximum defined as median ± 1.5 × interquartile range, and whiskers extending to the lowest/
highest value within this range.
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multi-omics data reveals a detailed signaling map of the regulatory cascade among DNA methylation, epig-
enomic chromatin accessibility, transcription and translation in AD (Fig. 5).

Code availability
The source code demonstrating the work with the dataset is available at https://doi.org/10.5281/zenodo.781844360.
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