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Shared metadata for data-centric 
materials science
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The expansive production of data in materials science, their widespread sharing and 
repurposing requires educated support and stewardship. In order to ensure that this need 
helps rather than hinders scientific work, the implementation of the FAIR-data principles 
(Findable, Accessible, Interoperable, and Reusable) must not be too narrow. Besides, the 
wider materials-science community ought to agree on the strategies to tackle the challenges 
that are specific to its data, both from computations and experiments. In this paper, we 
present the result of the discussions held at the workshop on “Shared Metadata and Data 
Formats for Big-Data Driven Materials Science”. We start from an operative definition of 
metadata, and the features that  a FAIR-compliant metadata schema should have. We 
will mainly focus on computational materials-science data and propose a constructive 
approach for the FAIRification of the (meta)data related to ground-state and excited-states 
calculations, potential-energy sampling, and generalized workflows. Finally, challenges with 
the FAIRification of experimental (meta)data and materials-science ontologies are presented 
together with an outlook of how to meet them.

Introduction: Metadata and FAIR data principles
The amount of data that has been produced in materials science till today and its day-by-day increase are mas-
sive1. The dawn of the data-centric era2 requires that such data are not just stored, but also carefully annotated in 
order to find, access, and possibly reuse them. Terms of good practice to be adopted by the scientific community 
for the management and stewardship of its data, the so-called FAIR-data principles, have been compiled by the 
FORCE11 group3. Here, the acronym FAIR stands for Findable, Accessible, Interoperable, and Reusable, which 
applies not only to data, but also to metadata. Other terms for the “R” in FAIR are “repurposable” and “recy-
clable”. The former term indicates that data may be used for a different purpose than the original one for which 
they were created. The latter term hints at the fact that data in materials science are often exploited only once 
for supporting the thesis of a single publication and then they are stored and forgotten. In this sense, they would 
constitute a “waste” that can be recycled, provided that they can be found and they are properly annotated.

Before examining the meaning and importance of the four terms of the FAIR acronym, it is worth defining 
what metadata are with respect to data. To the purpose, we start by introducing the concept of data object.  
A data object is the collective storage of information related to an elementary entry in a database. One can con-
sider it as a row in a table, where the columns can be occupied by simple scalars, higher-order mathematical 
objects, strings of characters, or even full documents (or other media objects). In the materials-science context, 
a data object is the collection of attributes (the columns in the above-mentioned table) that represent a material 
or, even more fundamentally, a snapshot of the material captured by a single configuration of atoms, or it may 
be a set of measurements from well-defined equivalent samples (see below for a discussion on this concept).  
For instance, in computational materials science, the attributes of a data object could be both the inputs (e.g., the 
coordinates and chemical species of the atoms constituting the material, the description of the physical model 
used for calculating its properties), and the outputs (e.g., total energy, forces, electronic density of states, etc.) of a 
calculation. Logically and physically, inputs and outputs are at different levels, in the sense that the former deter-
mine the latter. Hence, one can consider the inputs as metadata describing the data, i.e., the outputs. In turn, the 
set of coordinates A that are metadata to some observed quantities, may be considered as data that depend on 
another set of coordinates B, and the forces acting on the atoms in that set A. So, the set of coordinates B and the 
acting forces are metadata to the set A, now regarded as data. Metadata can always be considered to be data as 
they could be objects of different, independent analyses than those performed on the calculated properties. In 
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this respect, whether an attribute of a data object is data or metadata depends on the context. This simple exam-
ple also depicts a provenance relationship between the data and their metadata.

The above discussion can be summarized in a more general definition of the term metadata: Metadata are 
attributes that are necessary to locate, fully characterize, and ultimately reproduce other attributes that are iden-
tified as data. The metadata include a clear and unambiguous description of the data as well as their full prove-
nance. This definition is reminiscent of the definition given by NIST4: “Structured information that describes, 
explains, locates, or otherwise makes it easier to retrieve, use, or manage an information resource. Metadata is 
often called data about information or information about information”. With our definition, we highlight the 
role of data “reproducibility”, which is crucial in science.

Within the “full characterization” requirement, we highlight interpretation of the data as a crucial aspect. In 
other words, the metadata must provide enough information on a stored value (therein including, e.g., adimen-
sional constants) to make it unambiguous whether two data objects may be compared with respect to the value 
of a given attribute or not.

Next, we should notice that, whereas in computational materials science the concept of data object identi-
fied by a single atomic configuration is well defined, in experimental materials science the concept of a class of 
equivalent samples is very hard to implement operationally. For instance, a single specimen can be altered by a 
measurement operation and thus cannot, strictly speaking, be measured twice. At the same time, two specimens 
prepared with the same synthesis recipe, may differ in substantial aspects due to the presence of different impu-
rities or even crystal phases, thus yielding different values of a measured quantity. In this respect, here we use 
the term equivalent sample in its abstract, ideal meaning, but we also mention that one of the main purposes of 
introducing well-defined metadata in materials science is to provide enough characterization of experimental 
samples to put into practice the concept of equivalent samples.

The need for storing and characterizing data by means of metadata is determined by two main aspects, 
related to data usage. The first aspect is as old as science: reproducibility. In an experiment or computation, all 
the necessary information needed to reproduce the measured/calculated data (i.e., the metadata) should be 
recorded, stored, and retrievable. The second aspect becomes prominent with the demand for reusability. Data 
can and should be also usable for purposes that were not anticipated at the time they were recorded. A useful 
way of looking at metadata is that they are attributes of data objects answering the “wh- questions”: who, what, 
when, where, why, and how. For example, “Who has produced the data?”, “What are the data expected to rep-
resent (in physical terms)?”, “When were they produced?”, “Where are they stored?”, “For what purpose were 
they produced?”, and “By means of which methods were the data obtained?”. The latter two questions also refer 
to the concept of provenance, i.e., the logical sequence of operations that determine, ideally univocally, the data. 
Keeping track of the provenance requires the possibility to record the whole workflow that has lead to some 
calculated or measured properties (for more details, see Section “Metadata for Computational Workflows”).

From a practical point of view, the metadata are organized in a schema. We summarize what the FAIR prin-
ciples imply in terms of a metadata schema as follows:

•	 Findability is achieved by assigning unique and Persistent Identifiers (PIDs) to data and metadata, describing 
data with rich metadata, and registering (see below) the (meta)data in searchable resources. Widely known 
examples of PIDs are digital object identifiers (DOIs) and (permanent) Uniform Resource Identifiers (URIs). 
According to ISO/IEC 11179, a metadata registry (MDR) is a database of metadata that supports the function-
ality of registration. Registration accomplishes three main goals: identification, provenance, and monitoring 
quality. Furthermore, an MDR manages the semantics of the metadata, i.e., the relationships (connections) 
among them.

•	 Accessibility is enabled by “application programming interfaces” (APIs), which allow one to query and retrieve 
single entries as well as entire archives.

•	 Interoperability implies the use of formal, accessible, shared, and broadly applicable languages for knowledge 
representation (these are known as formal ontologies and will be discussed in Section “Outlook on ontologies 
in materials science”), use of vocabularies to annotate data and metadata, and inclusion of references.

•	 Reusability hints at the fact that data in materials science are often exploited only once for a focus-oriented 
research project, and many data are not even properly stored as they turned out to be irrelevant for the focus. 
In this sense, many data constitute a “waste” that can be recycled, provided that the data can be found and 
they are properly annotated.

Establishing one or more metadata schemas that are FAIR-data-principles compliant, and that therefore 
enable the materials-science community to efficiently share the heterogeneously and decentrally produced 
data, needs to be a community effort. The workshop “Shared Metadata and Data Formats for Big-Data Driven 
Materials Science: A NOMAD–FAIR-DI Workshop” was organized and held in Berlin in July 2019 to ignite 
this effort. In the following sections, we describe the identified challenges and first plans, divided into different 
aspects that are crucial to be addressed in computational materials science.

In the next Section, we describe the identified challenges and first plans for FAIR metadata schemas for 
computational materials science, where we also summarize as an example the main ideas behind the metadata 
schema implemented in the Novel-Materials Discovery (NOMAD) Laboratory for storing and managing mil-
lions of data objects produced by means of atomistic calculations (both ab initio and molecular mechanics), 
employing tens of different codes, which cover the overwhelming majority of what is actually used in terms 
of volume-of-data production in the community. We then follow with more detailed sections discussing the 
specific challenges related to interoperability and reusability for ground-state calculations (Section “Metadata for 
ground-state electronic-structure calculations”), perturbative and excited-state calculations (Section “Metadata 
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for external-perturbation and excited-state electronic-structure calculations”), potential-energy sampling 
(molecular-dynamics and more, Section “Metadata for potential-energy sampling”), and generalized workflows 
(Section “Metadata for Computational Workflows”) are addressed in detail in the following sections. Challenges 
related to the choice of file formats are discussed in Section “File Formats”. An outlook on metadata schema(s) 
for experimental materials science and on the introduction of formal ontologies for materials-science databases 
constitute Sections “Metadata schemas for experimental materials science” and “Outlook on ontologies in mate-
rials science”, respectively.

Towards FAIR metadata schemas for computational materials science
The materials-science community has realized long ago that it is necessary to structure data by means of meta-
data schemas. In this Section, we describe the pioneering and recent examples of such schemas, and how a 
metadata schema becomes FAIR-data-principles compliant.

To our knowledge, the first systematic effort to build a metadata schema for exchanging data in chemis-
try and materials science is CIF, an acronym that originally stood for Crystallographic Information File, the 
data-exchange standard file format introduced in 1991 by Hall, Allen and Brown5,6. Later, the CIF acronym 
was extended to also mean Crystallographic Information Framework7, a broader system of exchange proto-
cols based on data dictionaries and relational rules expressible in different machine-readable manifestations.  
These include the Crystallographic Information File itself, but also, for instance, XML (eXtensible Markup 
Language), a general framework for encoding text documents in a format that is meant to be at the same time 
human and machine readable. CIF was developed by the International Union of Crystallography (IUCr) working 
party on Crystallographic Information and was adopted in 1990 as a standard file structure for the archiving and 
distribution of crystallographic information. It is now well established and is in regular use for reporting crystal 
structure determinations to Acta Crystallographica and other journals. More recently, CIF has been adapted 
to different areas of science such as structural biology (mmCIF, the macromolecular CIF8) and spectroscopy9.  
The CIF framework includes strict syntax definition in a machine-readable form and dictionary defining (meta)
data items. It has been noted that the adoption of the CIF framework in IUCr publications has allowed for a 
significant reduction of the amount of errors in published crystal structures10,11.

An early example of an exhaustive metadata schema for chemistry and materials science is the Chemical 
Markup Language (CML12–14), whose first public version was released in 1995. CML is a dictionary, encoded 
in XML for chemical metadata. CML is accessible (for reading, writing, and validation) via the Java library 
JUMBO (Java Universal Molecular/Markup Browser for Objects14). The general idea of CML is to represent with 
a common language all kinds of documents that contain chemical data, even though currently the language–as 
of the latest update in 201215–covers mainly the description of molecules (e.g., IUPAC name, atomic coordinates, 
bond distances) and of inputs/outputs of computational chemistry codes such as Gaussian0316 and NWChem17. 
Specifically, in the CML representation of computational chemistry calculations18, (ideally) all the information 
on a simulation that is contained in the input and output files is mapped onto a format that is in principle inde-
pendent of the code itself. Such information is:

•	 Administrative data like the code version, libraries for the compilation, hardware, user submitting the job;
•	 Materials-specific (or materials-snapshot-specific) data like computed structure (e.g., atomic species, coordi-

nates), the physical method (e.g., electronic exchange-correlation treatment, relativistic treatment), numerical 
settings (basis set, integration grids, etc.);

•	 Computed quantities (energies, forces, sequence of atomic positions in case a structure relaxation or some 
dynamical propagation of the system is performed, etc…).

The different types of information are hierarchically organized in modules, e.g., environment (for the code 
version, hardware, run date, etc.), initialization (for the exchange correlation treatment, spin, charge), molgeom 
(for the atomic coordinates and the localized basis set specification), finalization (for the energies, forces, etc.). 
The most recent release of the CML schema contains more than 500 metadata-schema items, i.e., unique entries 
in the metadata schema. It is worth noticing that CIF is the dictionary of choice for the crystallography domain 
within CML.

Another long-standing activity is JCAMP-DX (Joint Committee on Atomic and Molecular Physical Data 
- Data Exchange)19, a standard file format for exchange of infrared spectra and related chemical and physical 
information that was established in 1988 and then updated with IUPAC recommendations until 2004. It con-
tains standard dictionaries for infrared spectroscopy, chemical structure, NMR20, and mass21 and ion-mobility 
spectrometry22. The European Theoretical Spectroscopy Facility (ETSF) File Format Specifications were pro-
posed in 200723–25, in the context of the European Network of Excellence NANOQUANTA, in order to over-
come widely known portability issues of input/output file formats across platforms. The Electronic Structure 
Common Data Format (ESCDF) Specifications26 is the ongoing continuation of the ETSF project and is part 
of the CECAM Electronic Structure Library, a community-maintained collection of software libraries and data 
standards for electronic-structure calculations27.

The largest databases of computational materials-science data, AFLOW28, Materials Cloud29, Materials 
Project30, the NOMAD Repository and Archive31–33, OQMD34, and TCOD35 offer application programming 
interfaces (APIs) that rely on dedicated metadata schemas. Similarly, AiiDA36–38 and ASE39, which are schedulers 
and workflow managers for computational materials-science calculations, adopt their own metadata schema. 
OpenKIM40 is a library of interatomic models (force fields) and simulation codes that test the predictions 
of these models, complemented with the necessary first-principles and experimental reference data. Within 
OpenKIM, a metadata schema is defined for the annotation of the models and reference data. Some of the meta-
data in all these schemas are straightforward to map onto each other (e.g., those related to the structure of the 
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studied system, i.e., atomic coordinates and species, and simulation-cell specification), others can be mapped 
with some care. The OPTIMADE (Open Databases Integration for Materials Design41) consortium has recog-
nized this potential and has recently released the first version of an API that allows users to access a common 
subset of metadata-schema items, independent of the schema adopted for any specific database/repository that 
is part of the consortium.

In order to clarify how a metadata schema can explicitly be FAIR-data-principles compliant, we describe as 
an example the main features of the NOMAD Metainfo, onto which the information contained in the input and 
output files of atomistic codes, both ab initio and force-field based, is mapped. The first released version of the 
NOMAD Metainfo is described in ref. 26 and it has powered the NOMAD Archive since the latter went online in 
2014, thus predating the formal introduction of the FAIR-data principles3.

Here, we give a simplified description, graphically aided by Fig. 1, which highlights the hierarchical/modular 
architecture of the metadata schema. The elementary mode in which an atomistic materials-science code is run 
(encompassed by the black rectangle) yields the computation of some observables (Output) for a given System, 
specified in terms of atomic species arranged by their coordinates in a box, and for a given physical model 
(Method), including specification of its numerical implementation. Sequences or collections of such runs are 
often defined via a Workflow. Examples of workflows are:

•	 Perturbative physical models (e.g., second-order Møller–Plesset, MP2, Green’s function based methods such 
as G0W0, random-phase approximation, RPA) evaluated using self-consistent solutions provided by other 
models (e.g., density-functional theory, DFT, Hartree-Fock method, HF) applied on the same System;

•	 Sampling of some desired thermodynamic ensemble by means of, e.g., molecular dynamics;
•	 Global- and local-minima structure searches;
•	 Numerical evaluations of equations of state, phonons, or elastic constants by evaluating energies, forces, and 

possibly other observables;
•	 Scans over the compositional space for a given class of materials (high-throughput screening).

The workflows can also be nested, e.g., a scan over materials (different compositions and/or crystal struc-
tures) contains a local optimization for each material and extra calculations based on each local optimum struc-
ture such as evaluation of phonons, bulk modulus, or elastic constants, etc.

The NOMAD Metainfo organizes metadata into sections, which are represented in Fig. 1 by the labeled boxes. 
The sections are a type of metadata, which group other metadata, e.g., other sections or quantity-type metadata. 
The latter are metadata related to scalars, tensors, strings, which represent the physical quantities resulting from 
calculations or measurements. In a relational-database model, the sections would correspond to tables, where 
the data objects would be the rows, and the quantity-type metadata the columns. In its most simple realization, 
a metadata schema is a key-value dictionary, where the key is a name identifying a given metadata. In NOMAD 
Metainfo, similarly to CML, the key is a complex entity grouping the several attributes. Each item in NOMAD 
Metainfo has attributes, starting with its name, a string that must be globally unique, well defined, intuitive, and 
as short as possible. Other attributes are the human-understandable description, which clarifies the meaning 
of the metadata, the parent section, i.e., the section the metadata belongs to, and the type, whether the meta-
data is, e.g., a section or a quantity. Another possible type, the category type, will be discussed below. For the 
quantity-type metadata, other important attributes are physical units and shape, i.e., the dimensions (scalar, 
vector of a certain length, a matrix with a certain number of rows and columns, etc.), and allowed values, for 
metadata that admit only a discrete and finite set of values.

All definitions in the NOMAD Metainfo have the following attributes:

•	 A globally unique qualified name;
•	 Human-readable/interpretable description and expected format (e.g., scalar, string of a given length, array of 

given size);
•	 Allowed values;
•	 Provenance, which is realized in terms of a hierarchical and modular schema, where each data object is linked 

to all the metadata that concur to its definition. Related to provenance, an important aspect of NOMAD 
Metainfo is its extensibility. It stems from the recognition that reproducibility is an empirical concept, thus at 
any time, new, previously unknown or disregarded metadata may be recognized as necessary. The metadata 
schema must be ready to accommodate such extensions seamlessly.

The representation in Fig. 1 is very simplified for tutorial purposes. For instance, a workflow can be arbi-
trarily complex. In particular, it may contain a hierarchy of sub-workflows. In the currently released version 
of the NOMAD Metainfo, the elementary-code-run modality is fully supported, i.e., ideally all the information 
contained in a code run is mapped onto the metadata schema. However, the workflow modality is still under 
development. An important implication of the hierarchical schema is the mapping of any (complex) workflow 
onto the schema. That way, all the information obtained by its steps is stored. This is achieved by parsers, which 
have been written by the NOMAD team for each supported simulation code. One of the outcomes of the parsing 
is the assignment of a PID to each parsed data object, thus allowing for its localization, e.g., via a URI.

The NOMAD Metainfo is inspired by the CML, in particular in being hierarchical/modular. Each instance of 
a metadata-schema is uniquely identified, so that it can be associated with a URI for its convenient accessibility. 
An instance of a metadata schema can be generated by using a dedicated parser by pairing each parsed value 
with its corresponding metadata label. As an example, in Listing 1, we show a portion of the YAML file (see 
section “File Formats”) instantiating Metainfo for a specific entry of the NOMAD Archive. This entry can be 
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searched by typing “entry_id = zvUhEDeW43JQjEHOdvmy8pRu-GEq” in the search bar at https://nomad-lab.
eu/prod/v1/gui/search/entries. In Listing 1, key-value pairs are visible as well as the nested-section structuring.

Listing 1. A portion of a YAML file instantiating Metainfo for one entry of the NOMAD Archive.

The modularity and uniqueness together allow for a straightforward extensibility including customization, 
i.e., introduction of metadata-schema items that do not need to be shared among all users, but may be used by a 
smaller subset of users, without conflicts.

In Fig. 1, the solid arrows stand for the relationship is contained in between section-type metadata. A few 
examples of quantity-type metadata are listed in each box/section. Such metadata are also in an is-contained-in 
relationship with the section they are listed in. The dashed arrows symbolize the relationship has reference in. 
In practice, in the example of an Output section, the quantity-type metadata contained in such a section are 
evaluated for a given system described in a System section and for a given physical model described in a Method 
section. So, the section Output contains a reference to the specific System and Method sections holding the nec-
essary input information. At the same time, the Output section is contained in a given Atomistic-code run section. 
These relationships among metadata already build a basic ontology, induced by the way computational data are 
produced in practice, by means of workflows and code runs. This aspect will be reexamined in Section “Outlook 
on ontologies in materials science”.

We now come to the category-type metadata that allow for complementary, arbitrarily complex ontologies 
to be built by starting from the same metadata. They define a concept, such as “energy” or “energy component”, 
in order to specify that a given quantity-type metadata has a certain meaning, be it physical (such as “energy”) 
or computer-hardware related, or administrative. To the purpose, each section and quantity-type metadata is 
related to a category-type metadata, by means of an is-a kind of relationship. Each category-type metadata can 
be related to another category-type metadata by means of the same is-a relationship, thus building another 
ontology on the metadata, which can be connected with top-down ontologies such as EMMO42 (see section 
“Outlook on ontologies in materials science” for a short description of EMMO).

The current version of NOMAD Metainfo includes more than 400 metadata-schema items. More specif-
ically, these are the common metadata, i.e., those that are code-independent. Hundreds more metadata are 
code-specific, i.e., mapping pieces of information in the codes’ input/output that are specific to a given code and 
not transferable to other codes. The NOMAD Metainfo can be browsed at https://nomad-lab.eu/prod/v1/gui/
analyze/metainfo.

To summarize, the NOMAD Metainfo addresses the FAIR-data principles in the following sense:

•	 Findability is enabled by unique names and a human-understandable description;
•	 Accessibility is enabled by the PID assigned to each metadata-schema item, which can be accessed via a REST-

ful43 API (i.e., an API supporting the access via web services, through common protocols, such as HTTP), 
specifically developed for the NOMAD Metainfo. Essentially all NOMAD data are open access and users who 
wish to search and download data do not need to identify themselves. They only need to accept the CC BY 
license. Uploaders can decide for an embargo. These data are then shared with a selected group of colleagues.

•	 Interoperability is enabled by the extensibility of the schema and the category-type metadata, which can be 
linked to existing and future ontologies (see Section “Outlook on ontologies in materials science”).

•	 Reusability/Repurposability/Recyclability is enabled by the modular/hierarchical structure that allows for 
accessing calculations at different abstraction scales, from the single observables in a code run to a whole 
complex workflow (see Section “Metadata for Computational Workflows”).

The usefulness and versatility of a metadata schema are demonstrated by the multiple access modalities it 
allows for. The NOMAD Metainfo schema is the basis of the whole NOMAD Laboratory infrastructure, which 
supports access to all the data in the NOMAD Archive, via the NOMAD API (also an implementation of the 
OPTIMADE API41 is supported). This API powers three different access modes of the Archive: the Browser44, 
which allows searches for single or groups of calculations, the Encyclopedia45, which display the content of the 
Archive organized by materials, and the Artificial-Intelligence (AI) Toolkit46–48, which connects in Jupyter note-
books script-based queries and AI (machine-learning, data-mining) analyses of the filtered data. All the three 
services are accessible via a web browser running the dedicated GUI offered by NOMAD.
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Metadata for ground-state electronic-structure calculations
By ground-state calculations, we mean calculations of the electronic structure–e.g., eigenvalues and eigen-
functions of the single-particle Kohn-Sham equations, the electron density, the total energy and possibly its 
derivatives (forces, force constants)–for a fixed configuration of nuclei. This refers to a point located on the 
Born-Oppenheimer potential-energy surface, and is a necessary step in geometry optimization, molecular 
dynamics, the computation of vibrational (phonon) spectra or elastic constants, and more. Thus, ground-state 
calculations represent the most common task in computational materials science, and the involved approx-
imations are relatively well established. For this reason, they are already extensively covered by the NOMAD 
Metainfo. Nevertheless, some challenges in defining metadata for such calculations still remain, as discussed 
below. In particular, density-functional theory (DFT) is the workhorse approach for the great majority of 
ground-state calculations in materials science. Highly accurate quantum-chemistry models are more computa-
tionally expensive than DFT and their use in applications is less widespread. However, they can provide accurate 
benchmark references for DFT, making high-quality quantum-chemical data essential also for DFT-based stud-
ies. Below we analyze the ground-state electronic structure calculations mainly in reference to DFT, but most 
of the stated principles are also valid for quantum-chemical calculations. A detailed discussion of the latter is 
deferred to Section “Quantum-chemistry methods”.

Approximations to the DFT exchange-correlation functional.  Approximations to the DFT 
exchange-correlation (xc) functionals are identified by a name or acronym (e.g., “PBE”), although sometimes this 
identification is not unique or complete. As metadata, we suggest to use the identifiers of the Libxc library49,50, 
which is the largest bibliography of xc functionals. In order to be both human and computer friendly, the Libxc 
identifiers consist of a human-readable string that has a unique integer associated with it. Often, the above-noted 
identification needs some refinement, because xc functionals typically depend on a set of parameters and these 
may be modified for a given calculation. Obviously, there is a need to standardize the way in which such parame-
ters are referenced. Just like it is possible to use the Libxc identifiers for the functionals themselves, one may also 
use the Libxc naming scheme for their internal parameters. Obviously, code developers have to ensure that this 
information is contained in the respective input and/or output files. As Libxc provides version numbers of the xc 
functionals, it is important that this information is also available.

Basis sets.  Complete and unambiguous specification of the basis set is crucial for judging the precision of a 
calculation. Ground-state calculations should include the full information about the basis sets used, including a 
DOI that a basis may be referred to. The use of repositories of basis sets, like the Basis Set Exchange repository51, 
is therefore strongly recommended.

Basis sets can be coarsely divided into two classes, i.e., atom-position-dependent (atom-centered, 
bond-centered) and cell-dependent (such as plane waves) ones. Also a combination of both is possible, as, e.g., 
realized in augmented plane-wave or projector-augmented-wave methods. For the atom-centered basis, the list 
of centers needs to be provided, and these may even contain positions where no actual atomic nucleus is located. 
The NOMAD Metainfo contains a rather complete set of metadata to describe atom-centered basis sets. A more 
complete description of cell-dependent basis sets can be found in the ESCDF, which is planned to be merged 
with the NOMAD Metainfo.

Fig. 1  Simplified schema of the NOMAD Metainfo. The rectangles symbolize the section-type metadata, for 
each section a few examples of therein contained quantity-type or (sub)sections metadata are listed. Sections are 
always written in bold font. The solid arrows stand for the is contained in relationship, while the dashed arrows 
are for the has reference in relationship.
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Energy reference.  In order to enable interoperability and reusability of energies computed with different 
electronic-structure methods, it is necessary to define a “general energy zero”. An analysis of this problem and 
some clues on how to tackle it were already discussed by some of us in a previous work26. The following is a fur-
ther attempt to advance and systematize ideas and solutions.

The problem of comparing energies is not restricted to computational materials science and chemistry. In 
fact, it also arises in experimental chemistry, as for instance, only enthalpy or entropy differences can be meas-
ured, but not absolute values. To solve this, chemists have defined a reference state for each element, called the 
standard state, which is defined as the element in its natural form at standard conditions, while the heat of forma-
tion is used to measure the change from the elements to the compound. In computational materials science and 
chemistry, we can adopt a similar approach. For each element we need to define a reference system as the zero of 
the energy scale. To do so, we introduce some definitions:

•	 A system is a defined set of one or more atoms, with a given geometry and, if periodic, a given unit cell.  
It can be an atom, a molecule, a periodic crystal, etc. If relevant, the charge, the spin-state or magnetic order-
ing needs to be specified.

•	 A reference system is a well-defined system to which other systems are compared to.
•	 A calculated energy is the energy obtained by a numerical simulation of a system with given input data and 

parameters, defining the Hamiltonian (i.e., DFT xc-functional approximation) or the many-electron model 
(e.g., Hartree-Fock, MP2, “coupled-cluster singles, doubles, and perturbative triples”, CCSD(T)), the basis set, 
and the numerical parameters.

Whether the reference system is an atom, an element in its natural form, some molecule or other system, 
does not matter, as long as it is well defined. Defining the system by atoms requires specifying how the orbitals 
are occupied, whether the atom is spherical, spin-polarized, etc. For each computational method and numerical 
settings, the energy per atom of the reference system must be calculated. The standard energy is then obtained by 
subtracting these values (multiplied by the number of constituents) from the calculated total energy. For exam-
ple, to determine the energy of formation of a molecule like H2O or a crystal like SiC, we calculate the difference 
in total energies − −E E E(H O) (H ) (O )2 2

1
2 2 , or E E E(SiC) (Si) (C)− − , respectively. Here, H2 and O2 are 

isolated, neutral molecules while Si and C are free, neutral atoms. However, using the energy per atom of Si and 
C in their crystalline ground-state structure would be an option as well. We propose to tabulate the reference 
energies for the most common computational methods, so that they can be applied without further computa-
tions and preferably automatically by the codes themselves.

Finally, we need to define what is meant by a computational method. The Hamiltonian and DFT functional 
are clearly part of the definition as is the basis set and the potential shape (including pseudopotentials (PP) and 
effective core potentials). The specific implementation may also be relevant. Gaussian-based molecular-orbital 
codes may give the same energy for an identical setup (see Section “Quantum-chemistry methods”), while 
plane-wave DFT codes may not.

One factor here is the choice of the PP. Irrespective of the used method, the computational settings determine 
the quality of a calculation. Most decisive here is the basis-set cut-off. For the plane-wave basis, convergence 
with respect to this parameter is straightforward. In any case, depending on the code, the method and details of 
the calculation, care needs to be taken to define all the adjustable parameters that significantly affect the energy 
when defining computational methods.

To tabulate standard energies, as suggested above, every computational method needs to be applied to all ref-
erence systems. This requires care in choosing the reference systems to ensure that an as-wide-as-possible range 
of codes and methods are actually suited for these calculations. It may be that some codes cannot constrain the 
occupancies of atoms, or keep them spherical, which would be a problem if spherical atoms were chosen as the 
reference. Clearly, periodic crystals such as silicon are not suitable for molecular codes. It is possible, however, 
that some other codes could help bridging this gap. For example, FHI-aims52 is not only capable of simulating 
crystalline system, but can also handle atoms and molecules and it can employ Gaussian-type orbitals (GTO) 
basis sets. Thus, FHI-aims is able to reproduce energy differences between atoms/molecules and crystals. In this 
way, it can support codes such as Gaussian16 or GAMESS53.

Metadata for external-perturbation and excited-state electronic-structure 
calculations
A direct link from the DFT ground state (GS) to excitations is provided by time-dependent DFT (TDDFT). 
Alternatively, charged and neutral electronic excitations are described by means of Green-function approaches 
from many-body perturbation theory (MBPT). This route is predominantly (but not exclusively) used for the 
solid state, while TDDFT and quantum-chemistry approaches are typically preferred for finite systems. For 
strongly correlated materials, in turn, dynamical mean-field theory (DMFT) is often the methodology of choice, 
potentially combined with DFT and Green-function methods. Lattice excitations, if not directly treated by DFT 
molecular dynamics, are often handled by density-functional perturbation theory (DFTP); for their interaction 
with light, also Green-function techniques are used. DFPT not only allows for the description of vibrational 
properties, but also for treating macroscopic electric fields, applied macroscopic strains, or combinations of 
these. The type of perturbation is intimately related to the physical properties of interest, e.g., harmonic and 
anharmonic phonons, effective charges, Raman tensors, dielectric constants, hyper-polarizabilities, and many 
others.

Characterizing the corresponding research data is a very complex and complicated task, for various reasons. 
First, such calculations rely on an underlying ground-state calculation, and thus carry along all uncertainties 
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from it. Second, the methodology for excited states is scientifically and technically more involved by including 
many-body effects that govern diverse interactions. The methods thus rely on various, often not fully character-
ized approximations.

Diagrammatic techniques and TDDFT.  The most common application of GW is to compute 
quasi-particle energies, i.e., energies that describe the removal or addition of a single electron. For this, the 
many-body electron-electron interaction is described by a two-particle operator, called the electronic self-energy. 
To compute this object, on the technical side we may need an additional (auxiliary) basis set, not the same as 
the one used in the ground-state calculation, coming with additional parameters. Likewise, there are various 
ways for doing the analytical continuation of the Green’s function, as there are various ways for carrying out the 
required frequency integration, possibly employing a plasmon-pole model as an approximation. And there are 
also different ways of how to evaluate the screened Coulomb potential W. Most important is the flavor of GW, 
i.e., whether it is done in a single-shot manner, called G0W0, or in a self-consistent way. If the latter, what kind of 
self-consistency (scf) is used —any type of partial scf, quasi-particle scf, or any other type which would remedy 
any starting-point dependence, i.e., the dependence of the results on the xc functional of the initial DFT (or 
Hartree-Fock or alike) used in the GS.

While GW is the method of choice for quasi-particle energies (and potentially also life times) within the 
realm of MBPT, we need to solve the Bethe-Salpeter equation (BSE) to tackle electron-hole interactions.  
This approach should typically be applied on top of a GW calculation, but often the quasi-particle states are 
approximated by DFT results adjusted by a scissors operator to widen the band gap in a similar way to the latter. 
In all cases, BSE carries along all subtleties from the underlying steps. In addition, it comes with its own issues, 
like the way of screening the Coulomb interaction (electron-hole this time), the representation of non-local 
operators, and alike.

DMFT, as a rather young and quickly developing field, naturally experiences a plenitude of “experimental” 
implementations, differing in many aspects, with one of the major obstacles being the quite vast amount of 
combinations of software. Some of the approaches are computationally light, allowing for the construction of 
model Hamiltonians based on DFT calculations; others are computationally too demanding and can be applied 
only to simple systems with a few orbitals; most of the methods rely on Green’s functions and self-energies. 
Diagrammatic extensions beyond standard DMFT methods employ various kinds of vertex functions. Other 
issues concern the definition of how to handle the Coulomb interactions, where the parameters can either be 
chosen empirically or can be calculated by first principles.

Specific issues of TDDFT concern, in a first place, the distinction between the linear-response regime and 
the time -propagation of the electronic states in presence of a time-dependent potential. For the former, the 
xc kernel plays the same role as the xc functional of the GS, raising (besides numerical precision) questions 
related to accuracy. For the latter, there are various ways and flavors for how to implement the time-evolution 
operator. Moreover, one can write this operator as a simple exponential or use more elaborate expressions, like 
the Magnus expansion or the enforced time reversal symmetry. Regarding the exponential, one can employ a 
Crank-Nicolson expansion, expand in a Taylor series or employ Houston states. Obviously, each of them comes 
with approximations and additionally, numerical issues.

In summary, all the variety captured by the different methods together with the related multitude of com-
putational parameters, needs to be carefully reflected by the metadata schema. This is not only imperative for 
ensuring reproducible results but also for evaluating the accuracy of methods and commonly used approxima-
tions. Besides, further subtleties related to algorithms in the actual implementations in different codes requires 
the code developers to embark on this challenge.

Density-functional perturbation theory.  Density-functional perturbation theory is used to obtain phys-
ical properties that are related to the (density-)response of the system to external perturbations, like the displace-
ment potential according to lattice vibrations. Also in this case, the calculation relies on a preliminary GS run, 
inheriting all issues therefrom. After having chosen the type of perturbation, which requires method-dependent 
definitions and inputs, one needs to choose the order of perturbation: The linear response approach, that is imple-
mented in many codes (e.g., VASP54, octopus55, CASTEP56, FHI-aims57, Quantum Espresso58, ABINIT59), allows 
for the determination of second-order derivatives of the total energy. Among these codes, some of them also allow 
for the calculation of third-order derivatives, like anharmonic vibrational effects. The variation of the Kohn-Sham 
orbitals can be obtained from the Sternheimer equation, where different methods are used for deriving its solu-
tion (iterative methods, direct linearization, integral formulation).

Quantum-chemistry methods.  Quantum chemistry offers several methodological hierarchies for calcu-
lating quantities related to excited states, such as excitation energies, transition moments, ionization potentials, 
etc. As high-quality methods are computationally intensive, without additional approximations such methods can 
be applied to relatively small molecular systems only.

Among the standard quantum chemical approaches that can be routinely applied to study excited states of 
small to medium-sized molecules one can distinguish two large groups, i.e., single-reference and multi-reference 
methods. The single-reference coupled-cluster (CC) hierarchy for excited states can be formulated in terms of 
the so-called equation-of-motion approach or time-dependent linear response.

Generally, for well-behaving closed-shell molecules, the single-reference quantum-chemical methods can 
be used as a black box. The formalisms of the MP n and CC models are uniquely defined and well documented. 
The GTO basis sets from the standard basis set families (Pople, Dunning, etc.) are also uniquely defined by the 
acronym. In practical implementations of these methods, of course various thresholds are usually introduced 
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for prescreening, convergence, etc., but the default values for these thresholds are routinely set very conserva-
tively to guarantee a sub-microhartree precision of the final total energies. Problems might, however, arise due 
to the iterative character of most of the mentioned techniques, as convergence to a certain state (both in the 
ground-state and/or excited-state parts of the calculation) depends on starting guess, preconditioner, possible 
level shifts, type of convergence accelerator, etc. Unfortunately, the parameters that control the convergence 
are often not sufficiently well documented and might not be found in the output. Such problems mainly occur 
in open-shell cases (note that in the Delta methods at least one of the calculations has to involve an open-shell 
system). Sometimes a cross-check between several codes becomes essential to detect convergence faults.

When it comes to larger systems and approximate CC models are utilized, the importance of the involved 
tolerances and underlying protocols substantially increases. The approximations can include, for example, the 
density-fitting technique, local approximation, Laplace transform, and others. Important parameters here are 
the auxiliary basis set, the fitting metric, the type of fitting (local or non-local), and if local, how the fit domains 
are determined, etc. The result of the calculations that use local correlation techniques are influenced by the 
choice of the virtual space and the corresponding truncation protocols and tolerances, the pair hierarchies and 
the corresponding approximations for the CC terms, etc. For Laplace-transform-based methods, the details 
of the numerical quadrature matter. Unfortunately, these subtleties are very specific and technical and even if 
given in the output, can hardly be properly understood and analyzed by non-specialists who are not involved 
in the development of the related methods. Therefore, the protocols behind the approximations are usually 
appropriately automatized, and the defaults are chosen such that for certain (benchmarking) sets of systems the 
deviations in the energy are substantially smaller than the expected error of the method itself (e.g., 0.01 eV for 
the excitation energy). However, for these methods, additional benchmarks and cross-checks between different 
programs and approaches would be very important.

Multi-reference methods come with quite a number of different flavors, where the most widely used ones are 
complete active-space self-consistent Field (CASSCF), complete active-space second-order perturbation theory 
(CASPT2), and multireference configuration interaction (MRCI). For difficult cases (e.g., strongly correlated 
systems), these methods might remain the only option to obtain qualitatively and quantitatively correct result. 
Unfortunately, compared to the single reference methods, they are computationally expensive and much less 
of a black box. First of all, for each calculation one has to specify the active space or active spaces. The results 
may depend dramatically on this choice. Furthermore, the underlying theory is not always uniquely defined by 
the used acronym. For example, different formulations of CASPT2, MRCI, or other theories are not mutually 
equivalent depending on whether and how much internal contraction is used and additional approximations 
that neglect certain terms (e.g., many-electron density matrices) can be implicitly invoked. Besides, certain defi-
ciencies of these methods, such as for example lack of size consistency in MRCI or intruder states in CASPT2, 
are often corrected by additional (sometimes empirical) schemes, which again are not always fully specified. All 
this makes the interpretation of deviations in results and cross-checks of these methods less conclusive.

To summarize, quantum-chemical methods offer an excellent toolbox for accurate ab initio calculations for 
molecules (especially so for small and medium sized ones). However, severe issues concerning reproducibility 
and replicability remain, in particular for extended and/or open-shell systems. This calls for a more detailed 
specification of the implemented techniques by the developers, for example, a better design of the outputs, 
and a thorough analysis and documentation of the employed methods and parameters by the users. A possible 
strategy addressing these issues would be two-fold. a) Promoting the compliance of the developed software 
with the FAIR principles for software60,61, which comprise the recommendation to publish the software in a 
repository with version control, have a well-defined license, register the code in a community registry, assign to 
each version a PID, and enable its proper citation62,63. Reproducibility can be enhanced by publishing software 
code under the Free/Libre Open-Source Software (F/LOSS)64,65 license and by documenting the computation 
environment (hardware, operating system version, computational framework and libraries that were used, if 
any) b) Creation of well-defined benchmark datasets. Interoperability among different implementations of (in 
the intention) the same theoretical model can be assessed by the quantitative comparison over different codes 
(including different versions thereof) of a set of properties on an agreed-upon set of materials. Such datasets 
would obviously need to be stored in a FAIR-data-compliant fashion. A large community-based effort in this 
direction is being carried on in the DFT community66, while in the many-body-theory community, implemen-
tation of this idea is just at its beginning67).

Metadata for potential-energy sampling
Molecular dynamics (MD) simulations model the time evolution of a system. They employ either ab initio cal-
culated forces and energies (aiMD) or molecular mechanics (MM) i.e., forces and energies are defined through 
empirical atomistic and coarse-grained potentials. The FAIR storing and sharing of their inputs and outputs 
comes with a number of specific challenges in comparison to single-point electronic-structure calculations.

Conceptually, aiMD and MM are similar, as a sequence of system configurations is evolved at discrete time 
steps. Positions, velocities, and forces at a given time step are used to evaluate positions and velocities, and 
hence forces in the new configuration, and so on. In practice, MM simulations are orders of magnitude faster 
than aiMD, enabling much longer time scales and/or much larger system sizes. Even though the trend towards 
massive parallelization will enable aiMD in the near future system to handle sizes comparable to today’s stand-
ards for MM simulations, the latter will probably always enable larger systems. However, with machine-learned 
potentials and active learning techniques for their training, aiMD and MM may grow together in the future.

In this Section, we focus on challenges more specific to MM simulations, having in mind large length scales, 
long time scales, and complex phase-space-exploration algorithms and workflows. They can be summarized as 
follows:
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	(i).	 In many cases, the investigated systems feature thousands of atoms with complex short- and long-range or-
der and disorder, e.g., describing microstructural evolution such as crack propagation. This requires large, 
complex simulation cells with a range of chemical species to be correctly described and categorized.

	(ii).	 Force-fields exist in a wide variety of flavors that require proper classification. On top of that, they allow for 
granular fine-tuning of the interactions, even for individual atoms. Faithfully representing complex force 
fields thus requires to also capture the chemical-bonding topology that is often needed to define the actual 
interactions.

	(iii).	The large length and long time scales presently come together with a multitude of simulation protocols, 
which use specific boundary conditions, thermostats, constraints, integrators, etc. The various approaches 
enable the computations of additional observables to be computed as statistical averages or correlations. 
Representing these properties implies the need to efficiently store and access large volumes of data, e.g., 
trajectories, including positions, and possibly also velocities and forces, for each atom at each time step.

For the purpose of illustration, we start by identifying some typical use cases, then describe what is currently 
implemented in the NOMAD infrastructure and what is missing. The examples we adopt fall into two classes: (i) 
high throughput systems that are individually simple (1000–10000 particles) where the value of sharing comes 
from the ability to run analysis across many variants of, e.g., chemical composition or force field; (ii) sporadic 
simulations of very large systems or very long time scales which cannot readily be repeated by other research-
ers and thus are individually valuable to share. Examples of the first class, could be MD simulations in the 
NVT ensemble for liquid butane or bulk silicon, using well-defined standard force fields (e.g., CHARMM or 
Stillinger-Weber). Quantities of interest are typically computed during MD simulations (e.g., liquid densities). 
For flexibility, full trajectory files should also be stored but some important observables might be worth precom-
puting (e.g., radial distribution functions). The second class could include multi-billion atom MD simulations 
of dislocation formation68 or solidification69,70 or very long time-scale simulations of protein folding71. For more 
complex use cases, the current infrastructure as discussed in Section “Towards FAIR metadata schemas for com-
putational materials science” is not yet sufficient. The challenges to be addressed are the need for support for (i) 
complex, heterogeneous, possibly multi-resolution systems; (ii) custom force fields; (iii) advanced sampling; (iv) 
classes of sampling besides MD (e.g., Monte Carlo, global structure prediction/search); (iv) larger simulations 
(i.e., need for sparsification of the stored data with minimal loss of information)

Complex systems include heterogeneous systems, e.g., adsorbate and surfaces, interfaces, solute (macro)mol-
ecules in solvent fluids, and multi-resolution systems, i.e., systems that are described at different granularity. The 
representation of complex systems requires a hierarchy of structural components, from atoms, through moieties, 
molecules, and larger (super)structures. Annotating such complexity will require human intervention as well as 
algorithms for automatically recognizing the structural elements (see, e.g., ref. 72).

Annotation of force fields into publicly accessible databases has been pioneered by OpenKIM40 in materi-
als science and MoSDeF73 for soft matter. However, many simulations are performed with customized force 
fields. The field is already being augmented and will likely be further supported by machine-learning (ML) 
force fields. So far, the great majority of ML force fields are used only in the publication where they are defined.  
The reusability-oriented annotation of force fields, including ML ones, require also establishing a criterion 
for comparing them. Comparisons can be carried out by means of standardized benchmark datasets, with a 
well-defined set of properties. Differences among predicted properties can establish a metric for the similarity 
of the force fields.

Advanced-sampling techniques (e.g, metadynamics74, umbrella sampling75, replica exchange76, 
transition-path sampling77, and forward-flux78 sampling) are typically supported by libraries such as PLUMED79 
and OpenPathSampling80. These libraries are used as plugins to codes where classical-force-field-based (e.g. 
GROMACS81, DL_POLY82, LAMMPS83) or ab initio (e.g., CP2K84 and Quantum Espresso58) MD, or both (e.g., 
i-Pi85), are performed. The input and output of these plugins will serve as the basis for the metadata related to 
these sampling techniques. In this regard, it would also be interesting to connect materials-science databases, 
such as the NOMAD Repository and Archive31 or Materials Cloud Archive29 to the PLUMED-NEST86, the pub-
lic repository of the PLUMED consortium87, for example by allowing for automatic uploading of PLUMED input 
files to the PLUMED-NEST when uploading to the data repositories.

For long time- and large length-scale simulations, several questions arise: How should we deal with these 
simulations, where the extensive amount of data produced by MD simulations becomes overwhelmingly large 
to systematically store and share? Can we afford to store and share all of it? If the storage is limited or data 
retrieval is unpractically slow, how can we identify the significant and crucial part of the simulation to store it 
in a reduced form? Keeping the whole data locally and sharing the metadata with only the important parts of 
the simulations would be a viable alternative, assuming the different servers have enough redundancy. Standard 
analysis techniques such as similarity analysis and monitoring dynamics can also be used to identify the changes 
in structure and dynamics to store only the significant frames or specific regions in MD simulations (e.g., some 
QM/MM models uses large MM buffer-atom regions that may not be stored entirely). Furthermore, on the one 
hand the cost/benefit of storing versus running a new simulation must be weighed. On the other hand, research-
ers may soon face increased requirements from funding agencies to store their data for a number of years, in 
which case the present endeavour offers a convenient implementation. We note ongoing algorithmic develop-
ments on compression algorithms for trajectories, see, e.g., ref. 88.
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Metadata for Computational Workflows
A computational workflow represents the coordinated execution of repeatable (computational) steps while 
accounting for dependencies and concurrency of tasks. In other words, a workflow can be thought as a script, 
a wrapper code that manages the scheduling of other codes, by controlling what should run in parallel, what 
sequentially and/or iteratively. This definition can be extended to workflows in experimental materials science 
or hybrid computational-experimental investigations, but, consistently with the previous sections, we limit the 
discussion to computational aspects only.

Once shared, workflows become useful building blocks that can be combined or modified for developing new 
ones. Furthermore, FAIR data can be reused as part of workflows completely unrelated to the workflows with 
which they were generated. An obvious example is artificial-intelligence-based data analytics, which can entail 
complex workflows involving data originally created for different purposes. During the last decade, the interest 
in workflow development has grown considerably in the scientific community89 and various multi-purpose 
engines for managing calculation workflows, have been developed, including AFLOW28,90,91, AiiDA36,92, ASE39, 
and Fireworks93. Using these infrastructures, a number of workflows have been used for scientific purposes, 
like convergence studies94, equations of state (e.g., AFLOW Automatic Gibbs Library95 and the AiiDA com-
mon workflows ACWF96), phonons97–100,101, elastic properties (e.g., the elastic-properties library for Inorganic 
Crystalline Compounds of the Materials Project102, AFLOW Automatic Elasticity Library, AEL103, ElaStic104), 
anharmonic properties (e.g., the Anharmonic Phonon Library, APL105, AFLOW Automatic Anharmonic 
Phonon Library, AAPL106), high-throughput in the compositional space (e.g., AFLOW Partial Occupation, 
POCC107), charge transport (e.g., organic semiconductors108,109), of covalent organic frameworks (COFs) for gas 
storage applications110, of spin-dynamics simulations111, high-throughput automated extraction of tight-binding 
Hamiltionians via Wannier functions112, and high-throughput on-surface chemistry113.

There are two types of metadata associated to workflows. Thinking of a workflow as a code to be run, the first 
type of metadata characterizes the code itself. The second type is the annotation of a run of a workflow, i.e., its 
inputs and outputs. This type of metadata has been already described in Section “Towards FAIR metadata sche-
mas for computational materials science”, together with a schematic list of possible workflow classes. It is impor-
tant to realize that the inputs and outputs of the elementary-mode runs of the atomistic codes that are invoked 
in a workflow run are complemented by the inputs and outputs of the overarching workflows. A simple example: 
In an equation-of-state type of workflow, the energy and volume per unit cell of each single configuration that 
is part of the workflow is the output of the elementary run of the code, while the energy-vs-volume equation of 
state, e.g., fit to the Birch-Murnagham model, is an output of the workflow.

File Formats
On an abstract level, a metadata schema is independent from its representation in computer memory, on a hard 
drive, or on just a piece of paper. But on a practical level, all data and metadata need to be managed, i.e., stored, 
indexed, accessed, shared, deleted, archived, etc. File formats used in the community address different require-
ment and intended use cases. Some file formats privilege human readability (e.g., XML, JSON, YAML) but are 
not very storage efficient, others are binary and overall optimized for efficient searches, but require interpreters 
to be understood by a person (e.g., HDF5114). There are a few use-cases and data properties in the domain of 
computational materials science that are worth mentioning. First, such data are very heterogeneous and contain 
many simple properties (e.g., the name of a used code, or a list of considered atoms) that are mixed with proper-
ties in the form of large vectors, matrices, or tensors (e.g., the density of states or wave functions). The number of 
different properties requires hierarchical organization (e.g., with XML, JSON, YAML, or HDF5). It is desirable 
that many properties are easily human readable (e.g., to quickly verify the sanity of a piece of data), on the other 
hand large matrices should be stored as efficiently as possible for archiving, retrieving, and searching purposes. 
Second, there are use cases where random (non-sequential) access of individual properties is desirable (e.g., 
return all band structures from a set of DFT calculations). Third, computational-material-science (meta)data 
need to be archived (efficient storage, prevention of corruption, backups, etc.) on one side, but they also need to 
be shared via APIs, e.g., for search queries. This requires to transform (meta)data from one representation in one 
file format (e.g., BagIt and HDF5) to another representation in a different format (e.g., JSON or XML).

These use-cases and data properties lead to the following conclusions: Even on a technical level, (meta)
data need to be handled independently of the file format. Pieces of information have to be managed in dif-
ferent formats, and we need to be able to transform from one representation into another. If many different 
resources (files, databases, etc.) are used to store (meta)data from a logically conjoined dataset, references to 
these resources qualify to become an important piece of metadata itself. We propose to use an abstract interface 
(e.g., implemented as a Python library) based on an abstract schema. This interface allows to manage (meta)
data independent of the actual representation used underneath. Various implementations of such an abstract 
interface can then realize storage in various file formats and access to databases.

Metadata schemas for experimental materials science
In contrast to computational materials science, in experimental materials science the atomic structure and 
composition is only approximately known. Several techniques are used to collect data that may be more or 
less directly interpreted in terms of the atomic and/or electronic structure of the material. In cases where the 
structure of the material is already known, careful characterization of properties helps to establish valuable 
relationships between structure and properties which, in turn, may help to refine theoretical models of these 
structure-properties links. The inherent uncertainty in every measurement process causes the precision with 
which data can be reproduced to be lower, in most cases, than in theoretical/computational materials science. 
These uncertainties are present even in a well-characterized experimental setup, i.e., when a comprehensive 
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set of metadata is used. In many cases it is not even the focus of an experiment to produce the most perfectly 
characterized data, but to invest just enough effort to address the specific question that drives the experiment.

The information available about the material whose properties are to be measured is also much less complete 
than in the computational world, where often the position of every atom is known. However, while physical 
measurements may be limited in their precision, the accuracy with which a physically observable quantity is 
obtained is by definition of being physically observable much higher than in computational materials science, 
where the accuracy of the obtained physical quantity may depend strongly on the validity of approximations 
being applied.

The uncertainty in retrieving structure-property relationships in computational materials science, which 
depends on the suitability of the applied theoretical model and its computational implementation, translates in 
the realm of experiments to an uncertainty in the atomic structure of the object that is being characterized and 
generally also some uncertainty in the measurement process itself. The metadata necessary to reproduce a given 
experimental data set must thus include detailed information about the material and its history together with all 
the parameters which are required to describe the state of the instrument used for the characterization. In most 
cases, both classes of metadata, i.e., those describing the material and those describing the instrument are going 
to be incomplete. While, for example, the full history of temperature, air pressure, humidity, and other relevant 
environmental parameters are not commonly tracked for the complete lifetime of a material (counter-examples 
exist, e.g., in pharmaceutical research), also information about the state of the instrument is not generally as 
comprehensive as it should ideally be (e.g., parameters are not recorded, or are not properly controlled, such as 
hysteresis effects in devices involving magnetic fields, or many mechanical setups).

To overcome part of the uncertainty in the data, one needs to collect as many metadata about the material 
and its history, as possible, including those that one has no immediate use for at the moment, but might poten-
tially need in the future. Since most of the research equipment being used for characterization tasks is commer-
cial instrumentation, collecting this metadata in an (ideally) fully automated fashion requires the manufacturer’s 
support. In many cases the formats in which scientific data are provided by these instruments is proprietary. 
Even if all the data to describe the instrument’s condition of operation are stored, large parts of them may get 
lost when using the vendor’s software to export the data to other formats; mostly because the “standard for-
mat” does not foresee storing vendor- and instrument-specific metadata. It is however worth mentioning here 
that the CIF dictionaries (see section “Towards FAIR metadata schemas for computational materials science”) 
already contain (meta)data names to describe instrumentation, sample history, and standard uncertainties in 
both measured and computed values. As a useful addition, the CIF framework provides tools for implementing 
quality criteria, which can be used for evaluating the trustworthiness of data objects. In this respect, the com-
munity has been developing with CIF a powerful tool onto which a FAIR representation of at least structural 
data can be built.

At large research infrastructures like synchrotrons and neutron-scattering facilities, where a significant frac-
tion of instruments is custom built, and data are often shared with external partners, standards for file for-
mats and metadata structures are being agreed upon, a prominent one being the NeXus standard. NeXus115 
defines hierarchies and rules on how metadata should be described and allows compliant storage using HDF5. 
Experimental research communities can profit from these activities and provide NeXus-format application defi-
nitions which describe necessary metadata that should be stored in a dataset, along with definitions for some 
optional metadata. This common file format for scientific data is slowly beginning to spread to other commu-
nities. Having a standard file format for different types of scientific data seems to be an important step for-
ward towards FAIR data management, since it severely reduces the threshold to share data across communities. 
Note that NeXus provides a glossary and connected ontology which helps in machine interpretability and so in 
reusability.

While standard file formats are of very high value in making data findable and accessible, due to common use 
of keywords to describe a given parameter, they also make them more interoperable, since the barrier for reading 
the data is lowered. However, making experimental data truly reproducible requires in many cases more meta-
data to be collected. Only if the uncertainty with which data can be reproduced is well understood, they may also 
be fully reusable. As discussed in the previous paragraph, part of these metadata must be provided by manufac-
turers of commercially available components of the experimental setup. Often this just requires more exhaustive 
data export functions and/or proper, i.e. versioned descriptions, for all of the instrument-state-describing meta-
data which are being collected during the experiment. Additionally, it may be necessary to equip home-built lab 
equipment with additional sensors and functionalities for logging their signals.

Even with added sensors and automated logging of all accessible metadata, in many cases, it is also neces-
sary to compile and complete the record of metadata describing the current and past states of the sample that is 
being characterized by manually adding information and/or combining data from different sources. Tools for 
doing this in a machine-readable fashion are Electronic Lab Notebooks (ELNs) and/or Laboratory Information 
Management Systems (LIMS). Many such systems are already available116–122, including open-source solutions 
that combine features of both ELN and LIMS into one software. Server-client solutions that do not require a spe-
cific client, but may be accessed through any web browser, have the advantage that information may be accessed 
and edited from any electronic device capable of interacting with the server. Such ease of access, combined with 
the establishment of rules and practices of holistic metadata recording about sample conditions and experimen-
tal workflows will also help to increase the reproducibility and with that the reusability of experimental data. 
The easier the use of such a system is, and the more apparent it makes the benefits of the availability of FAIR 
experimental data, the faster it will be adopted by the scientific community.
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Outlook on ontologies in materials science
In data science, an ontology is a formal representation of the knowledge of a community about a domain of interest, 
for a purpose. As ontologies are currently less common in basic materials science than in other fields of science, 
let us explain these terms:

•	 Formal representation means that: (1) the ontology is a representation, hence it is a simplification, or a model, 
of the target domain, and (2) the attribute formal communicates that the ontological terms and relationships 
between them must have a deterministic and unambiguous meaning. Furthermore, formal representation 
implies that the mechanism to specify the ontology must have a degree of logical processing capability, e.g., 
inference and reasoning should be possible. Crucially, the attribute formal refers to the fact that an ontology 
should be machine readable.

•	 Knowledge is the accumulated set of facts, pieces of information, and skills of the experts of the domain of 
interest that are represented in the ontology.

•	 The community influences the ontology in two aspects; (1) it implies an overall agreement between a group 
of experts/users of the knowledge as represented in the ontology and (2) it indicates that the ontology is 
not meant to convince a whole population nor wants to be universal. However, if it fulfills the requirements 
of bigger communities, the ontology will be adopted by broader audiences and will find its way towards 
standardization.

•	 The domain of interest is the common ground for the community, e.g., a scientific discipline, a subordinate 
of discipline, or a market section. It is often used as a boundary to limit the scope of the ontology. It is a 
proper tool to detect overlapping concepts, modularizing ontologies, and identifying extension and integra-
tion points.

•	 The purpose conveys the goals of the ontology designers so that the ontology is applicable to a set of situations. 
In many ontology design efforts, the purpose is formulated by a collection of so-called competency questions. 
These questions and the answers provided to them identify the intent and viewpoint of the designers and set 
the potential applications of the ontology.

In practice, ontologies are often mapped onto, and visualized by means of, directed acyclic graphs, 
where an edge is one of a well-defined set of relationships (e.g., is a, has property) and each node is a class, 
i.e., a concept which is specific to the domain of interest. Each node-edge-node triple is interpreted as a 
subject-predicate-object expression. For instance, in an ontology for catalysis, one could find the triples: “cat-
alytic material–has property–selectivity”, and “selectivity–refers to–reaction product”. Ontologies address the 
interoperability requirement of FAIR data. By means of a machine-readable formal structure, which can be con-
nected to an existing or ex novo derived metadata schema of a database, ontologies allow queries over various 
databases, even from different fields.

The literature already contains several ontologies created for representing (aspects of) materials science. The 
most ambitious project is probably EMMO42, which stands for both European Materials Modelling Ontology, 
developed within the European Materials Modelling Council (EMMC), and Elemental Multiperspective 
Material Ontology. EMMO is designed to provide a formal way to describe the fundamental concepts of physics, 
chemistry, and materials science, to provide an all-purposes common ground for describing materials, models, 
and data that can be adapted by all sub-domains of condensed-matter physics and chemistry. The development 
of EMMO includes also a handful of domain ontologies that assume EMMO as top-level ontology123. These 
domain ontologies span subjects such as “atomistic and electronic modeling”, “crystallography”, “mechanical 
testing”, and more. So far, however, EMMO and its domain ontologies have not been connected to existing 
databases.

Other domain-specific ontologies, not related to EMMO, have been developed. For instance, the Materials 
Ontology124 was developed for the exchange of data among databases for thermal properties, the MatOnto ontol-
ogy125 addresses oxygen ion conducting materials in the fuel cell domain, the NanoParticle Ontology126 maps 
properties of nanoparticles with the purpose of designing new nanoparticles with given properties, while the 
eNanoMapper ontology127 focuses on assessing risks related to the use of nanomaterials from the engineering 
point of view.

An application-oriented ontology is Materials Design Ontology (MDO)128, developed under the guidance 
of the schemas from OPTIMADE41, and therefore aimed at dealing with data from the various materials-data 
repositories (AFLOW, Materials Project, etc.) on a common ground. In practice, MDO connects calculated 
structures with the calculated properties and the physical model adopted to calculate structures and properties. 
Furthermore, the provenance for each calculation, is also represented in MDO. It has recently been extended 
using text mining on thousands of journal articles129.

The hierarchical structure of NOMAD Metainfo already includes ontological aspects. More specifically, it 
represents atomistic calculations, as performed by all the parsed simulation codes. NOMAD Metainfo contains 
already five types of relations between the metadata: (a) is subclass of, (b) is part of, (c) has reference, (d) has 
dimension and (e) has category. The latter relation, has category is introduced to describe conceptually physical 
quantities (e.g., “energy”, “velocity”, etc.). Recently130, this basic NOMAD Metainfo ontology has been expanded 
to include a representation of operations among arrays (in an ontology, any mathematical concept needs to be 
represented in order to properly operate with the physical quantities in complex queries). This extension allowed 
for the introduction of the notion of “similarity” relationship that has been applied as a proof of concept to the 
calculated electronic density of states, as stored in the NOMAD Archive, in order to identify materials with 
similar electronic structures131,132.
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Achievements and challenges of ontologies for materials science were discussed at the first "Workshop on 
Ontologies for Materials-Databases Interoperability (OMDI2021)'', held in Linköping and virtually on October 2021.  
The workshop was organized by the OPTIMADE consortium41 and funded by Psi-k133. The main outcomes of 
the workshop were: a) the strengthening of the idea that the development of useful ontologies need a community 
effort; b) they need to build from the data, i.e., their development needs to be driven by existing data and the aim 
of connecting data from different sources; c) tools for text mining need to be developed129,134, in order to map into 
ontologies the enormous wealth buried in decades of scientific literature. Another important outcome of the work-
shop was the utterance of an insightful warning: "is the field proposing solutions (i.e, the existing ontologies) still 
in search of a problem?''. In other words, the community realizes that it needs specific questions to be addressed 
(the competence questions) in order to shape the ontologies and then propose demonstrative applications of such 
ontologies to answer the agreed upon questions.

Discussion and Outlook
Defining–as completely as possible–a pool of metadata for all the methods and computed quantities described 
above, is crucial for processing, storing, and providing FAIR materials-science data. A key challenge is the 
mapping into a metadata schema of the full set of input parameters, including those hidden into the specific 
codes, and all the available output. This practice will facilitate reproducibility, benchmarking, and peer-review 
processes.

In particular, we emphasize the importance of developing a hierarchical and modular metadata schema in 
order to represent the complexity of materials science data and allow for access, reproduction, and repurposing 
of data, from single-structure calculations to complex workflows. Furthermore, the modularity of the schema 
enables its extensibility, which is vital for the long-term maintenance of the metadata infrastructure.

As an example, we presented the current status of the NOMAD metadata schema, which was designed to 
comply with the FAIR principles. By means of existing parsers that map a growing set of atomistic-simulation 
code packages into the hierarchical, modular NOMAD metadata schema, the NOMAD infrastructure already 
provides the community with a FAIR storage of materials science data. The challenges of fully covering the 
ground-state electronic calculations, and extending the schema to excited states, dynamical simulations, and 
complex workflows were examined in detail. By means of a community effort, all aspects of the different sub-
fields, and all the practical details of each specific implementation can be mapped on the NOMAD metadata 
schema. Finally, we discussed the challenges of the FAIRification of experimental materials-science metadata 
and the creation of ontologies for materials science. Ontologies will unlock the interoperability of the FAIR data 
by enabling the access and reuse of data across materials-science areas, but also outside materials science.

As a perspective, probably the biggest benefit of meeting the interoperability challenge will be to allow for 
routine comparisons between computational evaluations and experimental observations. In fact, it is not trivial 
to associate a given computed quantity, derived through a given theoretical modelling, to an experimentally 
measured quantity. This association requires the judgment of a domain expert and a full characterization of 
both compared quantities. This is where a formalized ontology, applied to FAIR data in materials science, could 
automatize the process.
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